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Abstract:

We derive a finite difference scheme for a sufficiently slow permeable boundary
Navier-Stokes flow, to justify the condition, p(V(x, t).V) V(x,t) ~0, in its
Navier-Stokes equation. The expression is the nonlinear part of the equation and
features in the approximation of the flow’s Reynold’s number (see Remarks 5.2(3), on
page 721 of [2]). In other words, we discretize the linearized , non-homogeneous
Navier-Stokes problem, representing the 3-D slow flow of a fluid. A typical example
of a slow Navier-Stokes fluid flow is ground water through an aquifer. It is to be
noted that the condition of non-homogeneity stems from our further application of the
Sauer-Maritz boundary permeation model (see Section 2,0n page 718 of [2]). This
model is also applied in [4], [5] and [6]. The homogeneous version of the problem is
discussed by O.A. Ladyzhenskya in [7].The derived scheme will then be tested for
convergence and error stability. The theoretic analysis of the problem, as discussed in

[2], takes place in the Sobolev space, L’ ([0, T),H® (Q));T < oo; and therefore, the

scheme will be derived in the same function space( similar to the scheme in [3]).

Key Words: finite difference scheme; permeable boundary; slow Navier-Stokes
flow.
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1 Introduction.

We seck a numerical approximation to the solution, v(x,t), p(x) e H* (Q)x[0,T]
whose existence and uniqueness was confirmed in[2], such that,
(1a) p 0,v(x,1)= pAv(x,t)=Vp(x,0)+f(x,1); ve H* (Q);xeQc R f e I’ (Q),1>0,
subject to:
V.v(x,1)=0;
(1b)5 »ov(».t)=-n,(y.t)n(y); yel.
00, [yov(y,t)] + 7,0 (,t)+2uxn, (y,1) = p,(t) -
where,
x=(x,x,,x,) €
y :=(y,,y2)GGQ:F;
o fluid viscosity; assumed constant;
p : fluid density; assumed constant;
v(x,1): body fluid velocity field;
7,V(x,7): surface fluid velocity field;
p(x,1): fluid pressure field;
7op(x,1): surface fluid pressure field;

f (x,t) : external force; assumed to be of potental type.s

2 The setting for the problem.

We fill up a container with a Navier-Stokes fluid. Inside this container we put a
smaller container, with the same Navier-Stokes fluid and same height. The walls of
the inner container are permeable; thus allowing the free flow of the fluid to and
from the outer container. We denote the wall of the inner container by I'" and the wall

of the outer container by I, .
The body of fluid between I' and I'; is denoted by Q. On the other hand the body of fluid
beyond I', inside the inner container, is denoted by €. A fluid particle may accelerate from
the position of rest from €2, through I" into Q. Another particle could accelerate from the

position of rest from Q2 through I" into Q,.
The motion of the fluid in regions Q and Q) is governed by the mathematical model

1(a), whilst the model 1(b)(the last two boundary equations) accounts for the fluid
permeation through I'. The scheme for the last boundary equation in 1(b) will be
sought as its derivation in [4] has taken into consideration the Sauer-Maritz

permeation model (,v(y,¢)=-7,(».t)n(y)) and the conservation laws.
(see also [2],[4],[5] and [6])
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Remarks 2.1
In the following remarks we assume,

At=t,—t, ;t,,t, €[0,T];Ax = x, = Xg(i1)> Xais Xy i) € Q:k=12,3
(1) The left-hand side time derivative scheme will generate the error term
Q) (x(k) 6, )
o’
represent the directions along the X, X, and X, axes respectively.

of the form EAt ;x(k) eQ;0, e (tjfl,tj) c[0,7T]. Note that x(l),x(z) and x©)

(2) The right-hand velocity scheme will generate the error term
0 (1)
ox;

(3) The pressure scheme generates the error term of the

5? (k)
form lepa—z(f"), which does not vanish in /42 (Q).
X

(4) In the derivation of the following scheme, we will ignore the error terms

1 . . .
of the formE[Ax] . However, this error term vanishes in /> (Q).

as we use vl(ll), vff) and v,.(ff) to approximate v(xl,.,tj ); v(xz,.,tj) and v(xy,tj), respectively.
Similarly, we use p"; p®) and p to approximate p (x,); p(x,,) and p(x;,) respectively.
(See (4) and (5) on page 510 of [7] and 12.2 and 12.3 in [2])

(5) See page 2 of [4] for the existence of a bijection between v(xll.,tj) and 7, ( yli,tj) on one hand;

p(x,) and y,p(,;) on the other hand.

3 The scheme for the region ,Q between I' and I,
Taking a square grid, i, j =1,2,3,....... ,N,for each axis plane, we
develop the following scheme; assuming the mesh information
under Remarks 2.1:

Along the X, -axis, we have:

O I v e v PO U V)
2 2 2
At (Ax) (4x) (4x)
m_ 0
pl _pif (1)
Tt
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Along the X, -axis, we have:

(2)r { } - { ol -k, -2
- 2 2 2
Al (Ax) (Ax) (Ax)
2) ©)]
pz - pi—
_ { - 1 :| 4 fz(/z)

Along the X;-axis, we have:

O e O T O P PO et e
Al (Ax)’ (Ax)’ (Ax)’
{pf” —p,@} 0
Ax ij
The scheme for the divergence equation is:
(1) ORI ) CIINE) (3)
(4) Vi " Vi " Vijot ~Vij n Vi Vi) -0
Ax Ax Ax

Assigning Ax = K, then the scheme (1)-(4), is reduced to

the following form:

R v T L
At K? K b
2 2) 7] M (2 2 2
5 Vi(,j)Jrl _Vl(j) -3 Vt(—l)J 2Vi(,j) + Vt(+1)/ _ pl(Z) — P ,21) (2).
(5)yp At —oH K’ K Jis
6 0] [0 9 3) 0 ] () _ 0
Vit ~ Vi Vi 2vi,j Vi, =D (3)
— 7 1=3 —| =+ fY; and
L At # K? K Jo

with the constitutive equation; for incompressibility, reducing to,
(6) VORIV BRGSO BRSPS Jy

i,j+1 i,J i,j+1 i,j i,j+1 i,J
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Re-arranging (5), we have,

G I O e 1 T SR B ) 3 A Y
p | p | e p

for each £=1;2;3
This implies that,

w\( At w\( At 1) A
(vt 0 =6 2 ) g o ) o ot 1) G - ]

Likewise, we re-write (6) as follows:

O[]0

k=1

Rewriting (9), in terms of the right hand side of (8), we obtain,

6 ﬂAi Vi(,l/)' +3 ﬂAi [Vz'—)l,j +V§i)1,f]_£[pi(l) —pg] A 1(1)

pK~ PK T pK
4%%%KMWJAW o] 2 g0

P P ' P
~6 el s b, ot 1 2D -] 4 2 =0

PK pK* T P
Therefore,

UAE S UAE S At At
_6F; ()+3PK2 kl[vzkl),_i+vzfl/:| Z[[pz z(f ]]_ Zf;/
This implies that,

3 At At At 3 At
-6t s e 3 el - 312 ]

k=1

From the precedlng, we conclude that,

,UAZ‘ ) ﬂAl‘ (k) (k) At (k) T _ At (k)
10)-6 +3— —||p = p = —— £
( ) K [ j+v ] K[[pz pl—l]] f;,j

i+l,j

Therefore,solving for p, in (10) ,the recursive algorithm for the region between I and I

is thus given by,

(1) p = 6;; ()+31’Lé[v.(k),+v(k |-&7% + pl.

i-1,j i+1,j

Therefore, (7) and (11) jointly present a finite difference scheme for the numerical
simulation of the Navier-Stokes flow between the boundaries I" and I,.
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The finite difference scheme referred to is,

( )pz()_ 6ZV()+3Z|: 1(1)/+V1+IJ:| Kf;j +p11)

A A A
()8 =| 1-6225 [ 3 £ [l ot J- 2200+ 20 41
pK= " pKILT T pK p

where, k£ =1,2,3 represent the three rectangular directions.

(13)

will later be tested for convergence and error stability.

For the fluid under consideration, we have,
: 1
T=-pl+ 2,uD(v) , as the stress tensor; with D(v) :E[VV + VTV]

From the preceding equation, we conclude that,

p==p, p’=-p andp{’=-p.

We rewrite 13(b) to obtain,

(14) v¥) = 1= %4, v.(k.)+3—ﬂa[v.(f).+v ]+—af _ MK ap';
z ,j+1 p i,j p i-1,j i+l,j p 1

At

where, @ = —

Later, it will be shown that the scheme (14) converges for 0 < o < 6£ ; which is in
yri
terms of the physical constants for the fluid.

4 Stability for the scheme.

To study the stability of the scheme (13), we define the following appromation errors:

&= (W)l

¢ = P(k) (w,)=p"s where, w, = (x,,x,,x, );v(wi,t_,.) is the actual velocity;
p(k) (Wl.) the actual pressure.

Therefore, the statement for the error of approximation for (14), is given by,

K’ K
(15) ), = {1_6_%},@ LI LR I SOpR S )
P p P
where,

T, =T’ +T/ is the truncation error;
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However, by the Remarks 2.1(2),

o (6r) AV (Et) BV (Eat) g

ox;' ox, ox;
Therefore,
1 52y (x(l) ’ 9)
At 7
2
2 ot
2.0 ()
) 1 OV (x ,9)
T =| - At——5——
2 ot
2.0 (,0)
lAta \% (x ,9)
2 o’
Hence,
2.0,
lAtav (x ,9) lKazp(l)(gzl)
2 ot 2 8x12
RS x(z),H % p?
T, = %At% + %Kpa—z(é) ; bounded in [0,7]x Q,
Xy
2,0 (,.0)
1,8 (0) | |1 20 (&)
2 ot 2 Ox;
where,

0e (tj,tjﬂ);fl € (xli,xl(m));f2 € (xZi,xz(l.+1)) and ¢ e (x3i,x3(l.+1))
There fore, by (13a),

__ bu 3u
(16) el = —?e(k,)—k—[ei(k) e ]+Kﬁ,j+Te

i,j K -1,j i+l,j
For a fluid particle; starting from the position of rest in (), accelerating towards I,

we formulate and prove the following theorem:

Theorem 4.1:
For a fluid particle accelerating from the position of rest in Q and accelerating towards I'; with

v(k)+1 E[O,V%)]CHZ (Q); pl(fl) e[pgk),p%‘)}cf (Q) it e[O,T] J <0 0, j=1;2;3..,N;k=1,2,3;

i,j

the scheme (13) admits error stability for 0 < o < 6£

)]
Proof:
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Firstly, all the norms in the proof are the ||||H2 @ norms.

On the other hand, by (16)

e+ e I+l

p
e+1/

L]+

i+1,j

We rewrite the preceding inequality in the form,
(17) E”, < %E + KM, + M, where,

P._
El, :=max| e/,

;MY —maxHT HM —mafo H

By (17), we have,

12
E’ <7ﬂE KM, +M?

1212
=2 ’uEA1+KM.+M”}rKM.+M”
K K J f e f e

~.

<

l—|

N

12u4Y 12
=| == | E+—(KM,+M!)+KM ,+ M}
K ) 7K ‘ s

3
3(127”] E_,_2+(1§{”J (KM, +M?)

+%(KM.+M”) (KM +M”)

Since, E, =0, then,

(08) £, = (e, +02) 322

k=0 K
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By (15), we have,

641 K’ K
€ = {1——0{} +— a[e +ei+1,j]+—afi,j —’u—aef’ﬂj +T,.
P P P

This implies that,

2

(20) e, < ‘1_%’(1 o2l e [T+l |+ afer
Weput: £, = maXHel |- Hence, £, = max Hei,].” = max Hei—l,/’H =max|e,,,
Rewriting (20), we obtain the inequality,
(21) E,, < 1—67# a|E, +67’uaE +—a HquJr7“ el |[+||T.
For 1—6—’ua >0; thatis, 0<a < ﬁ, the inequality (21) assumes the form,

p 6
E, <E, +—aHfl/H+—Ka el |+

p p
2

(22) E,, <E +>am, +ﬂa(KM +M? ) (12") +M,; by (18),
p P

2

\S}

K’ UK (1 ,uj
Weput p(K)=—aM , +—a(KM , +M? — | +M,,
o(K) o T, ( 1 ) ~\ "k

with (22) assuming the form,
(23) E,,, <E, +9(K).

=~

Hence, by (23),E,,, <E, +¢(K)
<E,_ +2p(K)
<E,_,+3p(K)

Therefore,
(24) E,,, < No(K), since E, = 0; and error stability follows.
O.E.D.

Remarks 4.2:

Issue 1, Volume 4, 2010 17



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

(1) Choosing 24 <1; with 0<« Sﬁ, we have,
K 6u
K’aM, G ‘
o(K)< LN +M€")Z(2—ﬂj
P P ' i\ K
+M,
K*M
<— +£(KM/»+M5’)L+Me
6u 6 ' K-12u
Therefore,

KM, K*(KM,+M)
61 6(K-12u)

(25) E,, < N[ + Me];and,choosing

the smaller K would decrease the scheme error upper bound.

(2) For f (x,t) = O(conservative force) which is the case in [2], then M, =0, and,

2
(26) £ N(ﬂ

o <— +M ; forK >12
M6 K—12,u] ‘ #

5 The scheme for the flow through the boundary T.

Any point on the permeable surface I" may be represented by the general coordinates,
(Tl,rz,n), with 7, and 7, tangential to I', and, n normal to the surface(see Section 2.5 of [5])

Hence, on the boundary I', the equation ,
P 6tv(x,t) = yAV(x,t)—Vp(x,t)Jrf(x,t), assumes the form,
o0, v(x,t)n =y, V.[y,Tn]+y,fn; with n as the normal to I".
= ;/OV.[—yopIn + 2,u7/0D(v)n] +7,fn
=—y,pl [Vs.n + na—n} + 2,uy0D(v)[Vs.n - na—n} +7,fn
on on

=—y,pIn+24y,D(v)n+y,fn;

where o is the surface fluid density and,y,I" = —y,pl +2uy,D, the usual stress tensor,

on the inner container surface,I". Also, note that while V _ is tangential, n is normal and, hence,
V.n=0.
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Finally,

n.(o o,v(xt)n)=0dp,
:n.(—;/opln+2,u7/0D(v)n)+n.7/0fn
=—y,p+n.(2uy,D(v)n)+n.y,fn

= —y,p—2un, +n.7,fn, by (17) of [6].
Therefore,

(23) 00,7, ==y, p = 2uxn, +n.y,fn

Equation (23) in the normal direction to I'; represents flows across I', and it is to be discretized to
approximate the value of 7, .

In terms of our rectangular coordinates,

(24) 1,(0)=v").,; when n is parallel to the X, —axis.

ij+1°

Note:
(i) If 17, (0) =+!"),,, then, n.y,fn = 0.

i,j+1°
(i) If 7,(0) =+, then nyfn=-pg,,
where, g, is the acceleration component due to gravity.

(ii1) However, normal stresses at the boundary,I”, are non-zero and

described by the expression,

(25) n.Tn=—y,p—2un,x
We then discretize (14) as follows:

M =1
(26) 0|: T} :_2/”(771‘,,‘ —YoPi-t P& +O(h2)

Rewriting (25), we obtain,

2 urAt At ) )
(27) M1 = (1 - ﬂg j n., —; VoD, + pg,; where, y,p (sl., tj+1) is approximated by y,p,.,.

Assuming that the nornal direction on I' is along the X, -axis, then we rewrite (27) in the form,

2 LKAt At .
i = (1- g jnf’-i -— 7o ppwithg, =0,
o o
(28) where,

=V v = pl.
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Assuming a normal direction(parallel to the X, -axis) to the boundary surface I',

then from (28), we obtain the boundary computational scheme:

2 (kA A D . o
My = (1 _ZH t]vl.(,l). _A pl.(l); which is readily usable for the approximation of the boundary
' o

velocity for the permeable boundary fluid.

Finally, the finite difference scheme of the permeable boundary Navier-Stokes flow
is given by,

—_
N}

N—

S

(k) _ _gH (%) H (k) (k)
i __6Evi,j +3K|: llj+vl+1j:| Kf;j +p11

t t t
(29)4(b) v {1 65]{2} f?+3%[v}ﬁj+v’“/} "?{p,k +;fifjf)

2 1K\ A
(C) nij+1:(1_#—t)vl(lj)+l__tp fOl" 0<At<_
’ o} 2uK

Remarks 5.1
(1) It is now logical that we should "marry" the convergence criteria

for the components of the scheme (29).While the components 29(a) and

29(b) converge for 0 < % < 6£; the boundary permeation scheme

o
converges for 0<At <——

2uk’

(2) Ultimately, we assert that the scheme (28) converges for,
2
0<At < min L, S .
2ux 6u
(3) From the preceding remark, we observe that the choice

of At is subject to the physical contants of the fluid. This makes
sense as the boundary permeation time interval is expexted to

be very short.

6 The scheme for the flow inside the region Q..

Issue 1, Volume 4, 2010 20



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

After the flow through the boundary surface I', the fluid "spills" into the
region Q . This may require some modification to the scheme (29). We, thus,

have the following scheme:

(a) p* = 6“ )+3”[ W) -k + Y
(30)
(b)v,-(,l_(,)ﬂ {1 ° ﬂAt} R o [ ’(1 j +V1+1 /] IUAt pi +_fz(f)
pK? pK? pPK Yo
Yol i i+ —YoPi _2/L”7i,j+1K
where, p:=/0 ;v =0 e , for a short time
0 0 0

duration before non "incident" components were to re-develop.

Remarks 6.1:
(1) In the scheme (30), p” = y,psv) =7, and £) ==y, p, =20, .1k

2
(2) By Remarks 5.1(2), the scheme will converge for 0<At < min o PR
2,u/( 61

7. Conclusion.

Although the discretization of the boundary permeation fluid flow may still be
regarded as “splitting hair”, our preceding analysis does indicate that it is still
feasible. The role played by the physical constants of the fluid (o, p, and &), may
definitely not be ignored. Obviously, the larger the inner container curvature x ,the
more “viable” the boundary discretization scheme becomes.
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