
 

 

  
Abstract—Regulation and control in biological processes are the 
center of life. Living organisms grow and reproduce. They maintain 
their structures and respond to their environments. All these 
processes are done through regulation and control. This paper reports 
the study of regulation and the applicability of intelligent control to 
bioinformatics, particularly to biological systems. In addition to two 
previously-described phases of bioinformatics discipline, 
characterized by intelligence-free programs, and artificial 
intelligence-based programs, respectively, another phase is now 
proposed that incorporates intelligent control action and further 
understanding of biological regulation. All three phases can 
alternatively be viewed as levels corresponding to historical 
evolvement in our understanding of the field - of increasing degree of 
complexity.  As the most complex of all, the intelligent control level, 
reported here, is dedicated to offering the necessary scientific and 
developmental framework for enhancing bioinformatics through the 
determination of optimal therapeutic strategies; tissue engineering 
being a far-reaching goal.   
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Biological regulation, Biological control. 

I. INTRODUCTION 

Our aim is to integrate control theory and regulation in 
bioinformatics, under one unified perspective. In order to 
understand how normal cellular activities are altered in 
different disease states, the biological data must be compiled 
to form a comprehensive picture of these activities. Therefore, 
the field of bioinformatics has evolved such that the most 
pressing task involves the storing, retrieval, and interpretation 
of various types of biological data, including nucleotide and 
amino acid sequences, protein domains, and protein structures.  

One of the major tasks of bioinformatics is the study and 
development of tools that enable efficient access to, and 
management of various types of biological data. The 
computational aspect of bioinformatics studies the 
development of new algorithms and statistical methods with 
which to assess relationships among members of large data 
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sets, such as finding location of a gene within a sequence, 
predicting protein structure and/or function, and clustering 
protein sequences into families of related sequences [4]. 

The field of bioinformatics went through two main 
historical phases, during which standard heuristics-free 
programs were used such as database management systems 
(DBMSs), followed by limited artificial intelligence-based 
programs [25]. How can control theory enhance 
bioinformatics?  

First of all, a control system for a physical system is an 
arrangement of hardware components designed to alter, to 
regulate, or to command, through a control action, that 
physical system so that it exhibits certain desired 
characteristics or behavior. Physical control systems are 
typically of two types: open-loop control systems, in which 
the control action is independent of the physical system 
output, and closed-loop control systems, also known as 
feedback control systems, in which the control action depends 
on the physical system output.  

Intelligent control uses methods and techniques from 
artificial intelligence (AI) such as logical inference and 
machine learning methods (ML) like neural networks (NNs), 
genetic algorithms, and reinforcement learning among other 
methods [43]. The integration of control methodology within 
biology has been on the way but is still in its infancy [11]. As 
a complement to a previous work, concentrating on machine 
learning issues [16], [17] emphasis is now made on intelligent 
control problems and on how these theories can be integrated 
within a coherent framework; the aim of which is to provide 
future enhanced bioinformatics platforms [3].   

The paper is organized as follows. Section 2 deals with the 
problem formulation. This section poses the fundamental 
question: “Why do we need a third level involving intelligent 
control in bioinformatics on top of the two purporting ones?” 
Section 3 describes some relevant bioinformatics issues. 
Section 4 reports a brief description of the control 
methodology. Section 5 describes methods from intelligent 
control relevant to bioinformatics. In Section 6, systems and 
computational issues are addressed. Biological modeling and 
control are discussed in Section 7. Section 8 reports the 
possible impacts the proposed framework is thought to induce 
on future bioinformatics. A conclusion sums up the main 
results and points towards some potential future 
developments.  
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II. PROBLEM FORMULATION 
As far as the study of bioinformatics is concerned, we suggest 
using the traditional entry points available to computer and 
control scientists [3]. Specifically, the aim is to extend earlier 
works on control [14] and give directions of application to 
bioinformatics and especially to contribute to the 
enhancements of the previously-described two levels of 
bioinformatics [16], [17].  

A. Major Intractable Natural Problems 
The discovery of the structure of deoxyribonucleic acid 

(DNA), as a building bloc of living species, was a turning 
point in the history of science, culture and society. Its visible 
impacts on medicine, agriculture, energy production, social 
issues, ethics, and others, continues to create interesting 
challenges in all human endeavors. Such multidisciplinary 
efforts require scientists who are able to cross boundaries 
between many disciplines and who can make a valuable 
contribution to science and society at large. Awareness of the 
wholeness of this task as well as its implications, not only for 
science but also for humanity, requires a sense of 
responsibility that is equally whole [23]. In this regard, some 
fundamental natural problems in biology have been raised  
[31]: 

- There are no rules without exception. 
- Every phenomenon has a nonlocal component. 
- Every phenomenon is intertwined with others. 
The first problem poses the difficulty of using induction. 

Induction, also known as inductive reasoning, is a type of 
reasoning that involves moving logically from a set of specific 
facts or examples to a general conclusion. It can also be seen 
as a form of theory-building, in which specific facts or 
examples are used to create a theory that explains 
relationships between the facts and allows prediction and/or 
inference of future knowledge.  

For the second and third problems, non-locality means 
space distribution, and intertwined phenomena imply non-
separability. All these issues have been studied within the 
control community and can, as such, make useful 
contributions to the proposed framework. 

B. Bioinformatics Efforts 

1) Human Genome Project (HGP) 
The Human Genome Project (HGP) represents one  of the 

major bioinformatics efforts. Completed in 2003, HGP was a 
13-year collaborative work coordinated by the US Department 
of Energy and the National Institutes of Health (NIH). During 
the early years of the HGP, additional contributions came 
from many countries such as Japan, France, Germany, China, 
among others. The use of computer technology for storing 
DNA sequence information and constructing the correct DNA 
sequences from fragments identified by restriction enzymes 
was one of the first applications arising from the different 
bioinformatics sequencing projects. In general, enzymes are a 
micro-machine that catalyses a certain reaction, like the 
breakdown of a food source or toxin. Specifically, restriction 
enzymes break up the DNA at certain points.  

 

2) Goals of HGP  
The HGP goals were to  

• identify all the approximately 20,000-25,000 genes in 
human DNA,  

• determine the sequences of the 3 billion chemical base 
pairs (bps) that make up human DNA,  

• store this information in databases,  
• improve tools for data analysis and accessibility,  
• transfer related technologies to the private sector, 
• address the ethical, legal, and social issues (ELSI) that 

may arise from the project.  
Though the HGP is finished, analyses of the data will 

continue for many years to come. 
[http://www.ornl.gov/sci/techresources/Human_Genome/ho

me.shtml].  

3) Post-genomic Era 
Although only few relatively small genomes have been 

completely sequenced thus far, the end of the HGP is 
conceptually anticipated by the community in proclaiming the 
start of the "post-genomic era" or the period of "functional 
genomics". Systematic elucidation of gene function requires to 
link sequence data with information about molecular 
mechanisms, and also with histological, anatomical and even 
taxonomical data. As a consequence, even "classical" 
branches of biological and medical research gained interest 
when linked to genome-based information.  

[http://www.gene-regulation.com/info/cytomer.html]. 
The website of the US Department of Energy Genome 

Programs maintains useful and updated information, 
http://genomics.energy.gov  

C. Third Level of Bioinformatics Discipline  
Intelligence-free programs are the characteristics of the first 

level in bioinformatics development based on standard 
programs such as database management systems (DBMSs). 
Limited intelligence-based programs characterize the second 
level [25]. In addition to the two levels of bioinformatics 
described earlier [16], [17] we here provide a framework 
characterizing the principles that may underlie a foreseeable 
third level, based on the integration of intelligent control 
within bioinformatics. This integration allows external actions 
on the various elements within a given database with potential 
guidance in the process of drug discovery, and biological 
systems design such as tissue engineering, for instance.  

In summary for our problem formulation, the present paper 
attempts to address this central issue by looking at the latest 
advances in intelligent control as computational problem 
solvers for biomedical applications.  

III. BIOLOGICAL RELEVANT ISSUES  
In this section, we concisely present the main concepts from 

biology relevant to our discussion. These concepts concern 
structure of genes, transcription, and transcription factors are 
detailed in [29].   

A. Structure of Genes 
Genes are pieces of DNA that encode for proteins through 

the intermediate action of messenger RNA (mRNA). Proteins 
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are made of amino acids arranged in a linear chain and joined 
together by peptide bonds. A gene and the genomic region 
surrounding it consists of a transcribed sequence, which is 
converted into an mRNA transcript, and of various 
untranscribed sequences. The mRNA is transcribed from a 
DNA template, and carries coding information to the sites of 
protein synthesis: the ribosome. The mRNA consists of a 
coding sequence that is translated into a protein and of several 
untranslated regions (UTRs). The untranscribed sequences 
and the UTRs play a major role in the regulation of 
expression. Notably, the promoter region in front of the 
transcribed sequence contains the binding sites for the 
transcription factor proteins that start up transcription. 
Moreover, the region upstream of the transcription start 
contains many binding sites for transcription factors that act as 
activators and repressors of gene expression, although some 
transcription factors can bind outside this region. 

B. Transciption 
Transcription means the assembly of ribonucleotides into a 

single strand of mRNA whose sequence is dictated by the 
order of the nucleotides in the transcribed part of the gene. 
The transcription process is initiated by the binding of several 
transcription factors to regulatory sites in the DNA, usually 
located in the promoter region of the gene. The transcription 
factor proteins bind each other to form a complex that 
associates with an enzyme called RNA polymerase. This 
association enables the binding of RNA polymerase to a 
specific site in the promoter. Together, the complex of 
transcription factors and the RNA polymerase loosen the 
DNA and separate both strands. As a result, the polymerase 
proceeds down on one strand while it builds up a strand of 
mRNA complementary to the DNA, until it reaches the 
terminator sequence. In this way, an mRNA is produced that 
is complementary to the transcribed part of the gene. Then, the 
mRNA transcript leaves the RNA polymerase, and the 
polymerase breaks its contact with the DNA. In a later stage, 
the mRNA is processed, transported out of the nucleus, and 
translated into a protein.  

C. Transcription Factors 
Transcription factors are proteins that bind to regulatory 

sequences on eukaryotic chromosomes thereby modifying the 
rate of transcription of a gene. Some transcription factors bind 
directly to specific sequences in the DNA (promoters, 
enhancers, and silencers), others bind to each other. Most of 
them bind both to the DNA as well as to other transcription 
factors. The transcription rate can be positively or negatively 
affected by the action of transcription factors. When the 
transcription factor significantly decreases the transcription of 
a gene, it is called a repressor. If, on the other hand, the 
expression of a gene is upregulated, biologists speak of an 
activator. 

D. Regulatory Elements on the Web 
Regulatory elements play a central role in the study of 

biological sequences. For this reason many databases have 
been developed and are available to explore known regulatory 
elements. Table 1 gives a list of databases of promoters and 

gene regulation that are accessible online. Most of these sites 
are also portals to specific tools for the analysis of regulatory 
mechanisms.  
 

Data base URL 
EPD www.epd.isb-sib.ch 
TRANSFAC www.gene-regulation.de/ 

PLACE www.dna.affrc.go.jp/htdocs/PLAC
E [19] 

TRRD www.bionet.nsc.ru 
SCPD cgsigma.cshl.org/jian 
HPD zlab.bu.edu/~mfrith/HPD.html 
COMPEL compel.bionet.nsc.ru/compel 

Table 1 Regulatory elements sites 

IV. CONTROL  SYSTEMS CONTRIBUTIONS  
As far as control theories are concerned, we only describe 

here the most important ones and show how these methods 
can be useful in bioinformatics. There are indeed many lines 
of research that can help in molecular biology development. 
Many of these are directly related to control and system 
theories [11], [30].   

A. Dynamic Control  

1)  Negative Feedback control 
Control is an interdisciplinary branch of engineering and 

mathematics, which deals with the behavior of dynamical 
systems. The desired output of a system is taken as a reference 
to be attained or maintained at a specific value. When one or 
more output variables of a system need to follow a certain 
reference over time, a controller manipulates the inputs to the 
system to obtain the desired effect on the output of the system. 
This is usually done using negative feedback, i.e. a procedure 
whereby the actual value is subtracted from the desired value 
to create the error signal which is used by the controller to 
allow correction to be undertaken at subsequent stages. This 
procedure is therefore done in closed-loop form.  

2)  Examples Physical Control Systems 
A thermostat is a simple example for a closed-loop negative 

feedback control system. Indeed, it constantly measures the 
actual temperature and controls the heater's valve setting to 
increase or decrease the room temperature according to the 
user-defined setting. A simple method switches the heater 
either completely on, or completely off, and an overshoot or 
undershoot of the controlled temperature must be expected 
dictated by the physical inertia of the system. A more 
expensive method varies the amount of heat provided by the 
heater depending on the difference between the required 
temperature, or "setpoint" and the actual temperature. This 
minimizes over/undershoots. Other more sophisticated control 
schemes can also be applied [13].  

An anti-lock braking system (ABS) used in car braking 
technology is a more complex example, consisting of multiple 
inputs, conditions and outputs.  
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3)  Control Laws Construction 
Whatever control strategy is used, the resulted control 

system must guarantee the stability of the closed-loop 
behavior, i.e. preventing that the system state or output takes 
unacceptable values, inducing heavy breakdowns. For linear 
systems, this can be obtained by directly placing the poles of 
the closed-loop transfer function. For multiple-input multiple-
output (MIMO) systems, pole placement can be performed 
mathematically using a state space representation of the open-
loop system and calculating a feedback matrix assigning poles 
in desired location of the s-plane for continuous systems or the 
or z-plane for discrete systems. This is usually done by 
computer aided control systems design (CACSD) methods 
tools and capabilities [14].   

Whatever methods are used for linear systems, one cannot 
always ensure robustness, i.e. the ability to cope with small 
differences between the true system and the nominal model 
used for design. Furthermore, all system states are not in 
general measured or directly accessible and that is why 
estimators must be included and incorporated in pole 
placement design. The estimators are either observers of 
Luenberger type for deterministic control [13] or Kalman 
filters for stochastic control.  

B. Optimal Control  

1)  Optimal Control Application 
Loosely defined, an optimal control problem is stated as 

follows. Given a system with known dynamics and output and 
some initial state, find a control law that minimizes a given 
cost functional subject to some prescribed constraints. As a 
control methodology, optimal control, rooted in the calculus 
of variations, is not considered within the framework of 
intelligent control, discussed in next section. The main link 
that exists between optimal control and intelligent control is 
perhaps the parameter identification procedure, when needed, 
whereby some sort of learning is used.  

2) General methodology  

2.1 Principle of Optimality 
Optimal control problems can be solved using the technique 

of dynamic programming. This technique, pioneered by 
Bellman in the 1960s, is based on the so-called principle of 
optimality. When an optimal strategy exists, the principle of 
optimality asserts: if one searches for an optimal strategy over 
a subset of the original number of steps, then this new optimal 
strategy will be given by the overall optimal strategy, 
restricted to the steps being considered. It can be used to 
arrive at the dynamic programming solution of the basic 
problem expressed above [5].  

2.2 Maximum Principle / Dynamic Programming  
Whenever it is possible to use a state-variable to represent 

the system to be controlled, then optimal control theories can 
be applied such as the Pontryagin’s maximum principle, via 
the optimization of the Hamiltonian, or dynamic 
programming, based on the principle of optimality. Optimal 
control methods have been applied in regulation of 

transcription. Using complete genome sequences available for 
many eukaryotic organisms, the genome-based analysis will 
become more and more important in interpreting gene 
regulation. In this respect, the suppression of responses to 
mechanical stimuli in human joint tissue (synovial cells) by 
solving a Ricatti equation has been applied. Since the derived 
control law can be implemented by a DNA transfer technique 
such as a promoter competition assay, the novel genome-wide 
model-based approach would be useful in developing a 
strategy for gene therapies and tissue engineering [27]. 

2.3 Steps for optimal control bioinformatics application 
Step 1: Initialization. Select genes involved in the responses 

to mechanical stimuli. 
Step 2: Mathematical model. Find a matrix linear system of 

equations and the measurement equation in a 
general state-space form. Define a state vector, a 
control vector, and a measurement vector, with three 
matrices which are the system matrix A, the control 
or input matrix B, and the measurement matrix C 
for the genes associated with the mechanical 
responses,  

Step 3: Identification. Practical determination of the 
matrices A, B, and C. Here identification is 
necessary. The system matrix A can be identified 
from the temporal profile of the estimated state, x, 
assuming that the dynamics for each state as a linear 
second order differential equation.  

Step 4: Eigenanalysis. Single value decomposition (SVD) 
can be used to factorize the unprocessed matrix, C.  

Step 5: Control law construction. LQ regulator solution. 
Solve the linear quadratic (LQ) problem and find 
the closed-loop control. This requires solving an 
algebraic Ricatti equation (ARE).  

Step 6: Numerical integration and Monte Carlo simulation. 
Numerically integrate the dynamical responses. 
Establish statistical significance of the modeled 
mRNA expression profiles using Monte Carlo 
simulation [27]. 

V. INTELLIGENT CONTROL  PARADIGM  
Roughly speaking, intelligent control lies at the intersection 

or artificial intelligence (AI) and control. It uses various AI 
computing approaches like neural networks (NNs), Bayesian 
probability, fuzzy logic (FL), machine learning (ML), 
evolutionary computation, genetic algorithms (GAs), expert 
systems and consciousness / cognition to control a given 
dynamic system [24]. 

A. Soft Computing Methods 
Soft computing is not a closed and clear-cut discipline. It 

incorporates an emerging family of problem-stating and 
problem-solving methods that attempt to mimic natural 
intelligence; this latter based on approximate reasoning, 
heuristics and the power of easy generalization. Basically, 
there are two important components i.e. fuzzy logic-based 
models (FLMs) and experimental data learning methods such 
as neural networks (NNs) and support vector machines 
(SVMs). In addition, there are methods based on genetic 
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algorithms (GAs), evolutionary algorithms (EAs), 
probabilistic reasoning, belief networks, rough sets, wavelets, 
fractal and chaos theories. Soft computing methods are used 
whenever it is not possible to devise a mathematical model 
from first principles. The aim is to: 
- Learn from experimental data (examples, samples, 

measurements, records, patterns, observations,…) by NNs 
or SVMs. 

- Embed existing structural human knowledge such as 
experience, expertise, and heuristics, into efficient 
mathematical framework such as IF-THEN rules.   

B. Neural Networks (NNs) 

1) NNs in Bioinformatics 
Neural networks (NNs) represent a body of machine 

learning knowledge from the field of AI with proven pattern 
recognition capabilities and have been utilized in many areas 
of science and technology including bioinformatics. NNs 
learning methods are robust approximators of real-valued, 
discrete-valued, and vector-valued functions. For certain types 
of problems, such as learning to interpret complex real-world 
sensor data, NNs are among the most effective learning 
methods currently known.  

For example, in spite of its simplicity of implementation, 
the Backpropagation algorithm has proven surprisingly 
successful in many practical problems such as learning to 
recognize handwritten characters, learning to recognize 
spoken words, and learning to recognize faces [24]. NNs have 

been applied to biomedical problems such as disease 
classification and identification of biomarkers. This is due to 
their ability to cope with highly dimensional complex datasets 
such as those developed by protein mass spectrometry and 
DNA microarray experiments [26]. NNs play a central role in 
areas as diverse as protein structure and function prediction. A 
critical overview of recent advances in bioinformatics which 
have used NNs methods have been reported [39]. 

2) Advantages of NNs 
- Learning. NNs have an ability of learning from data, 

mimicking human ability. 
- Approximators. NNs can approximate any multivariate  

nonlinear function. 
- Simplicity. NNs do not need deep understanding of the 

process or the problem being studied.  
- Parallelism. Have parallel structure and can easily be 

implemented on hardware.  
- Ubiquity. Some NNs can cover broad and different classes 

of tasks.  

3) Disadvantages of NNs 
- Long training. NNs need long time in training and learning 

especially for problems with local minima or multiple 
solutions. Impedes many real-time applications.  

- No additional knowledge. NNs do not uncover basic 
internal relations of physical variables and do not increase 
our knowledge about the process.  

- Bad generalizations. NNs are prone to bad generalization, 
with large number of weights, tendency to overfit the 

data, poor performance on previously unseen data during 
training phase. 

- Difficult choice. Little or no guidance is offered about NNs 
structure or optimization procedure, or type of NNs to use 
for a particular problem.  

C. Fuzzy Logic Paradigm  
Classical, also known as crisp or Boolean logic, is a 

mathematical system that operates on discrete values of either 
0 or 1 (true or false). Fuzzy logic considers real input values 
in terms of logical variables that take on continuous values 
between 0 and 1, in contrast with crisp logic.  

1)  Advantages of Fuzzy Logic Models (FLMs) 
- Human knowledge embedding. Fuzzy logic models (FLMs) 

are efficient tools for embedding human knowledge into 
useful algorithms.   

- Approximators. FLMs are good approximators of any 
multivariate nonlinear function.  

- No need for explicit modeling. FLMs are useful when no 
mathematical model is available or when it is impossible 
to obtain it.  

- Robustness. FLMs operate successfully under a lack of 
precise sensor information. 

- Genericity. FLMs are appropriate tool in generic decision-
making.  

2)  Disadvantages of FLMs 
- Structuring knowledge. Human experts may have problems 

in structuring their knowledge.  
- Inconsistencies and human subjectivity. Human expert may 

sway between extreme decisions or tend to hide their 
knowledge.  

- Exponential explosion. The number of rules increases 
exponentially with increase in the number of fuzzy 
subsets per input variable.  

- High constraints. Learning, i.e. changing membership 
functions, shapes is highly constrained, typically more 
complex than NNs.  

3) Fuzzy Control Systems (FCS) Design  
A fuzzy control system (FCS) is a control system based on 

fuzzy logic. From a control theoretical point of view, fuzzy 
logic has been intermixed with all the important aspects of 
systems theory: modeling, identification, analysis, stability, 
synthesis, filtering, and estimation.  

A number of assumptions are implicit in any FCS design. 
Six basic assumptions are commonly made whenever a fuzzy 
rule-based control policy is selected. 

(i)   A solution exists. 
(ii) The plant is observable and controllable: state, input, 

and output variables are usually available for 
observation and measurement or computation. 

(iii) There exists a body of knowledge comprised of a set of 
linguistic rules of type IF-THEN, engineering common 
sense, intuition, or a set of input–output measurements 
data from which rules can be extracted. 

(iv) The control engineer is looking for a ‘‘good enough’’ 
solution, not necessarily the optimum one. 
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(v) The controller will be designed within an acceptable 
range of precision. 

(vi) The problems of stability and optimality are not 
addressed explicitly; such issues are still open problems 
in FCS design. However, interest in stability criteria for 
FCSs has grown in recent years.  

4)  FCS Stability Issues 
The basic idea behind any FCS design is obtaining the 

control surface from approximations based on a collection of 
fuzzy IF–THEN rules that describe the dynamics of the 
controller. One of the most important difficulties with the 
creation of new stability criteria for any FCS has been the 
analytical interpretation of the linguistic part of fuzzy 
controller IF-THEN rules. Often FCSs are designed with very 
modest or no prior knowledge of a solid mathematical model, 
which, in turn, makes it relatively difficult to tap into many 
tools for the stability of conventional control systems. With 
the help of Takagi-Sugeno fuzzy IF-THEN rules in which the 
consequences are analytically derived, sufficient conditions to 
check the stability of fuzzy control systems are now available. 
These schemes are based on the stability theory of interval 
matrices and those of the Lyapunov approach. Frequency-
domain methods such as describing functions are also 
employed for this purpose [10].  

D. Hybrid Soft Computing Methods 
Hybrid soft computing methods incorporate a combination 

of two or more methods from previously-described soft 
computing methods. We concentrate our talk on one of the 
most popular hybrid methods or the so-called adaptive neuro-
fuzzy inference system (ANFIS).  

  
1) ANFIS Control 

 An adaptive neuro-fuzzy inference system (ANFIS) is a 
cross between neural network and a fuzzy inference system 
(FIS). An adaptive network is a multi-layer feed-forward 
network in which each node (neuron) performs a particular 
function on incoming signals. The form of the node functions 
may vary from node to node. In an adaptive network, there are 
two types of nodes: adaptive and fixed. The function and the 
grouping of the neurons are dependent on the overall function 
of the network. Based on the ability of an ANFIS to learn 
from training data, it is possible to create an ANFIS structure 
from an extremely limited mathematical representation of the 
system. The ANFIS architecture can identify the near-optimal 
membership functions of fuzzy logic controller (FLC) for 
achieving desired input-output mappings. The network applies 
a combination of the least squares method and the back 
propagation gradient descent method for training fuzzy 
inference system (FIS) membership function parameters to 
emulate a given training data set. The system converges when 
the training and checking errors are within an acceptable 
bound. For example, the ANFIS generated by the fuzzy 
toolbox available in MATLAB™ allows for the generation of 
a standard  Sugeno style FIS or a FIS based on sub-clustering 
of the data [21].   

 

2) Hybrid Soft Computing Application to Cell Culture 
As an example of hybrid soft computing methods 

application to bioinformatics, we describe a system a neuro-
fuzzy control system for recombinant cell culture [42]. The 
introduced system has learnt the dynamics of the bioprocess in 
the form of a FIS and also estimated major parameters of the 
controlled process. 

To produce a recombinant protein, it is critically important 
to optimize and control bioprocesses based on knowledge of a 
cell's genetic, metabolic, and kinetic behavior. It is, however, 
not straightforward due to the fact that the biosystem is highly 
nonlinear, time variant, and complex. Some intelligent control 
systems have been implemented for control of fed-batch 
cultivation of recombinant Escherichia coli and yeast, namely, 
fuzzy pH-stat, fuzzy neural network, and fuzzy control 
coupled with a neural network estimator. In a fuzzy pH-stat 
control system, the relationship between pH change in the 
medium and glucose consumption rate is modeled by a fuzzy 
set and subsequently used to control the feed rate of glucose to 
obtain cell density as high as 72 g/L. In a fuzzy neural 
network control system (FNN-CS), a FNN was constructed to 
learn fuzzy control inference and then was applied to fed-
batch cultivation of recombinant Escherichia coli to attain a 
high expression of recombinant protein. In addition, a FCS 
was developed and coupled with NN estimators that can on-
line estimate residual glucose and galactose concentrations, 
which were utilized to control the feed rate of glucose (during 
the cell growth phase) and the feed rate of galactose (during 
the expression phase). Such results from the application of 
these control strategies demonstrate usefulness in the fed-
batch cultivation of recombinant strains. The idea behind 
these studies is to utilize predetermined experimental data to 
develop repetitive learning control using intelligent 
techniques.  

VI. SYSTEMS AND COMPUTATIONAL ISSUES  

A. The Systems Approach Heritage 
Control theory is deeply rooted in systems theory - an 

interdisciplinary theory about the nature of complex systems 
as they appear in nature, society, and science. System theory is 
a framework through which one can study any group of 
objects that work together to produce some result. Systems 
theory originated first in biology, in the 1920s, sprang by the 
need to explain the correlation between organisms and 
ecosystems. As a technical and general academic area of 
study, system theory encompasses the science of systems that 
resulted from Bertalanffy’s general system theory (GST), 
among others, in initiating what became a project of systems 
research and practice. On the other hand, systems dynamics in 
the sense of Forrester is an offshoot of system theory and has 
had application in as diverse field as urban dynamics, world 
dynamics, and defense systems through the so-called 
WHIRLPOOL and SAGE Projects and K-12 learning methods 
[http://www.systemdynamics.org/DL-IntroSysDyn/].  

As far as control is concerned, if we take the example of 
parameter estimation, needed for most control applications, 
especially adaptive control, we can easily discern the heavy 
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heritage of intelligent control vis-a-vis system theory [43]. 
Thus, the systems approach is particularly useful for our 
proposed framework since it helps in the integration of 
intelligent control methods and bioinformatics in a unifying 
manner. The proposed framework further offers the possibility 
to use more specialized machine learning-oriented methods 
such as grammatical inference with its applications to self-
assembly [15].  

1)  Systems Biology 
The proposed three-level bioinformatics framework is to be 

addressed through general systems theory in the sense of 
Bertalanffy. The passage from DNA to the cell to the organ to 
the organism to community of organisms to ecosystems 
represents different living levels, usually addressed by 
systems theory.  

All these levels express different behaviors and cannot be 
reduced to, nor understood only from, lower levels. Systems 
biology is based on this holistic view of biology. Going back 
to antiquity, holism is based on the idea that the whole is more 
than the sum of its constituent parts. For example, the 
different parts of a living organism taken separately do not tell 
us about what that organism might be. The functions of 
organisms are based not only on its constituent parts but also 
on the relation between them. Because one of the objectives of 
systems biology is the modeling of biological processes via 
mathematical models and computer simulation, it can 
therefore be a good candidate for integration in our proposed 
framework and can represent a field of predilection of 
intelligent control application [23]. Indeed, for many years, 
system biology has been part of the interests of control 
systems community [37].  

2)  Ontologies Construction 
Complex problems, like the one addressed in the present 

work, require ontologies, i.e. the ways in which various 
entities can be grouped, related within a hierarchy, and 
subdivided according to similarities and clear discriminatory 
features. Vast amounts of biological data have been made 
available thanks to advances in biotechnology and 
experimental techniques. Data mining and ad hoc 
mathematical models provide a method of analyzing this data. 
However, there remain some issues that need to be addressed 
such as:  

(i) the need for standards for defining cell models so they 
can, for example, be exchanged across the World Wide 
Web, and also read into simulation software in a 
consistent format, [9].  

(ii) the elimination of the errors which arise with the current 
method of model publication. In order to address these 
stringent issues, markup languages have been 
developed. Examples of these are: SBML [22] and 
CellML has evolved to meet these needs of the 
modeling community. CellML is a free, open-source, 
eXtensible markup language-based standard for 
defining mathematical models of cellular function. The 
structure of CellML, its current applications, including 
biological pathway and electrophysiological models, 
and its future development—in particular, the 

development of toolsets and the integration of 
ontologies have been investigated and detailed [28]. 

B. Computational Aspects 

1)  Computational Biology vs. Biology 
An area called computational biology preceded what is now 

called bioinformatics. Computational biologists also gathered 
their inspiration from biology and developed some very 
important algorithms that are now used by biologists.  

Computational biologists take pride in the formal aspects of 
their work which often involves proofs of algorithmic 
correctness, complexity estimates, and other themes that are 
central to theoretical computer science. Nevertheless, the 
biologists’ needs are so pressing and broad that many other 
aspects related to computer science have to be explored. For 
example, biologists need software that is reliable enough and 
can deal with huge amounts of data, as well as interfaces that 
facilitate the human-computer interactions (HCI) with high-
resolution graphics systems and intelligent search and retrieval 
processes [4].  

2)  DNA Computing Contributions  
One of the breakthroughs of computational science is that 

DNA can be used as a computational element. An assembly of 
DNA strands can process data in a similar way as an 
electronic computer, and has the potential to solve far more 
complex problems and store a greater amount of information, 
for substantially less energy costs than do conventional 
microprocessors. Thus DNA computation [6].  

DNA computation was used to solve the ‘traveling salesman 
problem (TSP)’ by mixing together the strands, joining the 
cities connected by roads, weeding out any ‘wrong answers’, 
and finally showing that the strands could self-assemble to 
solve the problem [40].  

A natural extension of DNA computing lies in its relation 
with nanotechnology. A first link between DNA computation 
and DNA nanotechnology was established, suggesting that 
short branched DNA molecules could be ‘programmed’ to 
undergo algorithmic self-assembly and serve for computation 
[38].  

C. Available Software for Systems Study 
The software used in computational biology is diversified. On 
just one Website, there are 31 different systems and tools e.g. 
[http://www.scfbio-
iitd.res.in/bioinformatics/bioinformaticssoftware.htm]. 
Another example is depicted in the Web site 
[http://www.netsci.org/Resources/Software/Bioinform/] where 
various tools and solutions are made available on line such as 
sequence databases, pathway analysis, structure prediction and 
analysis, sequence analysis, sequence management, and 
visualization. Other Web sites offer free resources e.g. 
[http://www.clcbio.com/]. In addition to bioinformatics 
software reported in [16], [17] emphasis is now made on 
general-purpose systems, since we are concerned with 
biological processes as dynamical systems to be modeled and 
eventually controlled. The main relevant tools are depicted in 
Table 2 below.   
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Software Name / Toolbox url 
 
Matlab™/ 
Bioinformatics Toolbox 
Control Systems Toolbox 
 

 
 
www.mathworks.com 

 
Mathematica™/ 
Bioinformatics 
Data Analysis and Mining 
 

 
 
www.wolfram.com 

 
Maple™/ 
Control Systems 
 

 
www.maplesoft.com 

 
Stella™/ 
iThink  
isee NetSim 
 

 
 
www.iseesystems.com 

Table 2 Software for Systems Study 

VII. BIOLOGICAL MODELING AND CONTROL  
Beside in vivo experimentation that characterizes biology, 

and as far as bioinformatics is concerned, we have to 
inevitably use computational models for the understanding of 
the relevant biological phenomena [25].  

Modeling is usually unavoidable because the production of 
data from techniques of genomic analysis is not always 
amenable to interpretation mainly due to the complexity of the 
data and the large amount of data points. Modeling can handle 
the data and allow the testing of a given hypothesis; for 
instance, whether gene A is regulated by protein B that can be 
verified experimentally. Hence, modeling and simulation of 
genetic regulatory systems [7].  

A. Cell Modeling and Simulation  

1) The “E-Cell “ 
One of the central questions in computational biology is: 

”what can be determined or measured to infer cell behavior”? 
Many attempts have been carried out to address this issue [9], 
[18]. Perhaps one of the fundamental results obtained so far in 
bridging the gap between mathematical modeling and cell 
behavior is the so-called E-CELL [34]. Using E-CELL 
Simulation Environment often requires kinetic data of 
biochemical reactions. However, it is generally difficult to 
obtain these data from literature alone. One solution is to 
measure values directly using wet experiments. Though the 
"wet-approach" is currently being done, the so-called "dry-
approach" is also devised in order to estimate parameters 
computationally from limited data. Novel parameter 
estimation methods need to be developed with heavy 
mathematical bend. The e-cell group is currently developing 
methods for metabolic control analysis, mebolic flux analysis 
and flux balance analysis, and also the application of control 
theory to cell simulation [35], [http://www.e-cell.org]. 

2)  Example of Human Disease Modeling 
If we can model a given disease, we can therefore make 

scenario studies concerning it and eliminate it. As an example 
of disease  modeling tool, we find PathoSign Public. It is a 
database which collects information about defective cell 
signaling molecules causing human diseases. While 
constituting a useful data repository in itself, PathoSign is also 
aimed at being a foundational part of a platform for modeling 
human disease processes, which is the ultimate goal of these 
efforts. Unfortunately, it is a descriptive tool not a prescriptive 
one. Indeed, it describes what happens not what we want to 
happen.  

[http://www.gene-regulation.com/info/cytomer.html] 

B. Metabolism as a Control System  
Most of the structures that make up animals, plants and 

microbes are made from three basic classes of molecule: 
amino acids, carbohydrates and lipids, often called fats. As 
these molecules are vital for life, metabolic reactions focus on 
making these molecules during the construction of cells and 
tissues, or breaking them down and using them as a source of 
energy, in the digestion and use of food. Many important 
biochemicals can be joined together to make polymers such as 
DNA and proteins [12].  

Many proteins are the enzymes that catalyze the chemical 
reactions in metabolism i.e. the set of chemical reactions that 
happen in living organisms to maintain life. Other proteins 
have structural or mechanical functions, such as the proteins 
that form the cytoskeleton, a system of scaffolding that 
maintains the cell shape. Proteins are also important in cell 
signaling, immune responses, cell adhesion, active transport 
across membranes, and the cell cycle [30]. 

1)  Catabolism and Anabolism  
The processes described above allow organisms to grow 

and reproduce, maintain their structures, and respond to their 
environments. There are two categories of metabolism. 
Catabolism breaks down organic matter, for example to use 
energy in cellular respiration. Anabolism, uses energy to 
construct components of cells such as proteins and nucleic 
acids. Catabolism is consumption of energy in living matter. 
Anabolism is responsible for production of living matter. 

The chemical reactions of metabolism are organized into 
metabolic pathways, in which one chemical is transformed 
through a series of steps into another chemical, by a sequence 
of enzymes. Enzymes are crucial to metabolism because they 
allow organisms to drive desirable reactions that require 
energy and will not occur by themselves, by coupling them to 
spontaneous reactions that release energy. As enzymes act as 
catalysts they allow these reactions to proceed quickly and 
efficiently. Enzymes also allow the regulation of metabolic 
pathways in response to changes in the cell's environment or 
signals from other cells. 

The metabolism of an organism determines which 
substances it will find nutritious and which it will find 
poisonous. For example, some prokaryotes use hydrogen 
sulfide as a nutrient, yet this gas is poisonous to animals. The 
speed of metabolism or metabolic rate also influences how 
much food an organism will require. 
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A striking feature of metabolism is the similarity of the 
basic metabolic pathways and components between even 
vastly different species. For example, the set of carboxylic 
acids that are best known as the intermediates in the citric acid 
cycle are present in all organisms, being found in species as 
diverse as the unicellular bacteria Escherichia coli and huge  
multicellular like elephants [30].  

2)  Metabolic Control Analysis  
Metabolic control analysis (MCA) is a useful mathematical 

framework for describing metabolic, signaling and genetic 
pathways [11].  MCA quantifies how variables, such as fluxes 
and species concentrations, depend on network parameters. In 
particular, it is able to describe how network dependent 
properties, called control coefficients, depend on local 
properties called elasticities. MCA was originally developed 
to describe the control in metabolic pathways but was 
subsequently extended to describe signaling and genetic 
networks. More recent work has shown that MCA can be 
mapped directly on to classical control theory and are as such 
equivalent 

[http://dbkgroup.org/mca_home.htm], [20] 
Concerning MCA, a useful set of frequently-asked 

questions (FAQs) is available at the site [http://bip.cnrs-
mrs.fr/bip10/mcafaq.htm]. Biochemical systems theory is a 
similar formalism, though with a rather different objectives. 
Both are evolutions of an earlier theoretical analysis of 
sequential reactions dating back to the early sixties.  

3)  Gene Regulation  
The genome of a given organism contains thousands of 

genes, but not all these genes need to be active at any given 
moment. A gene is expressed when it is being transcribed into 
mRNA, and translated into protein, and there exist many 
cellular methods of controlling the expression of genes such 
that proteins are produced only when needed by the cell. Gene 
regulation gives the cell control over structure and function, 
and is the basis for cellular differentiation and morphogenesis. 
It is also responsible for the versatility and adaptability of any 
organism. Gene regulation may also serve as a substrate for 
change, since control of the timing, location, and amount of 
gene expression can have a profound effect on the functions 
or actions of the gene in a cell or in a multicellular organism 
[41].   

[http://www.news-medical.net/health/Genetics-and-Gene-
Expression.aspx] 

4) From Molecular  to Gene Regulatory Networks  

4.1 Molecular Regulatory Networks 
The cells physiological responses to external and internal 

stimuli are governed by genes and proteins interacting in 
complex networks whose dynamical characteristics are 
impossible to understand by intuitive reasoning alone. Recent 
advances in theoretical biology have demonstrated that 
molecular regulatory networks and particularly gene 
regulatory networks can be accurately modeled in 
mathematical terms. These models give insight to the design 
principles of biological control systems and make predictions 
that have been verified experimentally [36].  

4.2 Gene Regulatory Networks  
Owing to the multivariate ways and means in which genes 

manage cellular function, including their regulatory effects on 
each other, the modeling of gene regulatory networks is a 
prominent issue in systems biology. Appropriate network 
modeling is critical to understanding the manner in which 
cells execute and control the huge number of operations 
required for normal function. Precise network modeling can 
detect the failure in cellular systems that occurs in disease.  

Many approaches to modeling gene regulatory networks 
have been proposed, each with its own assumptions, data 
requirements, and goals, including linear models, Bayesian 
networks, neural networks, nonlinear ordinary differential 
equations, stochastic logical networks, and graph-based 
models [5].     

4.2 Epistemological Translation  
Epistemology can act as an abstract framework for 

translation of a given science. Epistemology, or theory of 
knowledge, is a branch of philosophy concerned with what 
constitutes knowledge, its limits, and how it is acquired by 
people. For something to count as knowledge, it must be true. 
Beliefs are not necessarily knowledge. An attempt of 
translating one science has recently been made in 
bioinformatics; the science to be translated is genomics, the 
framework is genomic signal processing, and the goal of the 
translation is to provide therapeutic strategies based on 
controlling gene regulation. The problem considered here is 
different in two ways. First, the scientific model is not a 
stochastic time series or random set, but a dynamical network 
whose probabilistic description is characterized via a Markov 
chain and, second, the translational problem will be to alter 
the steady-state distribution of the network [8].  

VIII. IMPACTS OF PROPOSED FRAMEWORK   
The three-level framework is shown in Figure 3. We believe 

that the study and integration of previously-described theories 
will advance our knowledge of biological processes based on 
the most powerful theoretical and technological tools available 
to computer and control scientists, entailing a better 
understanding of molecular biology. The impacts on many 
fields of research are expected to be important, not only on 
computer science and control theory per se but also on 
medicine, pharmacy and technology at large. We expect 
impacts of our framework on the following fields of research 
and technology.   

A. Impacts on Bioinformatics  
1. To further formalize bioinformatics problems and 

solutions.  
2. To speed up the process of modeling and simulation of 

biological processes by the use of ad hoc intelligent 
control methods. Singular value  decomposition (SVD) 
can used to reduce data [1], [32] 

3. To contribute to the identification of unknown sequence 
patterns across single or multiple DNA and protein 
sequences through grammatical inference models. If the 
analysis is performed on several sequences at a time the 
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method has to search for patterns which are common 
between all the sequences.  

4. To reduce the time of drug production, inducing a 
considerable impact on biochemistry and pharmacy.  

5. To contribute to the design of drugs for therapy and for 
existing and actually incurable diseases   

6. To ultimately contribute to the design of useful ethically-
monitored biological systems, as a far-reaching goal. 

 
B. Impacts on Biological Regulation and Control  

1. To integrate stability and control for biological processes 
considered as complex dynamical systems by relying 
on catastrophe theory for the prediction and formation 
of biological sequences [2], [33].  

2. To contribute to the understanding of the regulome, i.e. 
the set of regulation components in a cell. This will 
allow the modeling of cell behavior with greater 
precision [41].  

3. To contribute to the understanding of metabolic 
regulation and control of cell differentiation and 
specialization (the so-called stem cells), hopefully 
leading to the prediction and reduction of major 
diseases [7]. 

4. To contribute to functional genomics; a major goal of 
functional genomics being to identify genes that 
determine specific cellular malfunctioning and model 
their activity in such a way as to distinguish between 
normal and abnormal behaviors. Once modeling is 
done, then external corrective intervention via control 
becomes possible.  

5. To ultimately act as “genomics-oriented translator” by 
finding therapeutic strategies based on controlling gene 
regulation using genomic signal processing (GSP).  

 
 AI-free 

methods 
AI-based 
methods 

Intelligent 
control 
methods 

 
 

Bioinf. 
Level 1 

 

Yes 
e.g.  
 

Sequence  
Alignment and 
Analysis  
 

 
 
 
No use  

 
 
 
No use 

 
 
 
 
 
Bioinf. 
Level 2 
 

Yes 
e.g.  
 
 

1/IT in Biol. 
and Health 
 
2/DBMS 

 

Yes  
e.g.  
 

1/Data Mining  
 
2/Biomedical 

Eng. 
 
3/General 

Biological 
Properties 

  
3/ Tools 
4/Protein 

 
 
 
 
 
 
 
 
No use 

Structure 
5/Function 

Proteomics 
 

 
 
 
 
 

 
Bioinf. 
Level 3 

Yes 
e.g.  
 

1/Microarray 
Analysis 
 
2/Biological 
Modeling & 
Classification 

 

Yes  
e.g.  
 

1/Gene 
Expression  

 
2/Regulatory 

Network 
 
3/Genomics 

and Systems 
Biology 

 
4/Personalized 

medicine 
 
5/Health 

Informatics 
 

Yes 
e.g.  
 

1/Cancer 
Informatics 

 
2/Computat. 
Biology  

3/Drug 
Design 

4/ 
Functional 
Informatics 

5/Tissue 
Design 

6/Genomics 
Translation 
using GSP 

 
Table 3 Three-Level Bioinformatics 

IX. CONCLUSION  
We have presented a framework for bioinformatics, 

incorporating intelligent control. It is highly expected that 
intelligent control coupled with machine learning will uncover 
more useful structures hidden in biological sequences. On top 
of actual query search methods now available, however 
intelligent these might be, future public bioinformatics 
platforms have to include an array of “what-if” simulation 
scenarios capable of producing intelligently-controlled and / 
or intelligently-produced novel elements right from the Web. 
It is hoped that via intelligent control, specialists can use 
external actions to control and / or produce novel elements, 
e.g. new drugs for existing and actually incurable diseases or 
novel useful biological systems. The proposed framework 
represents an early contribution to this far-reaching goal. 
Further integration of diverse theories from machine learning, 
control theory and bioinformatics will remain indeed a 
challenging task for a long time.  
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