
 

 

  

Abstract— The unsteady laminar flow of an incompressible 
micropolar fluid over a stretching sheet with prescribed surface heat 

flux is investigated. The governing partial differential boundary layer 

equations are first transformed into ordinary differential equations 

before being solved numerically by a finite-difference method. The 

effects of the unsteadiness parameter, material parameter and Prandtl 

number on the flow and heat transfer characteristics are studied. It is 

found that the surface shear stress and the heat transfer rate at the 

surface are higher for micropolar fluids compared to Newtonian 

fluids.  
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I. INTRODUCTION 

HE fluid dynamics due to a stretching surface is important 

in manufacturing processes. Examples are numerous and 

they include the aerodynamic extrusion of plastic sheets, the 

boundary layer along a liquid film in condensation processes, 

paper production, glass blowing, metal spinning and drawing 

plastic films. The thermal fluid flow problems have been 

extensively studied numerically, theoretically as well as 

experimentally (see [1,2]). The quality of the final product 

depends on the rate of heat transfer at the stretching surface. 

Crane [3] first obtained an elegant analytical solution to the 

boundary layer equations for the problem of steady two-

dimensional flow due to a stretching surface in a quiescent 

incompressible fluid. Gupta and Gupta [4] extended the 

problem posed by Crane [3] to a permeable sheet and obtained 

closed-form solution, while Grubka and Bobba [5] studied the 

thermal field and presented the solutions in terms of Kummer’s 

functions. The 3-dimensional case has been considered by 

Wang [6]. Chen [7] studied the case when buoyancy force is 

taken into consideration, and Magyari and Keller [8] 

considered exponentially stretching surface. The heat transfer 

over a stretching surface with variable surface heat flux has 
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been considered by Char and Chen [9], Lin and Cheng [10], 

Elbashbeshy [11] and very  recently by Ishak et al. [12].  

 All of the above mentioned studies dealt with stretching 

sheet where the flows were assumed to be steady. The 

unsteady flows due to a stretching sheet have received less 

attention; a few of them are those considered by Devi et al. 

[13], Andersson et al. [14], Nazar et al. [15], and very recently 

by Ishak et al. [16]. In Ref. [15], the similarity transformation 

introduced by Williams and Rhyne [17] was used, which 

transformed the governing partial differential equations with 

three independent variables to two independent variables, 

which are more convenient for numerical computations. 

 Motivated by the above investigations, in this paper we 

present the unsteady flow and heat transfer characteristics 

caused by a stretching sheet immersed in a micropolar fluid. 

The governing partial differential equations are transformed 

into ordinary ones using similarity transformation, before 

being solved numerically by the Keller-box method. The 

results obtained are then compared with those of Elbashbeshy 

[11] and the series solution for the steady-state flow case to 

support their validity. 

II. PROBLEM FORMULATION 

Consider an unsteady, two-dimensional laminar flow of an 

incompressible micropolar fluid over a stretching sheet. At 

time 0t = , the sheet is impulsively stretched with velocity 

( , )
w

U x t  along the x -axis, keeping the origin fixed in the fluid 

of ambient temperature T∞
. The stationary Cartesian 

coordinate system has its origin located at the leading edge of 

the sheet with the positive x -axis extending along the sheet, 

while the y -axis is measured normal to the surface of the 

sheet. The boundary layer equations may be written as [12,16] 
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subject to the boundary conditions  
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where m is the boundary parameter with 0 1m≤ ≤  [18], u  

and v  are the velocity components in the x - and y -

directions, respectively, T is the fluid temperature in the 

boundary layer, N is the microrotation or angular velocity, and 

j , γ , µ, κ, ρ, and α  are the microinertia per unit mass, spin 

gradient viscosity, dynamic viscosity, vortex viscosity, fluid 

density and thermal diffusivity, respectively. It is assumed that 

the stretching velocity ( , )wU x t  and the surface heat flux  

( ),wq x t  are of the forms 

( , ) , ( , )
1 1

w w

ax bx
U x t q x t

ct ct
= =

− −
                      (6)  

 

where a , b  and c  are constants with 0a > , 0b ≥  and 0c ≥  

(with 1ct < ), and both a  and c  have dimension time 1− . It 

should be noted that at 0t =  (initial motion), Eqs. (1) – (4) 

describe the steady flow over a stretching surface. These 

particular forms of ( , )wU x t  and ( ),wq x t  have been chosen in 

order to be able to devise a new similarity transformation, 

which transforms the governing partial differential equations 

(1) – (4)  into a set of ordinary differential equations, thereby 

facilitating the exploration of the effects of the controlling 

parameters (see Andersson et al. [14]). 

 As was shown by Ahmadi [19], the spin-gradient viscosity γ 

can be defined as 

  

( ) ( )/ 2 1 / 2j K jγ µ κ µ= + = + ,                         (7) 

 

where K = κ/µ is the dimensionless viscosity ratio and is called 

the material parameter. Relation (6) is invoked to allow the 

field of equations predicts the correct behavior in the limiting 

case when the microstructure effects become negligible and 

the total spin N reduces to the angular velocity [19,20].    

  

  The continuity equation (1) is satisfied by introducing a 

stream function ψ  such that / and /u y v xψ ψ= ∂ ∂ = −∂ ∂ . 

The momentum, angular momentum and energy equations can 

be transformed into the corresponding ordinary differential 

equations by the following transformation: 
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where η is the similarity variable. The transformed nonlinear 

ordinary differential equations are: 
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where primes denote differentiation with respect to η, Pr = ν/α 

is the Prandtl number and /S c a=  is the unsteadiness 

parameter. The boundary conditions (5) now become 
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f h
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The quantities of physical interest are the values of (0)f ′′  and 

1 (0)θ  which represent the skin friction coefficient and the 

heat transfer rate at the surface, respectively. Thus, our task is 

to investigate how the governing parameters S , m, K and Pr 

influence these quantities. 

 We note that when K = 0 (viscous fluid) and S = 0 (steady 

flow), the problem under consideration reduces to a steady-

state flow, where the closed-form solution for the flow field 

and the solution for the thermal field in terms of Kummer’s 

functions are respectively given by 
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where ( , , )M a b z  denotes the confluent hypergeometric 

function [21], with 
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 By using Eqs. (13) and (14), the skin friction coefficient 

(0)f ′′  and the surface temperature (0)θ  can be shown to be 

given by 

 

  (0) 1f ′′ = − ,                                            (15) 

  
( )

( )
Pr 1, Pr 1, Pr1

(0)
Pr Pr 1, Pr, Pr

M

M
θ

− + −
=

− −
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The nonlinear ordinary differential equations (9) – (12) have 

been solved numerically by a finite-difference scheme known 

as the Keller-box method, as described in the book by Cebeci 

and Bradshaw [22], which is very familiar to the present 

authors (see Bachok et al. [23,24] and Bachok and Ishak 

[25,26]). 

III. SOLUTION PROCEDURE 

(i) Finite-difference method 
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To solve the transformed differential Eqs. (9) – (11) 

subjected to the boundary conditions (12), Eqs. (9) – (11) are 

first converted into a system of seven first-order equations, and 

the difference equations are then expressed using central 

differences. For this purpose, we introduce new dependent 

variables ( )p η , ( )q η , ( )( )g hη η= , ( )n η , ( )( )s η θ η= and 

( )t η so that Eqs. (9) – (11) can be written as 

,f p′ =                    (17) 

,p q′ =                    (18) 

,g n′ =                    (19) 

,s t′ =                        (20) 
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2
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In terms of the new dependent variables, the boundary 

conditions (12) are given by 
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 We now consider the segment 
1j jη η− , with 

1 2jη − as the 

midpoint, which is defined as below: 

0 10, , ,j j j Jhη η η η η− ∞= = + =                                    (25) 

where 
jh  is the η∆ - spacing and 1, 2, ...,j J= is a sequence 

number that indicates the coordinate location. The finite-

difference approximation equations (17)-(23) are written for 

the midpoint 
1 2jη − of the segment 

1j jη η− . This procedure 

gives 
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Rearranging of expressions (26)-(32) gives 
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 Equations (33)-(39) are imposed for 1, 2, 3, ..., ,j J=  and the 

transformed boundary layer thickness Jη  is to be sufficiently 

large so that it is beyond the edge of the boundary layer. The 

boundary conditions are 

0 0 0 0 00, 1, , 1,

0, 0, 0.J J J
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(ii) Newton’s method 

To linearize the nonlinear system (33)-(39), we use 

Newton’s method, by introducing the following expression: 
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where 0,1, 2, ...k = . We then insert the left-hand side 

expressions in place of ( ) ( ) ( ) ( ) ( )
, , , , ,

k k k k k
f p q g nδ δ δ δ δ  
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sδ and 

( )k
tδ . This procedure yields the following linear 

system (the superscript k is dropped for simplicity): 
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The boundary conditions (40) become 

 

0 0 0 00, 0, 0, 0,

0, 0, 0,J J J

f p g t
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δ δ δ δ

δ δ δ
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= = =
                          (51) 

 

which just express the requirement for the boundary 

conditionts to remain constant during the iteration process. 

 

(iii) Block-elimination method 

The linearized difference equations (42)-(48) can be solved 

by the block-elimination method as outlined by Cebeci and 

Bradshaw [22], since the system has block-tridiagonal 

structure. Commonly, the block-tridiagonal structure consists 

of variables or constants, but here an interesting feature can be 

observed that it consists of block matrices. In a matrix-vector 

form, Eqs. (42)-(48) can be written as 

 

=A rδδδδ                                       (52) 

where 
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The elements of the matrices are as follows: 
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To solve Eq. (52), we assume that A is nonsingular and it can 

be factorized as 

 

=A LU ,                                      (59) 
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where [ ]I  is a 7 7× identity matrix, while [ ]iα  and [ ]iΓ  are 

7 7× matrices in which elements are determined by the 

following equations: 

 

   [ ] [ ]1 ,i Aα =                  (60) 

[ ][ ] [ ]1 1 1 ,A CΓ =                  (61) 

   [ ] [ ] [ ]1 1 , 2, 3, ..., ,i j JA B j Jα − = − Γ =        (62) 

  [ ] , 2, 3, ..., 1.i j jC j Jα    Γ = = −             (63) 

 

Substituting Eq. (59) into Eq. (52), we obtain 

 

 LU rδ=δ=δ=δ= .                                   (64) 

 

If we define 

 

 U Wδ=δ=δ=δ= ,                                  (65) 

 

Eq. (64) becomes 

 

 LW r==== ,                                   (66) 

 

where 
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and jW    are 7 1×  column matrices. The elements of W can 

be determined from Eq. (65) by the following relations:   

 

  [ ][ ] [ ]1 1 1 ,W rα =                (67) 

   [ ] 1 , 2 .i j j j jW r B W j Jα −       = − ≤ ≤            (68) 

 

When the elements of W have been found, Eq. (65) gives the 

solution for δδδδ in which the elements are found from the 
following relations: 

 

  [ ] [ ] ,J JWδ =                    (69) 

    [ ] 1 , 1 1.i j j jW j Jδ δ +     = − Γ ≤ ≤ −              (70) 

 

 Once the elements of  δδδδ  are found, Eqs. (42)-(48) can be 
used to find the ( )1k + th interation in Eq. (41). These 

calculations are repeated until the convergence criterion is 

satisfied. In laminar boundary layer calculation, the wall shear 

stress parameter ( )0q  is commonly used as the convergence 

criterion (Cebeci and Bradshaw [22]). This is probably 

because in boundary layer calculations, it is found that the 

greatest error usually appears in the wall shear stress 

parameter. Thus, this convergence criterion is used in the 

present study. Calculations are stopped when 

 

  
( )
0 1 ,
k

qδ <∈                  (71) 

 

where 
1∈  is a small prescribed value. In this study, 

1 0.00001∈ =  is used, which gives about four decimal places 

accuracy for most of the predicted quantities as suggested by 

Bachok and Ishak [25,27] and Ali et al. [28,29]. 

 The present method has a second-order accuracy, 

unconditionally stable and is easy to be programmed, thus 

making it highly attractive for production use. The only 

disadvantage is the large amount of once-and-for-all algebra 

needed to write the difference equations and to set up their 

solutions.  

IV. RESULTS AND DISCUSSION 

The step size η∆  in η , and the position of the edge of the 
boundary-layer η∞  have to be adjusted for difference values of  

the parameters to maintain the necessary accuracy. In this 

study, the values of η∆  between 0.001 and 0.1 were used, 

depending on the values of the parameters considered, in order 

that the numerical values obtained are mesh independent, at 

least to four decimal places. However, a uniform grid of 

0.01η∆ =  was found to be satisfactory for a convergence 

criterion of 5
10

−  which gives accuracy to four decimal places, 

in nearly all cases. On the other hand, the boundary-layer 

thickness η∞  between 5 and 50 was chosen where the infinity 

boundary condition is achieved.  The results are given to carry 

out a parametric study showing the influences of the 

unsteadiness parameter S , material parameter K  and Prandtl 

number Pr . For validation of the numerical method used in 

this study, the case when 0S =  (steady-state flow) has also 

been considered and the results are compared with those of  

Elbashbeshy [11], as well as the series solution given by Eq. 
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(16). The quantitative comparison is shown in Table 1 and it is 

found to be in a very good agreement. 

The velocity profiles for various values of S  and K  are 

presented in Figs. 1 and 2. Figure 2 shows that the velocity 

gradient at the surface is larger for larger values of S , which 

produces larger skin friction coefficient ( )0f ′′ . We note that 

the parameter Pr  have no influence on the flow field, which is  

clear from Eqs. (9)-(11). It is evident from Figure 2 that the 

boundary layer thickness increases with K . The velocity 

gradient at the surface ( )0f ′′  decreases as  K  increases. 

Thus, micropolar fluids show drag reduction compared to 

viscous fluids. 

 Figures 3-6 show the temperature profiles for selected 

values of parameters. The temperature profiles are found to 

subside monotonously to zero as η  increases. These curves 
represent the physically realistic case. As can been seen from 

Figs. 3-6, the surface temperature ( )0θ  decreases with 

increasing S , K and Pr . Thus, the local Nusselt number   

( )01 θ , which represent the heat transfer rate at the surface 

increases when S , K or Pr  increases.  Figure 7 shows that 

the surface temperature (0)θ  decreases with increasing values 

of K. Thus, the heat transfer rate at the surface ( )01 θ  is higher 

for a micropolar fluid ( 0K > ) compared to a Newtonian fluid 

(K = 0). On the other hand, for a fixed value of K , the surface 

temperature (0)θ  decreases when Pr is increased, i.e. the heat 

transfer rate at the surface ( )01 θ  increases with Pr . This is 

because the higher Prandtl number fluid has a lower thermal 

conductivity (or a higher viscosity) which results in thinner 

thermal boundary layer and hence, higher heat transfer rate at 

the surface (see Fig. 5).  

The effect of m  on the angular velocity, when the other 

parameters are fixed to unity is presented in Fig. 8. As 

expected, the microrotation at the surface ( )0h  is more 

dominant for larger values of m . Finally, Figs. 1-6 show that 

the far field boundary conditions (12) are satisfied 

asymptotically, thus supporting the numerical results obtained.  

 

 

TABLE 1 Variations of ( )0θ  for different values of S  and Pr   

 

S  Pr  Elbashbeshy [11] Eq. (16) Numerical results 

 

0 

 

0.72 

 

1.2253 

 

1.236657472 

 

1.2367 

 1 1.0000 1.000000000 1.0000 

     

1 0.72   0.9116 

 1   0.8591 
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FIG. 1 Velocity profiles ( )f η′  for some values of S  when 

1 0 5Pr , m .= =  and 1K =  
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FIG. 2 Velocity profiles ( )f η′  for some values of K  when 

1 0 5Pr , m .= =  and 1S =  
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FIG. 5 Temperature profiles ( )θ η  for some values of Pr  

when 0 1 0 5S . , m .= =  and 1K =  
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FIG. 4 Temperature profiles ( )θ η  for some values of S  

when 5.0,1Pr == m  and 1=K  
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FIG. 6 Temperature profiles ( )θ η  for some values of K  

when 5.0,1Pr == m  and 1.0=S  
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FIG. 7 Variations of ( )0θ  with K  for  0 7Pr .=  and 
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FIG. 8 Angular velocity profiles ( )h η  for some values of 

m  when 1, Pr 1S = =  and  1K =  

 

 

 

V. CONCLUSIONS 

We have theoretically studied the similarity solutions of the 

unsteady boundary layer flow and heat transfer due to a 

stretching surface. A new similarity solution has been devised, 

which transform the time-dependent governing equations to 

ordinary differential equations. We discussed the effects of the 

governing parameters S, K and Pr on the fluid flow and heat 

transfer characteristics. The numerical results compared very 

well with previously reported cases, as well as the series 

solution for the steady-state flow. We found that the heat 

transfer rate at the surface ( )01 θ  increases with S, K and Pr. 

Further, the heat transfer rate at the surface is higher for a 

micropolar fluid compared to a Newtonian fluid.  
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