
 

 

  
Abstract—We study a parabolic ODE system modeling 

tumour invasion proposed by Anderson and Chaplain in 
2003. Then we will apply the approach used in 
mathematical models of tumour angiogenesis to it and 
show the solvability and the asymptotic profile of the 
solution of it. Actually in use of the transformation of 
Levine and Sleeman, we reduce it to a system consist of 
evolution equations. Then, we show  global existence in 
time of the solution in arbitrary space dimension by a priori 
estimate. Finally we show some results of computer 
simulations of the model with the help of our mathematical 
analysis.   
 

Keywords—Tumour invasion, mathematical analysis, time 
global solution, Asymptotic property.   

I. INTRODUCTION 
HIS paper concerns mathematical analysis of a 
mathematical model of tumour invasion. Anderson and 

Chaplain [3] base the mathematical model on generic solid 
tumour growth, which for simplicity they assume is at the 
avascular stage. While most tumours are asymptomatic at this 
stage, it is still possible for cells to escape and migrate to the 
lymph nodes and for the more aggressive tumours to invade.  In 
the initial model the following key variables are considered: 
tumour cell density (denoted by n),MDE 
concentration(denoted by m),ECM density(denoted by f),and 
endogenous inhibitor(e.g., tissue inhibiting metallo-proteases, 
TIMPs)concentration. Each of the variables (n, m and f)is a 
function of the spatial variable x and time t. 
    MDEs are important at many stages of tumour growth, 
invasion, and metastasis, and the manner in which they 
interact with endogeneous inhibitors, growth factor, and 
tumour cells is very complex. In the model they assume that the 
tumour calls produce MDEs which degrade the ECM locally 
and that the ECM responds by producing endogeneous 
inhibitors (e.g., TIMPs). The ECM degradation, as well as 
making space into which tumour cells may move by simple 
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diffusion, results in the production of molecules which are 
actively attractive to tumour cells (e.g., fibronectin) and which 
then aid in tumour cell motility. They refer to the movement of 
tumour cells up a gradient of such molecules as haptotaxis and 
then choose to consider tumour cell motion to be driven only by 
random motility and haptotaxis in response to adhesive or 
attractive gradients created by degradation of the matrix. They 
make a simplification by assuming that for an actively invading 
tumour, any negative effect of the endogeneous inhibitors has 
effectively been overcome by the MDEs. Therefore in this 
paper we do not consider  the effect of  the endogeneous 
inhibitors. Finally the following mathematical model is 
proposed of tumour tissue invasion. 
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),( txnn  ：density of tumour cells 

),( txmm  ：MDE concentration 

),( txff  ：ECM concentration 

mn dd , , ED, ：positive constants 
 
 
Initial condition is given by 
(I) )()0,( 0 xnxn  , )()0,( 0 xmxm  , )()0,( 0 xfxf   
 
 0-Neumann boundary condition is imposed 
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 on ∂Ω×(0,∞) 

 
where νis a unit outer normal vector and Ω is a bounded 
domain in nR  with a smooth boundary ∂Ω. 
 

Recently, there are many mathematical models which can 
be found in the literature describing tumour angiogenesis(cf. 
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[1], [2], [11]). In [11] Levine and Sleeman apply the diffusion 
equation provided by Othmer and Stevens [12] to obtain the 
understanding of tumour angiogenesis, which arises in the 
theory of reinforced random walk(see [4]). Anderson and 
Chaplain [1], [2] proposed a model for angiogenesis considered 
into endothelial tip-cell migration, i.e., the model considered 
the motion of the cells located at the tips of the growing sprouts. 
The model has cell migration governed by three factors: 
diffusion, chemotaxis and haptotaxis.  
 
On the other hand, mathematical approaches for models of 
tumour angiogenesis have done( see [5]-[11] ,[15]-[18]). 
Levine and Sleeman [11] and Yang, Chen and Liu [15] studied 
the existence of the time global solution and blow up solutions 
to a simplified case of Othmer and Stevens type of the model. 
Kubo et al.  [5]-[10],  [16]-[18] show the time global solvability 
and asymptotic behavior of the solution to the model without 
using such simplification. [5]-[10],[16]-[18] and Sleeman, 
Anderson and Chaplain [13] deal with the solvability of 
Anderson and Chaplain's model in [1], [2]. 
 

In [12] Othmer and Stevens derived a parabolic ODE system 
formulating the reinforced random walk model(cf.Davis [4]), 
where unknown functions P  and W  stand for the density of 
the particle and that of control species, respectively. That is, 
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In [11] Levine and Sleeman apply it to the understanding of 
tumour angiogenesis where P  is the density of EC(endothelial 
cells),  W  is TAFs(tumour angiogenic factors) concentration 
and the sensitivity function )(W)  is of the form: 
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Mathematical analysis of Othmer and Stevens model was 

done by Levine and Sleeman [11]. In fact, in case  
 
                                                                      , 
taking 

< Wlog  

we get Pt  < because of  P
W
Wt   and Othmer and Stevens 

model is reduced to the a single equation with the initial 
condition and the boundary condition as follws. 
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In [5]-[10], [16]-[18] a priori estimate was derived of the above 
reduced problem which plays an important role in the proof of 
the global existence in time of  the solution of Othmer and 
Stevens model. 
 

  In this paper we will apply the approach used in above for 
mathematical models of tumour angiogenesis to it and show the 
solvability and the asymptotic profile of the solution of it. 
 

II. REDUCTION  PROCESS 

A. Substitution of fibronection concentration  
 

According to the transformation used by Levine and 
Sleeman we reduced our problem to a system without ODE. 
From (2) it follows that 

m
f
ft K�  

Integrating over ),0( t  
 

³³ � 
w
w tt

mdsdsf
t 00

)(log K . 

Therefore we have 

³�
 

t
mds

exftxf 0)(),( 0

K
.               (5) 

 
Substituting ),( txf  by the right hand side of (5) in (1), the 
problem (1)-(3) reduced to a system consist of two evolution 
equations with respect to m and n .  
 

Actually by the substitution (5) it is seen that (1) is written by 
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Remark.  In (4) the nonlinear term can be estimated by 

some positive term from the below(see [5]-[10]). However in 
(6) it is difficult to deal with it in the same way because the 
nonlinear term of (6) contain not only <  but also ) . The 
difficulty lies in this point when we derive a estimate of our 
problem. 
 

Therefore our problem is reduced to the following system. 
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B. Substitution of  ),( tx<  and ),( tx)  

 
For 0, 21 !JJ  substituting ),( tx<  and ),( tx)  by  
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respectively where 0, !� TTttT 　 . Then our problem 
finally is rewritten by the following problem. 
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By this substitution we see that the term ³�
t
mds

e 0
η

 involved in 

(9) and (10)  behaves like cte�  for a constant 0!c  as 
fot for sufficiently large 0!T . This property plays a 

important role in deriving a priori estimate of the problem. 
 

C. Iteration Scheme 
 

For L,2,1,0 i  we consider a simple interation scheme of 
(RP2). 
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where )(),( 00 xwtxw  . 
 

D. A priori estimates 
 

Let 
k

be a norm of Sobolev space )(:kH and denote 

 
0

.  

 
For sufficiently large 0!T  we obtain the estimate of (9) 
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where a constant TC�0  monotonously decreases as 0!T  
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E. Convergence of the solutions 
 

Put  for  L,2,1 i  
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Hence there are the solutions of the problem wv,  such that 
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III. RESULT 
 
The following is a main result of the paper. 
 
Theorem.  For 21 ,,, JJED  satisfying 21 EJDJ   and 
sufficiently large T  there is the classical solution of the 
problem (1)-(3) satisfying (I) and (B) such that the solution is 
in the form;  
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IV. DISCUSSION 
 

It is easily seen that our way to derive the above result can be 
applied to the mathematical model of tumour angiogenesis 
proposed by Anderson and Chaplain [1] and [2](See 
[5]-[10],[16]-[18]): 
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density 
f(x,t) ： the fibronectin concentration 

c (x,t) ：TAF concentration 
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The first equation describs EC migration  
 
where ),( txnn   is the EC density, D  is the cell random 
motility coefficient,   

c
c

D
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 is the chemotactic function with respect to TAFs concentration 
),( txcc  , F  and D  are positive constants, ),( txff   

is the concentration of  an  adhesive chemical such as 
fibronectin, 0U   is the (constant) haptotactic coefficient.  They 
assume that c  and f  satisfy the second and third equations 

(ODE system)  where 0,JE  and K  are positive constants.   
 

In [5]-[10] they obtain the classical solution in the form of  
the model. The form of the solution is as follows. 

 
 
 
 
 
 
 
where  a positive parameter J  is sufficiently large.  
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FIGURE 1. SIMULATION OF TUMOUR INDUCED ANGIOGENESIS 
 

The above simulation of (TA) is carried out based on tumour 
induced angiogenesis as a reinforced random walk: modelling 
capillary network formation without endothelial cell 
proliferation.  

The picture is idealised as a sphere cell, is embedded in  the 
center of a cuboid domain. We assume no-flux boundary 
condition to hold on all the faces of the cube and that a priori 
steady state concentration profiles of TAF and fibronectin are 
given. To focus our attention on the behavior of EC, we do not 
consider the branching and anastomoses. It is seen that the 

capillary migarates and forcus rapidly towards the tumour 
colony.  
 
 

In Theorem it is noticed that  21 ,JJ  are any positive 
parameter satisfying  

21 EJDJ  . 
Therefore it is seen that our result obtained in this paper can 
give an extended result of [5]-[10] in this sense. The more 
details of the proof of it and Theorem will be given in the 
forthcoming paper. 
  

V. NUMERICAL EXPERIMENTS 
 
  Theorem implies the possibility of  numerical experiments of  
(1)-(3) with (B) and (I) . The following numerical results are 
obtained using Mathemaica (4).  
 
 
1. First, Figure 2 shows 3 numerical results in one spatial 
dimension and time of tumour cell density.  
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iii) 200 dd t  
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FIGURE 2. Simulation of tissue invasion models in 1D I. 
 
In Figure 2 we can observe that the tinitial unit of umour cells is 
separated into two clusters and the smaller one propagate as a 
TRAVELING WAVE.  
 
 
 
 
2. Finally we intend to observe by numerical simulation of our 
problem the relationship in time between tumour cell density, 
ECM density and MDE concentration. 
 

Figure 3 shows 9 snapshots in time of tumour cell density, 
ECM density and MDE concentration. 
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FIGURE 3, SIMULATION OF TISSUE INVASION MODELS IN 1D II. 

   

We assume that the distribution tumour cells exist only near the 
origin(t=0).  

The ECM profile shows clearly the degradation by the MDEs.  

As time evolves,  in Fig 1 from t=1 to 2.5 the tumour density 
distribution shows that a small cluster of cells has built up at the 
leading edge of the tumour due to haptotactic migration.  

The initial cluster of tumour cells is broken into two separated 
clusters and a smaller one migrates further from the main body 
of the tumour and this cluster of tumour cells continues to 
invade the ECM, of which the profile looks like propagating as 
a kind of traveling wave while MDE is degradating 
neighbouring ECM(t=3, 5 and 7).  

Hence if the main body of the tumour were to be surgically 
removed, the smaller cluster of cells that has invaded further 
into the ECM may go unnoticed by the surgeon and lead to a 
possible recurrence. 

The similar type of numerical experiment has been already 
known in Anderson and Chaplain in [3] taking account of the 
effect of nonlinear diffusion on the invasion of the tumour cells.  
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