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Feedback Stabilization of Abstract Delay
Systems on Banach Lattices

Tomoaki Hashimoto

Abstract— In this paper, we examine the stabilization prob-
lem of systems described by partial differential equations and
delay differential equations. The control of a partial differential
equation with a time delay is a challenging problem with
many applications that include physical, chemical, biological,
economic, thermal, and fluid systems. The semigroup method
is a unified approach to addressing systems that include
ordinary differential equations, partial differential equations,
and delay differential equations. Using semigroup theory, we
introduce the concept of an abstract delay system that can be
used to characterize the behavior of a wide class of dynamical
systems. This paper examines the stabilization problem of an | /e
abstract delay system on a Banach lattice on the basis of
semigroup theory. To tackle this problem, we take advantage
of t_he propertlgs O.f a non-_negatlﬁéJ_ semigroup on a Ba_n_ach Fig. 1. A schematic view of the time response of a partial déffial
lattice. The objective of this paper is to propose a stab|I|zat|% Lation.
method for an abstract delay system on a Banach lattice. W
derive a sufficient condition under which an abstract delay
system is delay-independently stabilizable. Furthermore, we

provide illustrative examples to verify the effectiveness of tht“Fme evolution of the solution of a delay differential
proposed method. equation is depending on both the present and
Keywords— Stabilization, Partial differential equation,past solutions. The importance of the control of
Time delay,C, semigroup, Banach Lattice, Abstract Cauchiatia| differential equations and delay differential
Problem, Infinite dimensional system equations is well recognized in a wide range of
applications. Hence, this paper examines the sta-

I. INTRODUCTION bilization problem of partial differential equations

. . . . with time delays.
ARTIAL differential equations arise from many

phySical chemical bi0|ogical thermal. and Partial differential equations and delay differen-

fluid systems which are characterized by both spatid €duations are known to be infinite-dimensional
and temporal variables [1]-[5]. Fig. 1 illustrate _ystems, while ordinary differential equations are

that the time evolution of a solution of a parti‘,ilnite-dimensional systems. The control of infinite-
differential equation is depending on both spatidimensional systems is a challenging problem at-
and temporal variables. tracting considerable attention in many research

Time delays also arise in many dynamical Syg_elds. It has been recognized that semigroups have

tems because, in most instances, physical, chemi )gcome important tools in infinite-dimensional con--
g_ol theory over the past several decades. The semi-

biological, and economic phenomena naturally d thod | fied h to add :
pend not only on the present state but also on soff@UP MEhod IS a unified approach 1o addressing

past occurrences [6]-[8]. Fig. 2 illustrates that theystems _that |n(_:lude ordl_nary differential equations,
partial differential equations, and delay differen-
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approach in [19] is based on the compactness of
Banach spaces, while the problem in [15]-[18] is
formulated in Hilbert spaces to make use of the
properties of the inner product.

In this paper, we study the stabilization problem
of an abstract delay system on a Banach lattice,
. > which is a Banach space supplied with an order
At —7)  =() relation. To ta_ckle this problem,_ we takg advantage
i ). TN of the properties of a non-negatigg semigroup on
a Banach lattice. The objective of this paper is to
propose a stabilization method for an abstract delay
system on a Banach lattice. We derive a sufficient
condition under which an abstract delay system is

delay-independently stabilizable. Furthermore, we

in such a framework has_ been accu_mulated_in SHfovide illustrative examples to verify the effective-
eral books [9]-[13]. In this paper, using semigrou ess of the proposed method

theory, we introduce the concept of an abStraCtThis paper is organized as follows. Some notation

g:fgvigysé?rg t/C%te ngsseofusdeiatr;])icgfsscns?gmtgﬁd terminology are given in Sec. Il. The system
y y 2onsidered here is defined in Sec. IlI. Moreover,

Fig. 3 '.ShOWS that an _abstract de!ay System IS "1 is devoted to the introduction of a stability
gener_allzed mo_del that mcl_udes ordl_nary OIIﬁerent'%‘riterion for an abstract delay system on a Banach
equations, partla_l differential equations, a_nd del ditice. The main results are provided in Sec. IV
differential equations. From this point of view, th(?n Seé IV, we study the control design prot;lem.

control method proposed here for an abstract delo¥ an abstract delay system on the basis of the
system is advantageous for its applicability to a wi ?ability criterion provided in Sec. lll. Then, we

class Of_ dynamical systems. derive a sufficient condition for the stabilization of
The linear quadratic control problem for an absy apstract delay system under the assumption that

stract delay system has been studied in [15-[1fhe system has a non-negative delay operator. Fur-

Furthermore, the//** control problem for such aermore, we provide illustrative examples to verify

system has been examined in [18]. The problemg, effectiveness of the proposed method. Finally,
addressed in [15]-[18] have been reduced to findiRg e concluding remarks are given in Sec. V.
a solution of the corresponding operator Riccati

equation in Hilbert spaces. The feedback stabiliz-
ability of an abstract delay system on a Banach II. NOTATION AND TERMINOLOGY

space has been investigated in [19]. The analytic
Let R and R, denote the sets of real numbers

and non-negative real numbers, respectively.NLet
denote the set of positive integers. Lat be a
\ Banach space endowed with the operator ngrim

2(t4)s (£>1)

Fig. 2. A schematic view of the time response of a delay diffaad
equation.

/ Abstract Delay System

Let £(X,Y) denote the set of all bounded linear
P ~._ operators from a Banach spa&eto another Banach
-~~~ Partial Differential Equation > spaceY. Let £(X) be defined byl(X, X). Let
S ) I, € £L(X) denote the identity operator oX.
Poa. e o P, Definition 1: A family (7'(t)).>o of bounded lin-
y Ol'dina:';' ______ v _‘_\‘ ____i);]—a;f h ear operators on a Banach spaceis called aC
\  Differential i ) Differential | semigroup if all the following properties hold:
\\\ Equation ‘\ ,’I Equation /,' (i) T(0)=I,.
Q\\ __,x’v\\_ - ad (i) T(t+s)=T)T(s)forall t,s € Ry,
"""""""" (iii) The orbit mapst — 7T(t)z are continuous
Fig. 3. An abstract delay system is a generalized model. maps fromR+ into X for everyx € X.
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Definition 2: Let(7'(t)):>0 be aC, semigroup on lIl. PRELIMINARIES
a Banach spac& and letD(A) be the subspace of | this section, we introduce the concept of an
X defined as abstract delay system that can be used to describe

the behavior of a wide class of dynamical systems.
For a Banach spac& and a constant € R,
let C'([—7,0],Y) denote the set of all continuous
functions with domain—r, 0] and rangeY. For a
o1 Banach spac&’ := C([-7,0],Y), let® € L(X,Y

Aw = }Ll\r‘% E(T(h)x —2) be a delay operator, :Et[nd I(e!i] D()B)) be the(geneza-
The operatord : D(A) € X — X is called tor of aC', semigroup orY". With these notations, an
the generator of the semigroufl’(t))io. In the abstract delay system is described by the following

following, let (A, D(.A)) denote the operatot with €duation with an initial functiorp : [, 0] — ¥~

D(A) := {:L' cX: }LI\I‘% %(T(h)x —x) exists} )

For everyx € D(A), we define

domain D(A). z(t) = Ba(t)+ ®(x(t — 7)) fort >0, 1
Definition 3: Let (A, D(.A)) be the generator of =peX. (1)
a Co semigroup(T'(1))zo- A continuous functione : [-7,00) — Y is called a
wo(A) :=inf{w € R:3IM > 0 such that solution of (1) if all the following properties hold:
T[] < Me*",Vt € Ry} (i) x(t) is right-sided differentiable at= 0 and
is called the semigroup’s growth bound. continuously differentiable for all > 0.
Definition 4: Let (A, D(A)) be a closed operator (i) () € D(B) for all ¢ > 0.
on a Banach spac&. The set (i) (1) satisfies (1).
o Let C" be the set of all--times continuously dif-
p(A) :={A € C: Al; — Als bijective} ferentiable functions. LetA, D(A)) be the corre-
is called the resolvent set of, and the set sponding delay differential operator oxi defined
by
o(A) := C\p(A)
is called th ofl. For A A Afi= 7, @
is called the spectrum afl. For A € p(A), D(A) == {f € CY([=7,00,Y) :f(0) € D(B)
R(AA) = (Mg — A)™ and f(0) = f( )+ @(f(=7))}
is called the resolvent aofl at A. Lemma 1 ([9]): The operator(A, D(A)) in (2)

generates &', semigroup(7'(¢)):>o on X.

s(A) :=sup {Real part of A : A € o(A)} Lemma 2 ([9]): If » € D(A), then the function

is called the spectral bound of. x:[—7,00)— Y defined by
Definition 5: A C, semigroup (7'(t))i>o With [ () if —r<t<0,
generaton A, D(A)) is said to be uniformly expo- (t) [T(1)¢] (0) if 0 < ¢

nentially stable ifwy(A) < 0.

Definition 6: A Banach spaceX is called a Ba- IS the unique solution of (1).
nach lattice if X is supplied with an order relation N the subsequent discussion, we assume that each

such that all the following conditions hold: BaLnach Sp??c(?é])'YIfInB(l) is a E;anach lattice. "
) f>g= f+h>g+hforal f.g.he X. emma : generates a non-negative
(i) f>0=Af>0forall fe X and) € R,. Co semigroup onY’ ar_1d the delay operat_ob €
i) 1£1> 19l = ] > llgll for all f,q € X. L(X,Y) is non-negative, then thé, semigroup

(T'(t))s>0 generated byA, D(A)) in (2) is also non-
negative, and the following equivalence holds:

s(A) <0< s(B+d) <.
Lemma 4 ([9]): Assume that7'(¢)):o iS @ non-
An operator?'(z) € £(X) on a Banach lattic& is negativeC, semigroup with generatofrA4, D(A))
also said to be non-negativeIf(x+) > 0 whenever on X. Then,
0<zelX. 5(A) = wo(A).
Issue 3, Volume 4, 2010 214
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The following proposition directly follows from Proof of Theorem 1: Under the assumption that

Lemmas 3 and 4. ¢ is non-negative and3 + CK') generates a non-
Proposition 1: Under the assumption th&tgen- negativeC, semigroup, we see from Proposition 1

erates a non-negative, semigroup onY” and the that the resulting closed-loop system is uniformly

delay operato® € £(X,Y") is non-negative, thé\, exponentially stable i&(3 +CK + ®) < 0 holds.

semigroup(7'(t)):>o generated by A, D(A)) in (2)  An illustrative example is shown below. Lét

is uniformly exponentially stable if and only if thebe a constant. We consider the following partial

spectral bound(B + ¢) < 0. differential equation with a time delay, defined for
Note that the equality in Lemma 4 might not > 0,z € [0,/],s € [-7,0], as

hold in general. This means that@@, semigroup Dx(e,t) 9=, l)

(T'(t)):>0 generated by(A, D(A)) is not neces- — —d(z)z(x,1)
sarily uniformly exponentially stable even if the ot Jz
spectral bound is negative, i.es(.A) < 0. It can +b(z)z(,t = 7) +u(z,t),  (6)

be seen from Proposition 1 that the non-negativifyith the Dirichlet boundary condition
assumption enables us to determine the stability of
an abstract delay system simply by examining the 2(0,¢) = z({,t) =0 forall ¢t >0, (7

spectral bound. and with the initial condition

IV. STABILIZATION OF ABSTRACT z(x,s) = h(z,s). (8)

DELAY SYSTEMS This equation can be interpreted as a model for
Let (B, D(B)) be the generator of @, semigroup the growth of a population ifi0, (]. z(z,¢) is the
on a Banach lattica”. For a Banach lattic&X := population density at time and spacez. The
C([-7,0],Y), let® € L(X,Y") be a delay operator.term 9%z (z, t)/0=* describes the internal migration.
In this section, we consider the stabilization problemMoreover, the continuous function&z) and b(z)

of an abstract delay system described by represent space-dependent death and birth rates,
1) = Ba(t) + (a1 — Cull respectively.r is the delay due to pregnancy. Let
{ i(() ): - Ex)(() T o(alt =)+ Culd), (3) d(x) andb(z) be given as follows:
whereu(t) : t € Ry — Y is the control input, and d(x) = 1 + cos(8mz /1), (9)
(C,D(C)) is the generator of &, semigroup ory’. b(x) =1+ 2sin(mx/l). (10)

Assumption 1:® is assumed to be non-negative. .
Next, we consider the feedback stabilization proﬁti-et u(w,t) be given by
lem of (3). Letu(t) be given by u(z,t) = —k(x)z(z,1). (11)

u(t) = Kaz(1), (4) To rewrite system (6) as an abstract delay system,
we introduce the spaces := ([0,/] and X :=

where(k, D(A)) is the generator of &, semigroup C([-7,0],Y). Moreover, we define the following

onY.

Definition 8: System (3) is said to be delay_operators
independently stabilizable if there exist&) in (4) G (12)
such that the equilibrium point = 0 of the result- T de?’
ing closed-loop system is uniformly exponentially D(A) := {f € C*0,0 : f(0) = f({) = 0}7 (13)
stable. . Bi=A—M;— M, D(B):=DQA), (14)
Now, we state the following theorem.

Theorem 1:1f there existskC such that B +CK) ¢ = My, € LIXY), (15)
generates a non-negativ@ semigroup and where My, My, and M, are the multiplication oper-

s(B+CK +®) <0 (5) ators induced byl(z), k(x), andb(z), respectively.

¢, : X — Y denotes the point evaluation in
is satisfied, then system (3) is delay-independently¥ [—7,0]. We see from (14) and (15) that system
stabilizable. (6) can be rewritten as an abstract delay system (1).
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It is shown in [9] thatA generates a non-negativevithout explanation. Note that equation (6) can be
Cp, semigroup. Since:—“Ma+Mx) s non-negative, discretized as follows:
we see from the Trotter product formula [9] that z; ;. — z;;, 1 {Zi+1,j+1 — 22 41+ Zic1 41

B in (14) generates a non-negatigg semigroup. At T 9 Az2

Moreover, we see from (10) and (15) thatis a R AT
non-negative operator. Consequently, it follows from+ ~“-0 —= T “t= 1 } —{d(x;) + k(2)} 2,

Ax?
Lemmas 3 and 4 that
+0(2i)zi j—ryat (17)
wo(A+ My — My — Myy) = s(A+ My — My — My). Taking Dirichlet boundary condition (7) into ac-
In the following, we desigrk such that Eount, we see that (17) yields the following equa-
ion:
s(B+@) <0 Az, =(C—D—K)z; + Bz,_,/n,, (18)
is satisfied. Let) be defined by where letr be defined by
. At
6 := inf (d(z)+ k(z)—b(z)). P ———
it (d(x) + k() = b(z) ri= s

If § > 0, then the operatofA + M, — My — M +46) and letA, B, C, D € R andz; ¢ R be

is dissipative. Hence, we obtain defined as
F14+2r  —r 0 0 e 0 7
wo(A—I-Mb—Md—Mk) < —9. _ 1420 —r 0 . .
This condition shows that if A 0 e e e 0
b(x) —d(x) — k(x) <0, forallx € 0,7, 0 e e 0
then a solution of (6) is uniformly exponentially . 8 _()r 1:«% 1;r2r
stable. For example, if we design -
r1—2r r 0 0 0 7
k(z) =2 —d(z) + b(z), (16) :
r 1—2r » 0 . :
then system (6) is delay-independently stable. 0 . 0
The effectiveness of controller (16) is verified bf := . o )
numerical simulations. To solve equation (6) using 0 N R r 0
a numerical algorithm, we must discretize equation : 0 r 1—2r r
(6) into the finite difference equation. The Crank- L0 0 0 r 1 —2r
Nicolson method [21] is a finite difference method - d -
; . ! ) ) (1) 0 0 0 0
used for numerically solving a partial differential
equation. It is a second-order method in time and 0 d(z) 0 0
space, and is numerically stable. For the sake of 0 0 ... e 0
completeness, a brief description of the Cranik? := Al . o :
Nicolson method applied to this problem is provided 0 oo e 0 0
in the subsequent discussion. : 0 0 0
We divide the space and time intd/ € N, L 0 00 0 dlxm)
steps andV € N, steps, respectively. This means F k() 0 00 0 -
that each step size is given kyx := (/(M — 1) _
and At := {;/(N — 1), wheret; denotes the 0 k(xz) 0 0
terminal time of the simulation. By means of the 0 0 . e el 0
discretizationz(z,t), (0 < ¢ < ¢;) can be described K := At , L ’
asz,; (i =1,---,M,5 = 1,---,N), where the 0 Lo 0 0
subscripts and; denote the space and time, respec- : 0o 0 - 0
tively. For other variables, we adopt such notation L 0 e 00 0 k(zm)
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Ch(z) 0 0 0 - 0 ] .
B sl O 0 . .0 =08
0 0 Y
. \/| .
0 0 0 l‘\
L0 0 0 0 bley) ] Lod
ZL]‘ E::
22,5 N 0.2r
Z; =
FM-1, % 2 4 « 6 8 10
ZMJ‘
Consequently, it follows from (18) that
Fig. 4. The initial conditiom:(z, s).
Zj41 = A_l{(C —-D - K)Z]‘ + BZj—T/At}' (19)
Therefore, we see that;(¢);—... n) iS calculated 6 : : :
recursively by (19), for a given initial statgz, s). —d(x)
The parameters employed in the numerical simula- | == -b(x) 7
tions are listed in Table I. o b(x)-d(x)—k(x)
M 101 [steps] et ~‘~~\
N 101 [steps] 2 7 RN
Z 10 m] s ~
ty 10 [sec]
Az 0.1 [m] Or
At 0.1 [sec]
T 1 [sec]
h(z,s) | |sin(2=z/¢)| for all s € [—7,0] A R 1
TABLE |
THE PARAMETERS EMPLOYED IN THE NUMERICAL SIMULATIONS 0 2 4 X 6 8 10

Fig. 5. The space-dependent death and birth rates.
Fig. 4 shows that the initial statgz, s) is given

by h(xz,s) = |sin(2rx /()| for all s € [—7,0]. Fig. 5 , - " _
’ ’ . and with the same initial condition as (8). In this
shows the space-dependent death and birth r"J"cecf'se, we can also rewrite the system as an abstract

d(x) andb(z), respectively. Moreover, we see fro - : : )
Fig. 5 that the condition(z) — d(x) — k(x) < 0 is n%iotargy system by introducing the following opera

satisfied for allz € [0, /]. ,

The simulation results with the proposed methods ._ &
are shown in Figs. 6-7. Fig. 6 shows the free da?’
response of(z, ¢) without control. We see that the ;) \, ._ 200 Yoy Yo -
population density increases over time. Fig. 7 shows (&)= Fec0.4: d:z;(o) d:z;( =07
Ehe)time reTponje of(x, 1) ir?wrr]]iCh thelcontrrzjller B:=A—M;— M, D(B):=DA),
16) is employed. We see that the population ensi% = M Xy
is uniformly stabilized at = 0. The figures reveal ' o € LIX,Y),
the effectiveness of controller (16). Similarly, we see that if

In the following, we consider system (6) with the
Neumann boundary condition b(z) — d(x) — k(x) <0, forallze[0,]

02(0,t)  9z((,1) is satisfied, then the system is uniformly exponen-
5~ 9, 0 forallt>0, tially stable. To perform numerical simulations for
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Fig. 6. Free response ef«, t) without control with the Dirichlet

boundary condition. Fig. 8. Free response efz, t) without control with the Neumann

boundary condition.

00

Fig. 7. Time history of:(«, ¢) controlled by (16) with the Dirichlet

boundary condition, Fig. 9. Time history of(z, ¢) controlled by (16) with the Neumann

boundary condition.

. . [ 1 —2 2 0 0 0 7
system (6) with the Neumann boundary condition, " "
we also obtain the discretized equation as in (19), roo1=2r r 0
where A and C are changed as follows: C 0 r 0
0 r 0
: . 0 r 1-2r r
T142 —2 0 0 0 L 0 0 0 2r 1—2r |
-r  14+2r —r 0 : Likewise,z;(t)(;=1,..., ) iS calculated recursively by
0 T 0 (19), for a given initial staté(x, s).
A= . A » The simulation results with the Neumann bound-
0 ' ' T 0 ary condition are shown in Figs. 8-9. Fig. 8 shows
: : 0 —r 14+2r —r the free response of(z,t) without control. We
L0 0 0 —2r 1+42r ] see thatthe population density increases over time.
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Fig. 9 shows the time response g, ¢) in which [4] H. Sano, Boundary Stabilization of a String with Two Rigid

the controller (16) is employed. We see that the Loads: Calculation of Optimal Feedback Gain Based on a Finite
Difference Approximationinternational Journal of Mathematical

p0pu!at|0n denS|ty 1S umformly S_tablllzed at= 0. Models and Methods in Applied Scienc2808, pp. 513-522.
The figures also reveal the effectiveness of controllgr T.N. Le, Y. K. Suh and S. Kang, Efficient Mixing in Microchan-
(16). nel by using Magnetic Nanoparticlelternational Journal of
Mathematical Models and Methods in Applied Scien@809,
pp. 58-67.
V. CONCLUSION [6] F. N. Koumboulis, N. D. Kouvakas and P. N. Paraskevopoulos,

Analytic Modeling and Metaheuristic PID Control of a Neutral
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. . . . . tions on Systems and Contrddol. 3, pp. 967-981, 2008.
differential equation with a time d6|ay was exan}?] K. Zakova, One Type of Controller Design for Delayed Double

ined using semigroup theory. We first introduced integrator System\WSEAS Transactions on Systems and Cantrol
the concept of an abstract delay system that canvol. 3, pp. 62-69, 2008.

. . . T. Hashimoto and T. Amemiya, Stabilization of Linear Time-
be used to characterize the behavior of a Wlésévarying Uncertain Delay Systems with Double Triangular Con-

class of dynamical systems. Next, we examined thefiguration, WSEAS Transactions on Systems and Canvall 4,
stabilization problem of an abstract delay system pp. 465-475, 2009.
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of a non-negativeC; semigroup. In Sec. IV, We  springer-Verlag, New York, 2000.
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; : : : ; -1 Peters Ltd., 2005.
that includes ordlnary differential equations, part 2] R. F. Curtain and H. J. Zwart, Stability and Stabilization of

differential equations, and delay differential equa- infinite Dimensional Systems with Applications, Texts in Applied
tions. From this point of view, the control method Mathematics, Vol. 21, Springer-Verlag, New York, 1995.

; ] Z.-H. Luo, B.-Z. Guo and O. Morgul, Stability and Stabilization
prOposed here for an abstract delay system Is é](iaof Infinite Dimensional Systems with Applications, Springer-

vantageous for its applicability to a wide class of \erag, London, 1999.
dynamical systems. lllustrative examples reveal&d] M. B. Branco and N. Franco, Study of algorithms for de-
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