

Abstract— In this paper implementation of self-tuning digital

PID controller on 8-bit Freescale MC68HC908GB60 microcontroller

which is intended for general purpose applications is described.

Controller firmware was created on development board

M68EVB908GB60 by Axiom manufacturing providing number of

useful peripherals for comfortable application development.

Controlled process is identified using modified recursive least

squares method with adaptive directional forgetting resulting in δ-

model representation of controlled plant. This approach results in

better numerical stability of identification process and allows lower

sampling periods. Parameters of PSD controller are designed by pole

placement method on the basis of estimated plant coefficients.

Controller firmware was created in Freescale CodeWarrior integrated

development environment in C and assembly language. Software

works under real-time operating system RTMON for HCS08 which

was created on our department. Controller was verified by

temperature controlling of two different heat plant models.

Keywords— Delta models, Freescale MC68HC908GB60,

microcontroller, pole placement, self-tuning control.

I. INTRODUCTION

RESENT-day very rapid progress in electronics and

computer science influences all areas of human activities.

Production technology improvements of new microcontrollers

lead to their miniaturization, increased central processor unit

performance, decreased power consumption and price. Thus

modern 8-bit one-chip microcontrollers have enough

computing power not only for simple control loops consisting

of fixed parameters controllers like PS or PSD. They are able

to handle tasks from the origin of modern control methods

such as adaptive control. Due to some limitations, mainly in

main memory capacity, microcontrollers cannot substitute

powerful industrial PCs or special programmable logic

controllers, which can work with number of control loops

simultaneously. However, area of microcontroller usage is a

bit different – in embedded systems that is in systems where

are laid stress on low price, compact dimensions, low power

consumption, high reliability and immunity against

environmental influences and other specific requirements.

 This work presents implementation of self-tuning digital

PID controller on a member of wide family of 8-bit Freescale

HCS08 microcontrollers. Concretely was chosen general-

purpose 8-bit Freescale MC68HC908GB60 microcontroller

The work was performed with financial support of research project

MSM7088352102. This support is very gratefully acknowledged.

which is a part of development board M68EVB908GB60 by

Axiom Manufacturing. First part of the paper describes

implemented algorithms for process identification and PSD

controller design using pole placement method. Next two

chapters deal with hardware overview of selected

microcontroller including evaluation board basic properties

followed by software implementation. Last part of the paper is

focused on experimental verification of designed controller.

II. IMPLEMENTED ALGORITHMS

A. Process identification

For process identification was used recursive least square

algorithm with adaptive directional forgetting. In order to

achieve lower sampling time periods and mainly better

numerical stability of identification process forward δ-model

was chosen:

0

1

T

z −
=δ . (1)

Identified system is described by second order transfer

function in δ-representation (2).

()
21

2

21

αδαδ
βδβ

δ
++

+
=sG (2)

ARX regression model expressed in compact vector form is

described by equation [1]:

() () ()knkkky s

T +−Θ= 1)(φ (3)

where ΘT
(k) is vector of parameters of identified system and

φ(k-1) is regression vector.

() []nbna

T bbbaaak ,...,,,,...,, 2121=Θ (4)

() () ()
)](),...,2(),1(

,,...,2),1([1

nbkukuku

nakykykykT

−−−

−−−−−−=−φ
 (5)

Vector of parameter estimations is updated using:

Self-tuning Digital PID Controller Implemented

on 8-bit Freescale Microcontroller

Petr Dostálek, Jan Dolinay, Vladimír Vašek and Libor Pekař

P

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 4, 2010 274

)1(ˆ
)(1

)1()1(
)1(ˆ)(ˆ −

+
−−

+−Θ=Θ ke
k

kkC
kk

ξ
φ

 (6)

where e(k) is prediction error and C(k) is covariant matrix [1]:

)1()(ˆ)()(ˆ −Θ−= kkkyke T φ (7)

)()(

)1()1()1()1(
)1()(

1 kk

kCkkkC
kCkC

T

ξε
φφ
+

−−−−
−−=

−
 (8)

where ε(k) and ξ(k) are defined as [1]:

)(

)(1
)()(

k

k
kk

ξ
ϕ

ϕε
−

−= , (9)

)1()1()1()(−−−= kkCkk T φφξ . (10)

The directional forgetting factor ϕ(k) is calculated using

equation [1]:

() ()()[]
()() ()

() ()
()

()11

1
1

111

111

11ln11)(1

−+

−








−

−+−+

−+−
+

−+++=−

k

k

kk

kk

kk

ξ
ξ

ηξ
ην

ξρϕ
 (11)

where η(k), ν(k) and λ(k) are defined as [1]:

)(

)(ˆ
)(

2

k

ke
k

λ
η = , (12)

[]1)1(()()(+−= kkk νϕν , (13)










−+

−
+−=

)1(1

)1(ˆ
)1()()(

2

k

ke
kkk

ξ
λϕλ . (14)

For parameters identification of transfer function (2), vector

of parameters and vector of data must be modified to the form

of (15) and (16) [2].

() []2121 ,,, ββαα=Θ k
T (15)

() () ()

)]2(,
T

)2()1(

,2,
2)1(

[1

0

0

−
−−−

−−
−−−

−=−

ku
kuku

ky
T

kyky
k

Tφ
 (16)

B. Digital PID controller design

The controller based on the placement of poles of a

feedback system is designed so that it stabilizes the closed

feedback loop whereas the characteristic polynomial has pre-

defined poles. For feedback system the synthesis consists in

solving the Diophantine equation:

DBQAP =+ , (17)

where A, B are polynomials of the plant, Q, P are polynomials

of the controller and D is characteristic polynomial, which is

defined in the following form:

() 43

2

2

3

1

4 ddddD ++++= δδδδδ (18)

The transfer function of the digital PID controller in δ-

modification is:

() ()
() ()γδδ

δδ
δ
δ

δ
+

++
== 21

2

0 qqq

P

Q
GR . (19)

Solving of Diophantine equation (17) leads to a system of

four algebraic equations, which can be written in matrix form

[2]:



















−

−

=



















⋅



















4

3

22

11

2

1

0

2

212

112

1

000

0

0

100

d

d

d

d

q

q

q

α
α

γβ
αββ
αββ

β

. (20)

PSD controller output value u(k) is computed using (21).

() () () ()[] () ()[]
() () ()[] ()

()2

12212

21212

0

2

02

010

−−

−−+−−−−−+

+−−−+−+−−=

ku

kukukuTkeTq

kekeTqkekekeqku

γ (21)

III. HARDWARE OVERVIEW

Self tuning digital PID controller was implemented on

development board M68EVB908GB60 by Axiom

manufacturing which is based on general purpose 8-bit

Freescale microcontroller MC9S08GB60. Board is equipped

with number of useful peripherals enabling comfortable

development of new applications for this microcontroller.

User application can utilize 4 LED indicators, 4 push

buttons, 4 position DIP switch, 2x16 character LCD Module,

buzzer and potentiometer. For communication purposes it

provides two serial asynchronous communication interfaces

RS232 with standard DB9-S connectors. Second RS232

interface can be switched to RS422/485 mode in which all

signals are redirected to dedicated 5 pin terminal. In case of

need other external peripherals can be connected to MCU port

(provides all digital I/O) and ANALOG port (provides analog

inputs) incorporating all necessary signals including power

supply pins.

Development kit is provided with Freescale binary monitor

located in protected area of the internal FLASH memory.

Monitor program enables loading and debugging of user

program via standard RS232 interface, so there is no need to

have specialized BDM adapter. Development board

photograph is in Fig.1 [6].

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 4, 2010 275

Fig. 1 Development board M68EVB908GB60 [6].

A. Microcontroller MC9S08GB60

The MC9S08GB60 is low-cost, general purpose, high-

performance 8-bit flash-based microcontroller with von-

Neumann architecture. Central processor unit with enhanced

HCS08 core is fully upward compatible with Freescale

68HC05 family. Their architecture is fully optimized for C

language compilers.

On the chip are integrated following modules:

• One 3-channel and one 5-channel 16-bit timer/pulse

width modulator modules

• Two serial communication interfaces

• Serial peripheral interface

• Inter-integrated circuit bus module

• Internal clock generator module

• 10-bit analog-to-digital converter with 8-channel

analog multiplexer

• On chip 64KB FLASH memory with in-circuit

programming capability

• 4KB on-chip RAM

• 56 general-purpose I/O pins (16 high-current pins)

• Software selectable pull-ups on ports when used as

input

• 8-pin keyboard interrupt module

• Watchdog system

• Low-voltage detection

• Illegal operational code and address detection

• On-chip debug module (DBG) [4]

Central processing unit (CPU) features:

• 40 MHz operation at 3V

• 8-bit accumulator (A)

• 16-bit stack pointer (SP) with new stack manipulation

instructions

• 16-bit index register (H:X) with index register

instructions

• Memory to memory moves without using the

accumulator

• Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide

instructions

• 64 Kbytes program/data memory space [5]

IV. CONTROLLER FIRMWARE DESIGN

Self-tuning digital PID controller internal software is based on

real-time operating system RTMON for HC08, which was

developed on our department especially for microcontroller-

based embedded systems with CPU08 main processor core. So

software is formed of RTMON core and individual processes

which perform all necessary tasks. Each process activity is

controlled by operating system core on the basis of process

priority and other information stored in the task descriptor.

Structure of the firmware is depicted in the Fig. 2. There are 7

main processes and 1 interrupt handling routine. RTMON core

and program processes functions are in detail described in next

chapters.

Fig. 2 Controller software structure.

A. Real-time operating system RTMON

RTMON is preemptive multitasking operating system which

is simplified to great extend to allow easy use for

programmers. It is written in C language with the exception of

small platform-specific code written in assembler. The

scheduler assigns time slices to processes based on their

priority. The priority is integer in the range 1 to 254. Priority 0

is the highest and is reserved for the RTMON initialization

process and priority 255 is the lowest and is reserved for the

idle process (called dummy in RTMON).

RTMON allows execution of two different types of

Process 2
Command processing

Process 1

System initialization

Process 3
PWM modulation

Process 4
Communication

SCI interrupt

Read received

character from SCI and

write it to buffer.

Return

Process 5
PSD controller

RTMON core

Process 6
System identification

Process 7
Watchdog

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 4, 2010 276

processes (tasks): normal processes which execute only once

(such process typically contains infinite loop) and periodical

process which is started automatically by RTMON with given

period. These periodical processes are useful for many

applications, for example, in discrete controllers which need to

periodically sample the input signal and update the outputs.

For the sake of simplicity of both the implementation and

usage, several restrictions are applied. First, the RAM memory

for processes and their stacks is statically allocated for the

maximal number of processes as defined in configuration file.

In the user program, it is not possible to use this memory even

if there are fewer processes defined. In case more RAM is

needed for the user program, the maximum number of tasks

and/or stack-pool size can be changed in configuration file and

the RTMON library must be rebuild.

The priority of each task must be unique, so that in each

moment one task (the one with highest priority) can be

selected and executed on the CPU. The scheduler does not

support cyclical switching of several processes with the same

priority on the CPU in round-robin fashion; it simply chooses

the task with highest priority from the list of tasks which are

ready to run. Processes can be created on the fly, but it is not

possible to free and reuse memory of a process. No more than

the maximal number of processes can be created, even if some

processes were previously deleted.

These restrictions, however, do not present any big problem

for most applications and allow for small kernel code size and

ease of use.

There are only two objects (data structures) which RTMON

contains: process (task) and queue. The queues are buffers for

transferring data between processes. It would more properly be

called mailboxes in our implementation as each queue can

contain only 1 message. Several queues can be created, each

containing a message (data buffer) of certain size. The size can

be specified when creating the queue and is limited by the total

size of RAM reserved for all buffers of all the queues (queue

pool size). Processes can read and write data to the queue and

wait for the queue to become empty or to become full. This

allows for use of the queue also as a synchronization object

(semaphore).

The RTMON uses timer interrupt which occurs at certain

period (e.g. 10 ms) to periodically execute the scheduler,

which decides which process will run in the next time slice.

The timer interrupt routine is implemented in assembly

language. It first stores CPU registers onto the stack and then

calls RTMON kernel, which is a C function. The kernel then

finds the process with highest priority which is in ready-to-run

state and switches the context, so that the code of this process

is executed after return from the interrupt service routine. If no

process is ready to run, then a special dummy process is

executed. This dummy process is contained within RTMON

code and does nothing.

The following basic operations can be performed with a

process in RTMON. Each operation corresponds to a function

in the RTMON library which user program can call:

• create process

• start process

• stop process

• delay process

• continue process execution

• abort (delete) process

For queues there are the following functions:

• create queue (specify size)

• write to a queue with/without waiting

• read from a queue with/without waiting

There are also two functions for controlling the RTMON core:

• initialize RTMON

• end RTMON operation

The RTMON system is used as a precompiled library

accompanied by a header file. This simplifies the organization

of the project and the build process. User enables RTMON

usage in his program by including the header file (rtmon.h) in

his source and adding the library to his project.

B. Processes function description

Process 1 is highest priority process which performs

controller hardware initialization after power up or reset. It

sets all digital outputs to low state (logic 0), setups serial

communications interface to communication speed of 57600

Bd, 8-bit data frame, 1 start bit and 1 stop bit and finally

initializes all necessary data structures. Because of its highest

priority no other processes can be switched by RTMON core

into the “run” state before this process is completely finished.

After all initializations are done it suspends itself.

Process 2 performs all tasks related to command

interpretation and execution. It waits for complete command

string in the receiver buffer which is handled by serial

communication interface (SCI) interrupt routine. This interrupt

routine is automatically called when SCI receive one character

from the higher-level control system (personal computer or

programmable logic controller, for example). When command

is completely received in the buffer, process will decode it and

executes required action.

Process 3 is periodically activated process performing

pulse-width modulation (PWM) on all digital output channels

when it is demanded. Its priority is set to higher level than

process 2 and process 4 because the PWM is time critical

function sensitive to accurate timing. Its resolution is 8-bit

allows setting 256 different duty cycles at output. Period of the

PWM signal is set to value of actual controller sampling

period.

Process 4 provides communication via RS232 serial

interface with supervisory system. It generates responses to all

commands regarding to defined communication protocol

include error processing. It has defined lowest priority among

of all processes.

Process 5 is periodically activated process with period set to

user specified sampling rate performing computation of digital

PID controller output value u(k) from control error value e(k).

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 4, 2010 277

Process 6 performs controlled system identification by

recursive least square algorithm with adaptive directional

forgetting described in the chapter 2.A. It is resulting to

controlled system parameters α1, α2, β1 and β2 which are

necessary for PSD controller coefficients calculation.

Process 7 periodically checks correct function of all running

RTMON processes by polling their status. Controller is

stopped and all actuating signals are set to inactive state when

problem is detected.

C. Communication protocol

In order to achieve compatibility with many software

platforms, universal ASCII-based communication protocol was

chosen. Very advantageous is the possibility to send all

implemented commands using generic terminal program that is

included in most operating systems. Each command can be

divided up to five parts depending on function implementation.

Communication starts with character “~” then must follow

command name with fixed length of two characters (for

example “CW” means set new set point value). After it is the

first command parameter with length of one character (channel

index – reserved for multichannel controller) next character is

space followed by second parameter (value) or parameters

(values). Command must be terminated by CR, LF sequence.

Communication protocol example is depicted in the Fig. 3.

Controller supported commands are provided in the TABLE I.

First command parameter <chann> must be always set to zero

in current SW implementation (only single channel operation

is allowed).

TABLE I Commands supported by controller.

Command Description

~CW<chann>

<val>CRLF

Set new set point value in deg. C for

channel <chann>

~CT<chann> <val>CRLF
Set controller sampling period in

seconds on channel <chann>

~CP<chann> <d1> <d2>

<d3> <d4>CRLF

Set characteristic polynomial

coefficients on channel <chann>

~CC<chann> <q0> <q1>

<q2>CRLF

Set controller coefficients on channel

<chann>

~CU<chann> <val>CRLF
Set control signal value in % on

channel <chann> (monitor mode)

~AE<chann>CRLF
Enable self-tunning feature for PSD

controller on channel <chann>

~AD<chann>CRLF
Disable self-tunning feature for PSD

controller on channel <chann>

~MM<chann>CRLF
Change mode to monitoring on

channel <chann>

~MC<chann>CRLF
Change mode to “PSD controller” on

channel <chann>

~GW<chann>CRLF
Get actual set point value on channel

<chann>

~GU<chann>CRLF
Get actual control signal value on

channel <chann>

~GY<chann>CRLF
Get actual conrolled value on

channel <chann>

~GP<chann>CRLF
Get estimated controlled system

parameters on channel <chann>

Fig. 3 Communication protocol example.

V. SOFTWARE SUPPORT

Although communication protocol is very simple and easy

to understand it is more comfortable in a control application to

call functions which can automatically generate commands for

the data acquisition device and consequently process its

response. Application developer then does not need to know

exact communication protocol and do not need to program it.

This simplification results in faster program development and

reduction of debugging time. There were created support

program libraries for Visual C++, Control Web 5 and Matlab

6.5 (and higher versions with serial port object support)

software environments.

A. Support libraries for Visual C and Matlab

Created libraries incorporate all functions implemented in

the controller including error processing. In order to controller

setup and diagnosis simple program utility was created.

Program is able to set controller set point value, controller

parameters q0, q1 and q2, sampling rate, characteristic

polynomial coefficients d1, d2, d3 and d4, enable / disable

adaptation, switch to monitoring or controller mode and other

functions.

In monitoring mode can be PSD controller deactivated and

then all measured values are saved to text file in format

suitable for import to MS Excel software. This feature enables

efficient process identification by measuring and evaluating

system step response.

Matlab 6.5 support library has implemented same functions

with only one difference – in place of device handle is serial

port object. Each function is available in separate m-file, so it

is very simple to modify them by user.

TABLE II Implemented library functions for C

Function Description

HANDLE Open_device

(const char*)

Opens device connected to specified

serial port (“COM1”, “COM2”,…) and

returns device handle.

int Close_device

(HANDLE h)

Closes controller device with specified

handle.

~ C W 0 _ 6 5 . 0 CR LF Command:

Response: ~ C W 0 = 6 5 . 0 CR LF

- set new set point value to 65 deg. C.

- notification that set point value was set to 65 deg. C

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 4, 2010 278

int Set_W (HANDLE

handle, int channel,

double value)

Set new set point value in deg. C for

specified channel.

int Set_Ts (HANDLE

handle, int channel,

double value)

Set new sampling rate for specified

channel in seconds.

int Set_CharPoly

(HANDLE handle, int

channel, double *d)

Set characteristic polynomial

coefficients for specified channel.

int Set_CntrCoef

(HANDLE handle, int

channel, double *q)

Set controller coefficients for specified

channel.

int Set_U (HANDLE

handle, int channel,

double value)

Set control signal value in % for

specified channel. Applicable in

monitoring mode only.

int Set_STFeature

(HANDLE handle, int

channel, int value);

Enable / disable self-tuning feature of

the PSD controller on specified

channel.

int Set_CntrMode

(HANDLE handle, int

channel, int mode);

Change controller mode to “PSD

controller” or monitoring for specified

channel.

double Get_W

(HANDLE handle, int

channel)

Get actual set point value for specified

channel.

double Get_U

(HANDLE handle, int

channel)

Get actual control signal value for

specified channel.

double Get_Y

(HANDLE handle, int

channel)

Get actual controlled signal value for

specified channel.

int Get_SysParam

(HANDLE handle, int

channel, double *par)

Get estimated parameters of the

controlled system for specified

channel.

B. Driver support for Control Web

Control Web is Rapid Application Development system

developed by Moravian Instruments which is suitable for

process visualization and real-time control, HMI applications,

technological information systems and other applications.

Application design in Control Web 5 is very fast and

comfortable due to integrated development environment,

which supports more possibilities how to create new

application. The basic idea is to build in graphical editor basic

components to the larger block, which can gradually form

whole system. Each component can be configured in sheet

editor enabling transparent parameter settings. Because

resulting code saved in text form and then compiled there is in

parallel also text editor available. Each component can be

selected from instruments palette organizing them in

subcategories – for example system instruments, flat

instruments and so on. Selected category can be expanded if it

is possible to next sub trees. Expanded category called Flat

Instruments can be seen in Fig. 4. Another type of the object in

Control Web is data element. Each data element represents

location in system memory, which can save value of the

measured quantity, for example [10].

Control Web is in standard installation equipped with

several drivers which can be divided to two main categories –

for demonstration and testing purposes (Virtual Driver, Model

driver, Simulation Driver, Simulating Driver) and general

drivers for use in real applications (DDE Client Driver,

ASCDRV5 driver, TCP/IP driver). Device driver is

independent component in a form of dynamically linked

library with standardized interface. During development of the

Control Web system gradually originated three versions of the

interface. Basic interface was defined for Control Web version

3 and must be implemented in every driver. Newer interface

version 4 was created with Control Web 2000 and finally

newest version 5 was defined for Control Web 5. Back

compatibility is guaranteed by implementation of the basic

interface in all higher versions of the interface.

Control Web communicates with driver using channels,

which must be defined in the driver map file (file with

extension dmf). Each channel is defined by number, direction

(input, output) and data type (real, boolean, string, and others).

Driver configuration is stored in the parametric text file

(extension par) containing specific information for correct

driver initialization. All parameters can be easily viewed and

modified using Driver inspector.

Fig. 4 Control Web 5 Instruments palette.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 4, 2010 279

On the basis of requirements of the driver interface version

3 device driver for digital PID controller was created. It

supports 8 input real channels and 10 output real channels.

Each channel assignment and its direction are obvious from

TABLE III.

TABLE III Control Web driver channel assignment.

Channel Direction Description

1 Output Set point value in deg. C.

2 Output
Controller sampling period in

seconds.

3 – 6 Output
Characteristic polynomial

coefficients d1, d2, d3, d4.

7 – 9 Output Controller coefficients q0, q1, q2.

9 Output
Control signal value in %

(applicable in monitoring mode).

10 Output
Enable / disable self-tuning feature

of the PSD controller.

11 Input Actual set point value in deg. C.

12 Input Actual control signal value in %.

13 Input
Actual controlled signal value in

deg. C.

14 – 17 Input
Estimated parameters of the

controlled system α1, α2, β1, β2.

18 Input Device status information.

VI. CONTROLLER VERIFICATION AND RESULTS

Functionality of the implemented controller was verified by

controlling two different real laboratory heat plants using

Axiom M68EVB908GB60 development board. Connection

with real system was realized via MCU and ANALOG port

connectors. Control signal is generated using standard digital

output pin with utilization of pulse-width modulation. PWM

period was chosen with respect to controlled system dynamics

TPWM = 0.5 s.

Step responses of the heating plant models 1 and 2 are

depicted in the Fig. 5 and Fig. 6. They were measured with

control signal change from 40 % to 60 % of its maximum

value. Controlled systems were approximated with second

order transfer functions (22) for plant 1 and (23) for plant 2.

Figures 7 and 9 shows control processes for both heating

plants models with utilization of self-tuning PSD controller.

Sampling period T0 of the controller was set to 0.5 s.

()
()() ()()161168

3.2

11 21

1 ++
=

++
=

sssTsT

k
sGS (22)

()
()() ()()171121

2.2

11 21

2 ++
=

++
=

sssTsT

k
sGS (23)

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200
t [s]

y
 [
d
e
g
.C
]

y

yaprox

Fig.5 Heating plant model 1 step response.

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200
t [s]

y
 [
d
e
g
.C
]

y

yaprox

Fig.6 Heating plant model 2 step response.

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200 1400 1600 1800

t [s]

y
 [
d
e
g
.C
],
 w
 [
d
e
g
.C
]

w

y

Fig.7 Heating plant model 1 control process.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 4, 2010 280

Fig.8 Model 1 control process – parameters estimations.

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500 3000

t [s]

y
 [
d
e
g
.C
],
 w
[d
e
g
.C
]

w

y

Fig.9 Heating plant model 2 control process.

Fig.10 Model 2 control process – parameters estimations.

VII. CONCLUSION

This paper deals with implementation of self-tuning PID

controller on low-cost 8-bit one-chip microcontroller Freescale

MC68HC908GB60. On the basis of described algorithms and

existing program modules for adaptive control for Motorola

MC68HC11 microcontrollers developed at our department [3],

software in assembly and C language for microcontroller

MC68HC908GB60 was created. Controller uses universal

ASCII-based communication protocol which can be easily

successfully implemented in many control and monitoring

software environments. In order to improve development of

monitoring and control application for this device a support

program libraries for Matlab/Simulink, Visual C++ and

Control Web 5 were created.

 Controller correct function was verified by controlling real

laboratory heating plant models using Axiom

M68EVB908GB60 development board, which is based on

Freescale MC68HC908GB60 microcontroller. Performed

experiments indicate that modern 8-bit microcontrollers have

sufficient arithmetic power to handle tasks such as adaptive

control. It brings to the area of embedded systems better

control quality on variety of systems.

REFERENCES

[1] Bobál, V.; Böhm, J.; Prokop, R. & Fessl, J. (1999). Praktické aspekty

samočinně se nastavujících regulátorů, algoritmy a implementace, VUT

Brno, ISBN 80-214-1299-2

[2] Bobál, V.; Dostál, P. & Sysel, M. (2000). Delta modification of self

tuning pole placement PID controllers, Proceedings of Symposium on

System identification SYSID 2000, CD-ROM, University of California,

June 2000

[3] Dolinay, J. & Vašek, V. (2003). Program library for Motorola HC11

microcontroller, Proceedings of International Carpathian Control

Conference ICCC’2003, pp. 467-470, ISBN 80-7099-509-2, High

Tatras, Grandhotel Praha, Slovak Republic, May 2003

[4] Freescale semiconductor. MC9S08GB60A Data Sheet [online]. 2008.

Freescale Semiconductor, Inc. : Freescale Semiconductor Literature

Distribution Center, 2008 [cit. 2010-02-21]. Available on WWW:

<http:\\www.freescale. com>.

[5] Freescale semiconductor. CPU08 Central Processor Unit [online]. 2001.

Freescale Semiconductor, Inc.: Freescale Semiconductor Literature

Distribution Center, 2001 [cit. 2010-02-23]. Available on WWW:

<http:\\www. freescale.com>.

[6] Axiom Manufacturing. M68EVB908GB60 Development Board for

Freescale MC9S08GB60 [online]. 2006. Axiom Manufacturing, 2006.

[cit. 2010-02-22]. Available on WWW: <http:\\www.axman.com>.

[7] Vasek V.; Dostalek P.; Janacova D.; Kolomaznik K.; Zalesak M.,

Applied Informatics in Automatic Control Education, In Proceedings of

the 7th WSEAS International Conference on Applied Informatics and

Communications, Athens, Greece, August 24-26, 2007.

[8] Dolinay J.; Dostalek P.; Vasek V.; Kolomaznik K.; Janacova D., New

Embedded Control System for Enzymatic Hydrolysis, In Proceedings of

The 8th WSEAS International Conference on Applied Informatics and

Communications, Rhodes Island, Greece, August 20-22 2008.

[9] Dolinay, J.; Vašek, V., Utilization of Motorola HC11 in Process

Control. Proceedings of the 6th international scientific - technical

conference Process Control 2004, ISBN: 80-7194-662-1.

[10] Moravian Instruments, Control Web 5 software documentation,

Moravian Instruments, Inc., Zlín, 2005.

 -0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0 500 1000 1500 2000 2500 3000

t [s]

alfa1

alfa2

beta1

beta2

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 200 400 600 800 1000 1200 1400 1600 1800

t [s]

alfa1

alfa2

beta1

beta2

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 4, 2010 281

