
 

 

 
Abstract—In this paper, a mathematical model of bone 

remodeling process, which incorporates the effect of impulsive 
hormone supplementary treatments, is investigated both numerically 
and theoretically. A three dimensional model proposed in our earlier 
work in 2003 is first extended to incorporate impulsive treatment of 
estrogen supplement. It is illustrated that it is possible for the 
treatment to be interrupted with no apparent drop in its desirable 
effect on maintaining a normal bone mass. When the parathyroid 
hormone is assumed to have a very fast dynamics, the model in its 
reduced two dimensional form is then analyzed in terms of the 
boundedness, asymptotic stability, permanence, and oscillatory 
behavior. We show that there is a stable periodic solution, at the 
vanishing level of osteoclastic cells, when the impulsive period is 
less than some critical value. The conditions for permanence of the 
system are then given. Finally, it is shown that as the impulsive 
period increases beyond a certain critical value, the emergence of 
stable positive periodic solution may be observed under appropriate 
conditions on the system parameters. Thus, dynamic behavior of the 
system is sensitive to the period and amplitude of the hormone 
supplements so that the variation of these parameters are crucial for 
the proper management and control of this complex system. 
 

Keywords—asymptotic stability, bone remodeling, impulsive 
differential equation models, permanence. 
 

I. INTRODUCTION 
ANY systems exhibit impulsive jumps or drops in 

one or more state variables. For example, predator-prey 
systems with periodic harvesting, pest management practice 
where natural enemies are released periodically to control 
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insect pest, cancer growth under pulsatile effects of drug 
treatments, or physiological control systems such as bone 
remodeling process impacted by periodic hormone 
supplement protocols. Such external disturbances can 
stimulate irregular responses that may become difficult to 
control. Therefore, the stability and permanence of such 
systems are of great interest in the clinical point of view.  

The skeleton is the hard structural system that not only 
protects internal organs but also supports body locomotion. 
Damage to the human skeletal system can lead to serious 
problems including pain, reduced mobility, morbidity and may 
culminate into life threatening medical conditions. Bone is 
under a continuous process of development and renewal called 
remodelling.  

Thus, the skeleton undergoes changes continuously and 
never attains a  permanent state [1]. Loss of bone mass 
together with progressive architectural alterations in fact 
continues throughout life, while the rate of alteration 
increasing with age. The severe loss of bone and the 
spontaneous fracturing of the remaining bone characterize the 
condition called osteoporosis [2], a major disorder 
susceptibility to fracture characterized by low bone mineral 
density, deterioration of bone tissue, and consequently 
resulting in bone fragility. 

Bone plays an important role in the human body. Apart 
from providing mechanical integrity and protection, it is the 
major calcium of the body reservoir since over 99% of the 
total body calcium is stored in the skeleton. Prevention and 
reversal of bone loss require an in depth understanding of the 
remodeling process, namely bone resorption and formation 
including the action of hormones such as estrogen and 
parathyroid hormone (PTH).  

The Basic Multicellular Unit (BMU) in bone remodeling is 
a team of cells whose activity results in the local resorption 
and rebuilding of the bone tissues. It is a generally accepted 
concept of the Basic Multicellular Unit (BMU) that it is 
comprised of two cell types; osteoclasts and osteoblasts.   

 The dynamical system of the bone tissue can be explained 
by the levels of the osteoclastic cells, which resorp bone, and 
osteoblastic cells which refill the resorption cavities created 
by the osteoclastic cells.  

Osteoclasts, osteoblasts and their precursors are regulated 
by a number of systemic factors, including hormones like 
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parathyroid hormone, and sex hormones such as estrogens. It 
was shown that PTH stimulates osteoclasts formation. 
However, PTH affects osteoclasts only in an indirect way 
since PTH receptors are located on osteoblasts but are not 
discovered on the surface of osteoclasts.  

In 2003, Rattanakul et al. [3] proposed and analyzed a 
mathematical model of the bone remodeling process 
consisting of the following nonlinear differential equations. 
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where P is the level of the parathyroid hormone above the 
basal level at time t , C is the density of the active osteoclastic 
cells at time t , and B is the density of  the active osteoblastic 
cells at time t. The first term on the right of (1) is the rate of 
increase of PTH which is inhibited by the osteoclastic cells. 
The first term on the right of (2) is the rate of osteoclastic 
production which is initially stimulated by PTH at low levels 
of the hormone, but is eventually inhibited at higher levels of 
PTH, hence the square term in the denominator of this term. 
The first term on the right of (3) is the rate of osteoblastic 
production stimulated by PTH, while the second term here is 
the rate of osteoblastic cells which saturates at higher level of 
PTH. The last terms in all these three equations are the 
respective removal rates of the corresponding state variables. 
More detail of the derivation of the above model may be 
found in the work of Rattanakul et al. [3]. 

II. MODEL EXTENSION FOR ESTROGEN EFFECT 
In this work, we shall first illustrate how the nonlinearity of 

the model by Rattanakul and Lenbury et al. [3] can predict the 
efficacy of estrogen interrupted treatments which a linear 
model would not be able to simulate.  

Traditionally, estrogen has been used to supplement the 
reduced hormone production which could lead to osteoporosis 
[4]. It has been later discovered that prolonged use of estrogen 
could lead to the development of cancerous tumor [5]. In 
order to investigate the possibility of interrupted estrogen 
treatment to reduce the risk of cancer, the model is extended 
to incorporate estrogen level which is known to help curtail 
the loss of bone mass [4], by reducing the rate of production 
of osteoclastic cells. The extended model investigated in [3] 
consists of the following pulsatile system. 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Computer simulation of (4)-(6) with estrogen applied 
for 12 days every 28 days. 
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Fig. 1 shows a computer simulation of (4)-(6) with 
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which is the case in where estrogen is applied for 12 days (= 
11004 time steps in our simulation) every month (28 days = 
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25,676 time steps). We see that when estrogen is interrupted 
after 12 days, the density of osteoclasts increases back up to 
oscillate at a high level, while the density of osteoblasts drops 
to a low level signifying a low bone mass. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Computer simulation of (4)-(6) with estrogen applied 
for 22 days every 28 days. 
 

Figure 2 shows a computer simulation of (4)-(6) with 

 
 if 10,000 &  mod 25,676 20,174

otherwise




 


k t tcKC  

which is the case in where estrogen is applied for 22 days 
(=20174 time steps). We see that after estrogent treatment is 
interrupted at 22 days, the density of osteoclasts remains low, 
and that of osteoblasts remain high, signifying continued high 
bone mass.  

In both the above simulations, we use c1 = 0.1, c2 = 0.2, c3 = 
0.6, c4 = 0.1, c5 =0.05, d1 = 0.2, d2 = 0.3, d3 = 0.1, k1 = 0.1, k2 

= 1.5, k3 = 0.1, kc = 0.14,   = 0.5, and   = 0.6. Such 
numerical experiments clearly illustrate the versatility of 
nonlinear models in suggesting alternative therapy or drug 
protocols. The above experiments suggest that interrupted 
hormone supplements could be adopted, for certain patients, 

to reduce the risks of side effects. Of course, theoretical 
analyses are also needed to discover the ranges of physical 
values that would allow certain required effects to occur in 
such a complex nonlinear system.  

III. ANALYSIS OF IMPULSIVE SYSTEM 
In what follows, we take into consideration the clinical 

observation [6] – [7] that PTH has a very fast dynamics so that 

it equilibrates relatively quickly to the level where 0
dP

dt
, at 

which point 
1

1 1( )



c

P
d k C

            (7) 

We may also assume that the zero order stimulation of 
osteoclastic production in the absence of hormonal or 
osteoblastic stimulations is neglegible, so that a2 = 0. 

We next suggest an impulsive system to model the process 
subject to periodic PTH supplements and first investigate the 
bounded property of the model solutions in the next section. 
Then, the periodic behavior asymptotic stability of the system 
solutions at vanishing level of active osteoclastic cells density 
are investigated in Section 3. The conditions are then given in 
Section 4. under which the state variables remain bounded and 
non-vanishing and as such the system remains permanent. 
Supercritical periodic solutions are shown to exist under 
appropriate conditions on the system parameters. Numerical 
simulations are given in support of the theoretical predictions 
in the discussion and conclusion section. 

As reported by Prank et al. [7], [8] pulsatile hormone 
secretion is observed in almost every hormonal system. The 
frequency of episodic hormone release ranges from 
approximately 10 to 100 pulses in 24 hours. This temporal 
mode of secretion is an important feature of intercellular 
information transfer in addition to a dose-response dependent 
regulation. We thus incorporate the pulsatile hormone 
stimulus, such as that due periodic PTH supplements. This can 
result in an abrupt drop in C in proportion to its level at the 
moment, and an abrupt jump in B in the form of a constant 
increment. 

We now let 1 x C , 2 x B , for convenience. We also 
denote by 1( )f x  the positive decreasing function representing 
the effect of the level of 1 2on x x , which is taken to be the 
function  

      1
1

1 1 1
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in [3] according to (4). We are then led to the following 
impulsive model system. 
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where   
   1 1 1 2 2 2( ) ( ) ( ), (t) = ( ) ( )     x t x t x t x x t x t  

p is the fraction of osteoclasts inhibited by PTH supplements, 
0 1, p  and 0   is the increment in osteoblasts due to 
hormone supplements. The function 1( )f x  may be any non-
increasing function of 1x . From  (4) in our bone model [3] the 
function is taken to be 
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we need the following definition. 
 
Definition 1. We denote by  1 2( , )F F F  the map defined by 
the right hand side of the system  (8)-(9) and let 
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We assume that the solution of (5)-(8), denoted by ( )X t  = 
(x1(t),x2(t)) is continuous on ( , ( 1) ],  nT n T n Z  and 
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X t X nT  exists. Then the global existence and 

uniqueness of solutions to (8)–(11) is guaranteed by the 
smoothness properties of F. It is straight forward to prove the 
following result and thus it will be stated without proof. 
 
Lemma 1.  Suppose (x1(t), x2(t)) is a solution of (8) – (11) 
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So, v(t) is uniformly ultimately bounded. Hence, by the 
definition of v(t), there exists a constant   M > 0 such that  

, 1, 2.    ix M i  
for large t. 

IV. STABILITY AT VANISHING ACTIVE  OSTEOBLASTS  
Putting 1 0x , we have a reduced system  
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Assuming A > 0, a positive periodic solution of (10) – (11) is 
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Hence, the positive solution of  (10) – (12) is 
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V. PERMANENCE 
First, we give a definition of a permanent system. 
Definition 1. System (8)-(11) is said to be permanent if there 
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contradiction, if 1 3( ) x t m  for all positive t, then we may 
choose an 1 0  small enough such that 

1 2(1 ) exp ( ε ) 1.
 
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We observe, from (9) and (11), that 
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On the other hand, we compare with the system 
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and  
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Then, we see that, by the comparison theorem,  
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Hence, there is a 1 0T such that, for 1,t T  

1 2( ) ( ) ( )   z t z t x t . 
        = A(t)x1  

1for , t nT t T , and 

 1 1( ) (1 ) ( ),   x t p x t  

1for , . t nT t T Letting N Z  and 1NT T , and 
integrating over ( , ( 1) ], , nT n T n N  we obtain  
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= 1( )x nT  
Then, 
       1 1(( ) ) ( )  as     kx n k T x nT k  

which is a contradiction to the boundedness of 1x . Therefore, 
there is a > 0ct  such that 1 3( ) .cx t m  
Step 2. If  1 3( ) , ,   cx t m t t  then our job is done. Otherwise, 
there is a   ct t  such that 

1 3( ) . x t m  
Then, let  1 3* : ( ) .inf


 

ct t
t t x t m  There are two possible cases: 

Case 2.1: 1 1 +* T, some n Z  . t n  
Case 2.2: +* T, Z  .  t n n  
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1[ , *]t t t . 
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Then, choose 2 3,n n  such that 
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Let 2 3T n T n T   . We claim that there must be a 
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by (22). Then,  
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2for * *n T t t t T     . Therefore, as in Step 1., we have 
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From (5), for 0t  , we obtain 
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Integrating the above over  2[ *, * ],t t n T  we obtain 
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the same method by using t  instead of *t . Then, we shall 
have 1 1( )x t m  for *t t . 
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which is a contradiction. 
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The proof is complete. 

VI. SUSTAINED OSCILLATION 
It is now more convenient to exchange the state variables 

and consider instead the following system. 
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Thus, * 0 and * * 0C B C  , and, by Lakmeche and Arino 
[10], we are thus able to prove the following result. 
Theorem 3. The system (24)-(25) has a positive periodic 
solution which is supercritical provided (12), (17), (18), (26) 
hold and T > Tmin. 

VII. DISCUSSION AND CONCLUSION  
We have investigated the boundedness and permanence of 

the bone remodeling process under impulsive external 

interferences. We found that oscillatory behavior in the active 
osteoblastic cells density can still be observed provided the 
period and strength of the hormone supplementary impulses 
satisfy certain control conditions. 

Many researchers have proposed several improved and 
more sophisticated methodologies for the numerical solution 
of non-linear systems of differential equations (see for 
example [11]-[14]. For our purpose, we wrote our program 
using the six point Runge Kutta procedure which satisfactorily 
integrates our model systems under study. 

Fig. 3 shows a computer simulation of (8) – (11) where 
parameters have been chosen to satisfy these control 
requirements for the solutions to converge asymptotically to 
the oscillatory solution 2(0, ( ))x t as time progresses. Here, the 
period of PTH supplements is T = 2, while min 8.005T   so 
that minT T .The solution trajectory in the phase plane is seen 
in Fig. 3(a), while the corresponding time series of the active 
osteoblastic cell density is seen in Fig. 3(b) to be periodic 
even after the osteoclastic cell density has tended to zero. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

3a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3b) 
Fig. 3 Numerical simulation of Equations (8) – (11) showing 
the solution trajectory approaching the limit cycle as time 
progresses. Here, a1 := 0.05; a3 := 0.0675;   a4 := 0.009;   a5 := 
0.0045;   b1 := 0.1;   b2 := 0.03; b3 := 0.009;   k1 := 0.1;   k2 := 
0.5;   k3 := 0.025;    p := 0.9;  1 0x = 0.1,  2 0x = 0.135, T = 
200,   = 0.5, p = 0.9. (a) The solution trajectory in the phase-
plane. (b) The corresponding time series of the level the 
osteoblastic cells exhibiting positive oscillation. 
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Fig. 4 Computer simulation of the impulsive system (8) – 
(11) showing the solution trajectory approaching the limit 
cycle as time progresses. Here, a1 := 0.05;   a3 := 0.0675;   a4 
:= 0.009;   a5 := 0.0045;   b1 := 0.1;   b2 := 0.03; b3 := 0.009;   
k1 := 0.1;   k2 := 0.5;  k3 := 0.025;   p := 0.9;  1 0x = 0.1, 

 2 0x = 0.135, T = 200,   = 0.5, p = 0.9. 
 
Fig. 4 shows the sustained oscillations in both state 

variables in the case that the system is permanent, system 
parameters chosen to satisfy the conditions given in Theorem 
3. Here, the period of hormone supplements is T = 200 > 

min 8.005T  . The solution trajectory is seen in Fig. 4 to 
approach a stable limit cycle as time passes. The 
corresponding time series of both state variables in the case of 
positive sustained oscillations are shown in Fig. 5(a) and 5(b), 
for the same parameter values as in Fig. 4. 

Our analysis suggests a venue for control of the bone 
resorption and remodelling process by adjustment of the 

frequency 1
T

 of the treatments or the dosages, reflected by the 

values of p  and  , in order to obtain the desired outcome. 
Specifically, our analytical conclusions indicate that we may 
expect sustained oscillations in the level of osteoblastic cells 
even at the vanishing level of the active osteoclastic cells at a 
sufficiently low period of external hormone supplements. 

On the other hand, if the period of impulsive supplementary 
hormone application is kept at a convenient fixed level, then it 
is possible to adjust the strength of the dose p  so that minT , 
given by (19), renders the inequality (20) true, in which case 
the system is permanent. Both the active osteoclastic and 
osteoblastic cells remain positive. Moreover, if (26) also holds 
then oscillatory behavior resembling clinical data is the 
outcome. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5a) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     5b) 
 
Fig. 5 Computer simulation of the impulsive system (8) – 
(11) showing the sustained oscillations in the time series of 
the levels of osteoclastic cells and osteoblastic cells in 5(a) 
and 5(b), respectively, corresponding to the case seen in Fig. 
4. 

Thus, we  see that it is possible to control the system’s 
dynamic behavior by fine tuning the period T of the impulsive 
inputs, or the impulse strength p or  . According to Prank et 

al. [7], recent evidence links osteoporosis, a disease 
characterized by loss of bone mass and structure, to changes 
in the dynamics of pulsatile parathyroid (PTH) secretion.  

Our investigation is therefore expected to contribute to the 
better understanding of the different dynamic behavior which 
could be expected in the system under investigation, as well as 
assist in the decision making process on the choice of 
treatment protocols for its management and control. 
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