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Numerical study of the fluid flow and interface
deflection for crystals grown by Bridgman technique

Simina Maris and Liliana Braescu

Abstract—A stationary, free boundary model describing the In this paper, the dependence of fluid flow and interface
process of crystal growth in a vertical Bridgman installation deflection on the temperature profile are investigated numer-
is considered. For this model, the influence of the temperature ically in a vertical Bridgman furnace, for various values of
profile in the furnace and gravitational field on the fluid flow th itati | field. Th ical T lati based
and interface deflection, are investigated numerically by finite e grav_l ationa . ield. The numerica S'ml_J alions, based on a
element method through FreeFem++ software. fixed-point algorithm, were performed using the FreeFem++

Index Terms—Free boundary problem, Stationary problem, software.

Temperature profile, Interface deflection, Vertical Bridgman,
Gravitational field, Numerical simulation

Il. MATHEMATICAL FORMULATION

Let us consider the stationary, free boundary model pro-
posed in [3]. Because the crucible presents axial symmetry,
the three-dimensional problem could be reduced to a two-

The Bridgman technique is a popular method of growindimensional one. Denoting b§; the domain occupied by
single crystals from compound materials that contain a volatiteelt, €2, the domain occupied by crystal and the solidification
element. This is the case of the entire group Ill-V and Il-Vinterface by a functiork(r), we have [9]:
semiconductor crystals. The method consists in movement of a _ 2
crucible (ampoule), charged with powder and a seed, through s = {(T’ D) ERTO<r<Rand0<z< h(r)}
a temperature gradient. The ampoule is introduced in the hot §; = {(T, z) eR?|0<r < Rand h(r) <z < A}
region of the furnace until the powder is melted, and then it A
is pulled with a rateiis, qnsiation, SUCh that it enters into the h(R) = B
cold region and the solidification process begins [1].

The factors that influence the quality of the resulting crysta

I. INTRODUCTION

schematic representation of the computational domains is
ven in Figure 1, whered = 1 represents the dimensionless

are. length of the ampouleR = 0.25 is the dimensionless radius
- the temperature gradient in the furnace; of the ampoule and,,, is the length of the gradient zone.
- the gravitational field;
- the properties of the material (e.g., specific heat, density, i
kinematic viscosity, thermal expansion coefficient, solid- & g O

ification temperature, initial dopant concentration);
- the ampoules velocity of translation in the furnace; :
- the shape of solid-melt interface. E

In the case of alloys for which equilibrium segregation
coefficient of the dopant is less than unity, a serious problem
is the amount of dopant rejected at the solid-melt interface.
This quantity depends on the velocity field in melt and on the
shape of solidification interface. Both these parameters depend
on the value of the gravitational field and on the temperature
profile inside the furnace. ,

In literature, there are several numerical investigations of the e
solidification process in vertical Bridgman installations ([2]- ’
[11]).
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The dimensionlss equations governing the process are For investigating numerically the fluid flow and the shape of

Vi=0inQ the fluid-melt interface, different values &f, (from L, = £ A

: to L, = A) are considered, in the case of zero gravity, micro-

V)i = —Vp+ PrAd+ RaProkin Q gravity, respectively normal gravity conditions.

@v)u p B aud Ra Frokan S The free boundary is obtained from a fixed-point algorithm,
uVe = A in (1) presented in [10]. It takes as input datd” (r) = 5
B . a O (r, 2) = gy, 0O (r, 2) = 7, 0 (r, 2) = 7., and computes
Ye ;H_Pe kA”; 2 q h(r), a(r, 2), 0(r, z), 0c(r, 2), as follows:
Ue c =7 c 1 dig

1) solve the heat equation with the boundary condition (11);
where u represents the dimensionless velocity of the melt; 2) find the isotherm corresponding to (10);

u. - the dimensionless velocity of the crystdl; - the di-  3) construct a domain deformation in order to overlap the
mensionless temperature of the mélt; - the dlmensmnless bounday to the isotherm found at the previous step;
temperature of the crystaliza (thermal Rayleigh number) 4) solve the Navier-Stokes equation on the deformed do-
defines the gravitational fieldReg = 0 for zero gravity, main;

Ra = 10° for micro-gravity, Ra = 10° for normal gravity);  5) repeat steps 1-4 until both variations of temperature field

Pr = 0.01 (Prandtl number) represents the dimensionless and velocity field become less than a sufficiently small
kinematic viscosity;Pe = 0.01 (Peclet number) represents value,e.

the dimensionless translation velocity of the ampoule inside

the furnace;y = 1 is the ratio of solid and melt thermal .
A. Case of zero gravity

diffusivities.
The boundary conditions are: The zero gravity conditionsHa = 0) imply that the
B B body forces in the Navier-Stokes equation are zero. As a
Ul vy = Tt (@) consequence, the temperature profile in the furnace does not
i =4 3) Iinfluence the velocity field in the melt. The streamlines of the
C|F1,F2 tr ( ) . . . .
o computed velocity field and temperature profile for different
-t = Pe-t, (4)  values ofL, in absence of gravity are plotted in Figs. 2-7.
o(@-n)|lr, = Pe-n, (5)
90|F1 = O (6) Velocity field . Temperature
P R [é é+ﬁ}
Ly 2L, ’ 272 2 not
9|F2 = _ 7 (7N
A L - o 164063 | 3l
1 j— -9 W0.000179688
AR
0 7Z<é_£ Bo.00030m008
2 2 not o
96|F2 - _ Tc
LoylazA (4 LAl =
Ly 2L, ’ 2 272
®)
O, =1 9) ’ .
Olr, =0.|r, =0.5 (10)
(nVO) — k (V)] =S Pen, (11)
whereu,,, = —0.01e, is the dimensionless velocity of trans-
lation of ampoule.
[11. NUMERICAL STUDY OF THE FLUID FLOW AND
INTERFACE DEFLECTION
The numerical simulations were performed using
FreeFem++, software developped at Universite Pierre et .

Marie Curie, Paris [12], dedicated to solve nonlinear
two-dimensional and three-dimensional partial differential
equations, using the finite element method. Fig. 2. Streamlines and temperature profile fay = 0.125, Ra = 0.
As one can observe from equations (7)-(8), the temperature
profile in the furnace is considered a linear function sn  Figures show that the velocity fields present no convection
coordinate and depends by the length of the gradient zZione, cell, the movement of the melt being only determined by the
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Fig. 3. Streamlines and temperature profile foy = 0.250, Ra = 0.
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Fig. 4. Streamlines and temperature profile fay = 0.375, Ra = 0.
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Fig. 5. Streamlines and temperature profile foy = 0.500, Ra = 0.
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Fig. 6. Streamlines and temperature profile fay = 0.750, Ra = 0.
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Fig. 8. The solidification interface corresponding to different values nf
for Ra =0
5 :
Fig. 7. Streamlines and temperature profile foy = 1.000, Ra = 0.
TABLE | .
MAXIMUM VALUE OF THE STREAMLINES OF THE FLUID FLOW FOR ‘ A

Velocity field Temperature

DIFFERENT Lg

Ly Prpaz fOr Ra =0
0.125 | 0.000304688
0.250 | 0.000304688 B onozoioze
0.375 | 0.000304688 M0 00075725
0.500 | 0.000304688
0.750 | 0.000304688
1.000 | 0.000304688

0,00 5
M0.000345956

pulling rate, u,-. Also, the amplitude of the velocity field,
D,..., does not depend on the length of the gradient zone to
(see Table I).
The deflection of the interface in zero gravity for the
considered., is presented in Figure 8. This figure shows that
variations of L, in the range[0.125, 1] produce small varia-
tions on the melt-solid interface. The solidification interface is
a slight-convex shape and, fdr, = 1, it tends to be flatten.

B. Case of micro-gravity

In micro-gravity conditions Ra = 103), the non-zero
body forces in the Navier-Stokes equation determine a weak
convection. Below, the computed streamlines in the melt and
temperature inside the furnace obtained for different values of
Lg in micro-gravity conditions are presented. Fig. 9. Streamlines and temperature profile foy = 0.125, Ra = 10°.

Figures 9-14 show that, in micro-gravity conditions, the
velocity fields present a weak convection cell. Also, if the
gradient zone increases froinl25 to 1, then the streamlines
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Fig. 10. Streamlines and temperature profile for = 0.250, Ra = 103.

Velodity field

000195313
M0.000210938
M0.000226563
M0.000242188
M0.000257813
M0.000273438
M0.000289063
M0.000304688

Temperature

(1}

Fig. 11. Streamlines and temperature profile fgr = 0.375, Ra = 103.
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Fig. 12. Streamlines and temperature profile for = 0.500, Ra = 103.
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Fig. 13. Streamlines and temperature profile fgr = 0.750, Ra = 103.
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Fig. 15. The solidification interface corresponding to different values pf
for Ra = 103
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Fig. 14. Streamlines and temperature profile fgr = 1.000, Ra = 103.
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TABLE II W0.152813
MAXIMUM VALUE OF THE STREAMLINES OF THE FLUID FLOW FOR
DIFFERENT Lg

Ly @00 for Ra = 103
0.125 | 0.000345956
0.250 | 0.000320315
0.375 | 0.000304688
0.500 | 0.000304688
0.750 | 0.000304688
1.000 | 0.000304688

of the fluid flow have a maximum situated above the gradient
zone. These maxima decreaselgsincreases (see Table II).

The deflection of the interface for the consideted (see
Figure 15) shows that variations &f, in the rang€0.125, 1]
produce small variations on the melt-solid interface, which
preserve a slight-convex shape.llf = 1, then the interface - .
shape tends to be flatten.

C. Case of normal gra\/ity Fig. 16. Streamlines and temperature profile fgr = 0.125, Ra = 10°.
. » _ 1n6
_ In normf_zll gravity cond|t|(_)ns}€a = 1Q ), the body forces_ TABLE Il
in the Navier-Stokes equation determine a strong convection. MAXiMUM VALUE OF THE STREAMLINES OF THE FLUID FLOW FOR
This alters both the shape of the velocity and temperature DIFFERENT L
fields. The computed streamlines and temperature profiles,
. . . — 6
obtained for different values of the gradient zone length, Ly | ®mag for Ra =10
ted in Figs. 16-21 | s
are presente gs. : _ _ -~ 0.250 | 0.140295
Computations show that, in terrestrial gravity conditions, 0.375| 0.123135
the velocity fields present a strong convection cell, which has 0.500 | 0.103699
; : ; ; 0.750 | 0.0571388
a maximum situated above the gradient zone. These maxima 10001 0.000304688

decrease ag, increases (see Table IlI).
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Fig. 17. Streamlines and temperature profile for = 0.250, Ra = 108.
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Fig. 18. Streamlines and temperature profile fgr = 0.375, Ra = 105.
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Fig. 20. Streamlines and temperature profile fgr = 0.750, Ra = 10°.
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IV. CONCLUSIONS

In this paper, the influence of the temperature profile in a
vertical Bridgman instalation on the fluid flow and interface
deflection was studied. For all considered gravity conditions,
it can be observed that the streamline amplitude decreases
and the shape of the solidification interface tends to be flatten
as the length of the gradient zone in the furnace increases
to 1. Also, for a given length of the gradient zong,,
stronger gravitational forces tend to increase the amplitude
of the streamlines and to flatten the isotherms in the melt. For
L, =1, the gravitational field has no influence on the velocity
field in the melt nor the temperature profile (and melt-solid

(1]
(2]

(3]

(4]

(5]

Fig. 21. Streamlines and temperature profile fgr = 1.000, Ra = 10°.

The deflection of the interface for the considerkg is [6]
presented in Figure 22. This figure shows that variations of
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Fig. 22. The solidification interface corresponding to different values pf

L, in the rang€0.125, 0.500] produce small variations on the
melt-solid interface, but deflection of the interface is quit large.
If L, increases td, then the interface deflection decreases.
Also, the shape of the interface changes from "S”"-shape to
slight-convex shape wheh, increases and, fof, = 1, the
interface shape tends to be flatten.

Issue 1, Volume 5, 2011 149

interface) in the ampoule.
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