Fuzzy multicriteria decision making method applied to selection of the best touristic destinations

Olimpia I. Ban

Abstract—We adapt a recent method in fuzzy multicriteria decision making to find the best tourist destinations from the point of view of the possible future customers. We obtain a hierarchy of the destinations, so that the travel agency has the possibility to virtually contract the most desired destinations. The theoretical development is completed by a real numerical example. The list of attributes considered the most important are obtained using a focus group and the levels of importance of different attributes after applying a questionnaire in a sample of 400 individuals from the target group.

Keywords—fuzzy number, multicriteria decision making, tourist destinations, travel agent

I. INTRODUCTION

FUZZY mathematics is often applied to objectively reflect the ambiguity in human judgement, to represent uncertain and incomplete information, to incorporate unquantifiable and partial facts in decision making, linguistic controllers, biotechnological systems, expert systems, data mining, pattern recognition, etc. (see, e.g., [1]-[7]). Fuzzy set theory seems to be a suitable tool in the evaluation of services quality especially ([8]-[16], etc.). The fuzzy numbers were already used for evaluating tourist service quality with very fine results in [17] and [18]. The fuzzy multicriteria decision making method elaborated in [19] was adapted in [20] to hierarchy the available tourist destinations/locations of a tourist agency from the customer’s perspective. Proposed method in the present paper is based on the mathematical development in [19] too, and its aim is to offer the possibility of a travel agency to buy the best destinations for its customers, taking into account the relative importance of each destination attribute given by every customer. The attributes are assessed by using semantic differentials. The major advantage of modeling by fuzzy numbers is the capacity to consider the performance of attributes and the weights of importance of attributes in a more natural way.

On the other hand, the tourist market is a very dynamic one, requiring a difficult symbiosis between the classical values and the modern ones. The perennial classical values that have to characterise a tourist offer are the correct relation quality-price, comfort and safety. The modern values are given by freedom, diversity and the possibility of choice: of the type of accommodation, the component of the menu, the structure of the programme.

The tourist market is extremely segmented, with firm, precise and specific needs. The condition to satisfy the needs of different segments of consumers is the mediation of the encounter between the demand and supply, by knowing the needs, of the demand wishes and the configuration of the offer in accordance to it.

The ranking of destinations in accordance with certain attributes, appropriately chosen from the perspective of the target market, presents utility for the tourism intermediaries. The suppliers of tourist services follow a good specialization on the segments of consumers. The tourism intermediaries annually conceive their offer in accordance with the experience of the previous years but also in accordance with the needs manifested on the market and noticed in the research performed.

In this paper we suggest a method meant to help the travel agencies to contract the most suitable locations from the potential client’s perspective.

Echtner and Ritchie [21] have done an excellent inventory of the most used assessment attributes of a destination, analysing 14 studies. They obtained 34 attributes, to which we add a number of 12 extracted Jenkins [22] from 6 international studies investigating the image.

We intentionally use the focus group method to discover whether the attributes resulted after the discussions correspond to those provided by the speciality literature. For the importance given to attributes is different according to the target public considered, a questionnaire which should clarify this aspect must be applied. Taking into account the importance of attributes and the extent to which these are satisfied for each destination, we can obtain a value synthesising the quality of the destination from the potential client’s perspective.

Organizing the values found, we obtain a hierarchy of tourist destinations had in view in order to be contracted. The instruments used to process the data and to obtain as accurate as possible results belong to fuzzy mathematics.
II. Fuzzy Numbers

A. Triangular Fuzzy Numbers

A fuzzy set μ on the universe of discourse U is described by a mapping $\mu : U \rightarrow [0,1]$, where $\mu(x)$ is the membership degree of x.

A triangular fuzzy number is a fuzzy set on the real line \mathbb{R} with the membership function given by

$$
\mu(x) = \begin{cases}
\frac{x-a}{b-a}, & \text{if } a \leq x \leq b \\
\frac{c-x}{c-b}, & \text{if } b \leq x \leq c \\
0, & \text{otherwise}
\end{cases} \quad (1)
$$

where $a, b, c \in \mathbb{R}, a < b < c$ (see Fig. 1). We denote by (a, b, c) a triangular fuzzy number. The parameter b gives the most possible value of the evaluated data and a, c are the lower and upper bounds of the available area for the evaluated data.

If $a = b$ or $b = c$ then, by convention, (a, b, c) denotes the triangular fuzzy numbers in Fig. 2, respectively. Any real number a can be represented as the triangular fuzzy number (a, a, a).

![Fig. 1 Triangular fuzzy number (a, b, c)](image1)

![Fig. 2 Triangular fuzzy numbers (a, a, c) and (a, c, c)](image2)

B. Fuzzy Numbers

A fuzzy number is a fuzzy set on the real line \mathbb{R} with the membership function given by (see e.g., [23])

$$
u(x) = \begin{cases}
0, & \text{if } a_1 > x \\
f(x), & \text{if } a_1 \leq x < a_2 \\
1, & \text{if } a_2 \leq x \leq a_3 \\
g(x), & \text{if } a_3 < x \leq a_4 \\
0, & \text{if } x > a_4
\end{cases} \quad (2)
$$

where $a_1, a_2, a_3, a_4 \in \mathbb{R}, f$ is a nondecreasing function and g is a nonincreasing function.

An useful tool for dealing with fuzzy numbers are the level sets. The α-level set u_α of a fuzzy number u is the set

$$\{x \in \mathbb{R} : \mu(x) \geq \alpha\},$$

if $\alpha \in (0,1]$ and

$$u_0 = \{x \in \mathbb{R} : \mu(x) > 0\},$$

where $-$ denotes the closure operator. In fact,

$$u_\alpha = [u_l(\alpha), u_r(\alpha)] = [f^{-1}(\alpha), g^{-1}(\alpha)],$$

where

$$f^{-1}(\alpha) = \inf\{x : u(x) \geq \alpha\},$$

$$g^{-1}(\alpha) = \sup\{x : u(x) \geq \alpha\},$$

for every $\alpha \in (0,1]$. If $u = (a, b, c)$ is a triangular fuzzy number then

$$u_\alpha = a + (b-a)\alpha$$

and

$$u_\alpha = c + (b-c)\alpha,$$

for every $\alpha \in [0,1]$. Given fuzzy numbers u and v such that $u_0, v_0 \subset (0, +\infty)$ and $\lambda \in (0, +\infty)$ the main operations of u and v can be expressed as follows (see [24])

$$
(u \oplus v)_\alpha = [u_l(\alpha), v_l(\alpha), u_R(\alpha), v_R(\alpha)],
\quad (u \otimes v)_\alpha = [u_\alpha(\lambda), v_\alpha(\lambda), u_R(\alpha), v_R(\alpha)],
\quad (\lambda \cdot u)_\alpha = [\lambda \cdot u_l(\alpha), \lambda \cdot u_R(\alpha)].
$$

For example, if u and v are triangular fuzzy numbers,

$$u = (a_1, b_1, c_1), \quad v = (a_2, b_2, c_2), \quad a_1 > 0, a_2 > 0$$

and $\lambda > 0$ then

$$(u \oplus v)_\alpha = a_2 + a_1 + b_2 + b_1 - a_1 - b_2 \alpha,$$

$$(u \otimes v)_\alpha = c_2 + c_1 + b_2 + b_1 - c_1 - c_2 \alpha,$$

that is

$$(a_1, b_1, c_1) \oplus (a_2, b_2, c_2) = (a_1 + a_2, b_1 + b_2, c_1 + c_2).$$

In an obvious way we get

$$(u \otimes v)_\alpha = a_2 + a_1 + b_2 + b_1 - a_1 - a_2 \lambda,$$

$$(u \otimes v)_\alpha = c_2 + c_1 + b_2 + b_1 - c_1 - c_2 \lambda,$$

and

$$\lambda \cdot (u \alpha) = \lambda a_1 + (\lambda b_1 - \lambda a_1) \alpha,$$

$$\lambda \cdot (u \alpha) = \lambda c_1 + (\lambda b_1 - \lambda c_1) \alpha,$$

that is

$$\lambda \cdot (a_1, b_1, c_1) = (\lambda a_1, \lambda b_1, \lambda c_1).$$

C. Expected Value, Correlation Coefficient and Rankings of Fuzzy Numbers

To capture the relevant information, to simplify the task of representing and handling of fuzzy numbers, different parameters associated with fuzzy numbers were introduced.

The expected value M of a fuzzy number u was defined in [25] and [26] as follows:

$$M(u) = \frac{1}{2} (M_L(u) + M_R(u)), \quad (3)$$

where

$$M_L(u) = a_2 - \int_{a_1}^{a_2} f(x)dx$$

and

$$M_R(u) = b_1 - \int_{a_1}^{a_2} g(x)dx.$$
and
\[M_R(u) = a_3 + \int_{a_2}^{a_4} g(x)dx. \]

The expected value of a triangular fuzzy number \((a, b, c)\) (see Fig. 1) becomes
\[M((a, b, c)) = \frac{a + 2b + c}{4}. \]

The correlation coefficient between two fuzzy numbers \(u\) and \(v\) was introduced in [27] by
\[\rho(u, v) = \frac{M_u(u)M_v(v) + M_u(u)M_v(v)}{\sqrt{M_u^2(u) + M_v^2(v)M_u^2(v) + M_u^2(v)}}. \]

If \(u = (a_1, b_1, c_1)\) and \(v = (a_2, b_2, c_2)\) are two triangular fuzzy numbers then
\[\rho(u, v) = \frac{(a_1 + b_1)(a_2 + b_2) + (b_1 + c_1)(b_2 + c_2)}{(a_1 + b_1)^2 + (a_2 + b_2)^2 + (b_1 + c_1)^2 + (b_2 + c_2)^2}. \]

Many fuzzy number ranking methods have been proposed. A theoretical approach can be found in [28]. Due to its simplicity, the following procedure of ranking is often used:
\[u \leq v \quad \text{if and only if} \quad M(u) \leq M(v). \]

In the case of triangular fuzzy numbers,
\[(a_1, b_1, c_1) \leq (a_2, b_2, c_2) \quad \text{if and only if} \quad a_1 - a_2 + 2(b_1 - b_2) + c_1 - c_2 \leq 0. \]

III. Fuzzy Multiple Criteria Decision Making

A. General Problem

The aim of a multicriteria decision making method is to hierarchize some alternatives \(A_1, ..., A_m\) taking into account the opinions of decision makers with respect to a set of criteria and weights of these criteria. In the case of data expressed by linguistic values, or, equivalently, by fuzzy sets we must elaborate fuzzy multicriteria decision making methods.

Let us assume that \(k\) decision makers \(D_1, ..., D_k\) evaluate alternatives \(A_1, ..., A_m\) under \(n\) criteria \(C_1, ..., C_n\). The criteria can be classified to be subjective \((C_1, ..., C_h)\) and objective \((C_{h+1}, ..., C_n)\), where \(1 \leq h \leq n\). Objective criteria are benefit criteria \((C_{h+1}, ..., C_n)\) and cost criteria \((C_1, ..., C_h)\), where \(h + 1 \leq l \leq n\).

Let
\[r_{ij} = (e_{ij}, f_{ij}, g_{ij}), i \in \{1, ..., m\}, j \in \{1, ..., h\}, t \in \{1, ..., k\}, l \in \{l + 1, ..., n\} \]
be the triangular fuzzy number which represents the linguistic value assigned by decision maker \(D_t\) to criterion \(C_l\) of alternative \(A_i\), \(i \in \{1, ..., m\}\), \(j \in \{h + 1, ..., n\}\) the performance of alternative \(A_i\) with respect to objective criterion \(C_j\), \(j \in \{h + 1, ..., n\}\) and \(w_t = (o_{tj}, p_{tj}, q_{tj})\), \(j \in \{1, ..., n\}, t \in \{1, ..., k\}\) the triangular fuzzy number which represents the weight assigned by decision maker \(D_t\) to criterion \(C_j\), \(j \in \{1, ..., n\}\), expressed by a linguistic value. The characteristics “the larger the better” and “the smaller the better” are valid for benefit criteria and cost criteria respectively. Because the objective criteria may have different units they must be normalized into a comparable scale.

B. Chu and Lin’s method

A procedure to solve a problem as above was elaborated in [Chu]. It uses the arithmetic mean to aggregate triangular fuzzy numbers and the expected value in the final fuzzy evaluation process to rank the triangular fuzzy numbers corresponding to alternatives \(A_1, ..., A_m\).

The averaged rating of \(A_i, i \in \{1, ..., m\}\) under subjective criteria \(C_j, j \in \{1, ..., h\}\) is calculated by
\[r_{ij} = (e_{ij}, f_{ij}, g_{ij}) = \left(\frac{1}{k} \sum_{t=1}^{k} e_{ijt}, \frac{1}{k} \sum_{t=1}^{k} f_{ijt}, \frac{1}{k} \sum_{t=1}^{k} g_{ijt} \right). \]

The triangular fuzzy number \(r_{ij}, i \in \{1, ..., m\}, j \in \{h + 1, ..., l\}\) corresponding to the benefit type objective criterion \(C_j, j \in \{h + 1, ..., l\}\) is obtained by normalizing the performance
\[x_{ij} = (a_{ij}, b_{ij}, c_{ij}), i \in \{1, ..., m\}, j \in \{h + 1, ..., l\}, \]
by the triangle fuzzy number \(r_{ij}, \forall i \in \{1, ..., m\}, j \in \{l + 1, ..., n\}\) corresponding to the cost type objective criterion \(C_j, j \in \{l + 1, ..., n\}\) is obtained by normalizing the performance
\[x_{ij} = (a_{ij}, b_{ij}, c_{ij}), i \in \{1, ..., m\}, j \in \{l + 1, ..., n\}, \]
through normalization, using the formula
\[r_{ij} = (e_{ij}, f_{ij}, g_{ij}) = \left(\frac{c_{ij} - c_{ij}}{d_{ij}}, \frac{b_{ij} - a_{ij}}{d_{ij}}, \frac{c_{ij} - a_{ij}}{d_{ij}} \right), \]

where
\[a_{ij} = \min_{i \in \{1, ..., m\}} a_{ij}, \]
\[c_{ij} = \max_{i \in \{1, ..., m\}} c_{ij}, \]
\[d_{ij} = c_{ij} - a_{ij}. \]

The averaged weight of \(C_j\) assessed by decision makers is given by
\[w_j = (o_{j}, p_{j}, q_{j}) = \left(\frac{1}{k} \sum_{t=1}^{k} o_{jt}, \frac{1}{k} \sum_{t=1}^{k} p_{jt}, \frac{1}{k} \sum_{t=1}^{k} q_{jt} \right). \]

The aggregation of weighted ratings, denoted by \(G_i\), is calculated as
\[G_i = \frac{1}{n} \cdot (r_{i1} \otimes w_1 + ... + r_{in} \otimes w_n), \]
that is, the final fuzzy evaluation value of alternative \(A_i \) is given by fuzzy number \(G_i \), \(i \in \{1, ..., m\} \), where

\[
(G_i)_c(\alpha) = \frac{1}{n} \sum_{j=1}^{n} e_{ij} \alpha_j + \frac{1}{n} \sum_{j=1}^{n} (\frac{1}{n} \sum_{i=1}^{n} g_{ij} q_j \alpha_j)
\]

\[
+ \frac{1}{n} \sum_{j=1}^{n} (f_{ij} - e_{ij})(p_j - o_j) \alpha_j^2
\]

For each of the \(m \) alternatives \(A_1, ..., A_m \), the final fuzzy evaluation value, that is the fuzzy number \(G_i \) is defuzzified according with the expected value (see (3)). In other words, the following value is calculated (see [19])

\[
M(G_i) = Y_i + U_i + R_i,
\]

where,

\[
Y_i = \frac{1}{n} \sum_{j=1}^{n} f_{ij} p_j
\]

\[
U_i = \frac{6I_{i1} I_{i1}(Y_i - Q_i) - 2[f_i^2 + 4I_{i1}(Y_i - Q_i)]^3 + J_i^3}{24I_{i1}^2}
\]

\[
R_i = \frac{-6I_{i2} I_{i2}(Z_i - Y_i) + 2[f_i^2 + 4I_{i2}(Y_i - Z_i)]^3 - J_i^3}{24I_{i2}^2}
\]

\[
I_{i1} = \frac{1}{n} \sum_{j=1}^{n} (f_{ij} - e_{ij})(p_j - o_j)
\]

\[
I_{i2} = \frac{1}{n} \sum_{j=1}^{n} (f_{ij} - g_{ij})(p_j - q_j)
\]

\[
J_{i1} = \frac{1}{n} \sum_{j=1}^{n} [e_{ij}(p_j - o_j) + o_j(f_{ij} - e_{ij})]
\]

\[
J_{i2} = \frac{1}{n} \sum_{j=1}^{n} [g_{ij}(p_j - q_j) + q_j(f_{ij} - g_{ij})]
\]

\[
Q_i = \frac{1}{n} \sum_{j=1}^{n} e_{ij} q_j,
\]

\[
Z_i = \frac{1}{n} \sum_{j=1}^{n} g_{ij} q_j.
\]

According to the ranking procedure (6), the descending order of the numbers \(M(G_i), ..., M(G_m) \) give us the order of alternatives \(A_1, ..., A_m \), that is if \(M(G_i) > M(G_j) \) then alternative \(A_i \) is preferred to alternative \(A_j \).

IV. APPLICATION TO THE CONTRACTING THE MOST SUITABLE TOURIST DESTINATIONS

A. Linguistic Terms

In the present paper, as in [29] two sets of linguistic terms \{not important (NI), somewhat important (SI), important (I),\ very important (VI), extremely important (EI)} and \{very poor (VP), poor (P), fair (F), good (G), very good (VG}\ are used for assessing attribute weights and performance ratings, respectively. Of course, finer linguistic scales lead to more exact results, but the application of questionnaires may become difficult.

Let us assume that each linguistic term is characterized by a triangular fuzzy number defined in Table I and represented in Fig. 3.

Table I: Triangular fuzzy numbers associated to linguistic variables

<table>
<thead>
<tr>
<th>Linguistic Term</th>
<th>Fuzzy Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI/VP</td>
<td>(0.0,0.3)</td>
</tr>
<tr>
<td>SI/P</td>
<td>(0.1,0.3,0.5)</td>
</tr>
<tr>
<td>I/F</td>
<td>(0.3,0.5,0.7)</td>
</tr>
<tr>
<td>VI/G</td>
<td>(0.5,0.7,0.9)</td>
</tr>
<tr>
<td>EI/VG</td>
<td>(0.7,1,1)</td>
</tr>
</tbody>
</table>

Fig. 3 Triangular fuzzy numbers associated to linguistic variables
B. Determining the Attributes Using the Focus-Group Method

The methods and techniques generating the attributes characterizing the tourist destination are divided into: structured and unstructured, those structured being predominant. Echtner and Ritchie [21] made a synthesis of the methods and techniques used to generate the attributes as they are found in the specialty literature. The structured methods are predominant.

In our research we used a combination of structured and unstructured methods. We organized a focus group in April 2010 among the young people of 18-25 years old. The purpose of the focus group was to identify some criteria, attributes which are the basis of choosing a tourist destination at the seaside. The attributes resulted were compared with those provided by the specialty literature [21], [22]. Subsequently, we made a survey through questionnaire by choosing only 14 attributes, a questionnaire which was applied to 400 individuals in this age category.

On the other side, the social-professional category of the target group hallmarks the attributes characterizing the destination. Synthesizing the attributes provided by Echtner and Ritchie [21] there is no attribute resulted from the focus group organized by us, that is: the type of consumers attending the destination (let it be a destination for young people). This attribute could come undone from the combination of 2 attributes given by Echtner and Ritchie [21] and that is "Fame/Reputation" and "Family or Adult Oriented". Within the focus group, there has been the opinion that the destination must have the reputation of being attended by young people. Such destinations are Costineşti (Romania) or Ibiza (Spain). Also, certain generic attributes of the accommodation type require an itemization of the type: comfort, flexibility, closeness to the beach.

The attributes resulting from the study, C₄ - C₁₄, are presented in Table 2. Of these, C₄ - C₉ are subjective criteria, C₁₀ - C₁₃ are objective criteria of benefit type, and C₁₄ is an objective criterion of cost type.

C. The calculus of the levels of importance of the attributes

The attributes selected will be re-evaluated in order to determine the importance given from the perspective of the target market.

The question is whether the attributes characterizing a destination are different in according to the type of tourist destination and/or the category of respondents. For the first part of the question the answer is given by Y. Hu and J.R.B. Ritchie [30] who show that two models stood out. The first model suggests that certain attributes have a universal importance in choosing a destination, such as: scenery, price and climate. The second model indicates the fact that 2 or 3 attributes are general but there are others specific to the destination.

We believe that there is a set of generally available attributes for any tourist destination, to which we add attributes specific to the type of destination: seaside, mountain, cultural, balneary. The set of attributes, general and specific, are given importance according to each consumer, according to its psychological-social-demographic characteristics. The experience is another factor influencing the importance given to attributes. It can change the individual hierarchy of the attributes, the percentage in general. We assume that each of the k persons considered D₁,...,Dₖ, answers a questionnaire made to find out the importance of the given criterion Cⱼ, j ∈ {1,...,n}. The answers will be considered, obtaining thus the triangular fuzzy numbers wⱼ = (oⱼ, pⱼ, qⱼ), j ∈ {1,...,n}, t ∈ {1,...,k}. The weight assigned by the group of decision makers {D₁,...,Dₖ} to criterion Cⱼ, j ∈ {1,...,n}, is calculated as the arithmetic mean of the individual answers, that is

\[wⱼ = \left(\frac{1}{k} \sum_{t=1}^{k} oⱼ t, \frac{1}{k} \sum_{t=1}^{k} pⱼ t, \frac{1}{k} \sum_{t=1}^{k} qⱼ t \right), \]

In this paper we consider the linguistic scale {NI, SI, I, VI, EI} in Table I and the answers obtained after applying a questionnaire to 400 persons. The application of formula (20) leads to the results in Table II.

Table II: Attributes and weights as triangular fuzzy numbers

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁ (kind of consumers)</td>
<td>(0.36775, 0.56875, 0.74800)</td>
</tr>
<tr>
<td>C₂ (accommodation flexibility)</td>
<td>(0.40125, 0.60575, 0.78175)</td>
</tr>
<tr>
<td>C₃ (rich and diverse cuisine)</td>
<td>(0.50375, 0.73200, 0.87175)</td>
</tr>
<tr>
<td>C₄ (nightlife and entertainment)</td>
<td>(0.47125, 0.69750, 0.83675)</td>
</tr>
<tr>
<td>C₅ (sports facilities/activities)</td>
<td>(0.38575, 0.59050, 0.76000)</td>
</tr>
<tr>
<td>C₆ (shopping facilities)</td>
<td>(0.40225, 0.60575, 0.77400)</td>
</tr>
<tr>
<td>C₇ (crowdedness)</td>
<td>(0.34900, 0.54175, 0.72625)</td>
</tr>
<tr>
<td>C₈ (local infrastructure/transportation)</td>
<td>(0.40175, 0.60725, 0.77450)</td>
</tr>
<tr>
<td>C₉ (beaches and sea water)</td>
<td>(0.61775, 0.88675, 0.94800)</td>
</tr>
<tr>
<td>C₁₀ (comfortable accommodation)</td>
<td>(0.41725, 0.62875, 0.79675)</td>
</tr>
<tr>
<td>C₁₁ (sea proximity)</td>
<td>(0.48050, 0.70675, 0.84675)</td>
</tr>
<tr>
<td>C₁₂ (sea orientation)</td>
<td>(0.34750, 0.54300, 0.72200)</td>
</tr>
<tr>
<td>C₁₃ (pool)</td>
<td>(0.28250, 0.46675, 0.65775)</td>
</tr>
<tr>
<td>C₁₄ (cost)</td>
<td>(0.54825, 0.79675, 0.89750)</td>
</tr>
</tbody>
</table>

D. Ranking the levels of importance of the attributes

To rank the weights of attributes C₁ - C₁₄ in Table II, we use the order generates by expected value, that is (6) and (7). We obtain the results in Table III and some conclusions are immediate:

- The least important attribute is C₁₃, regarding the
existence/non existence of a pool. This is a very interesting result because of respondents characteristics. We presume that, for a young people, the pool is a entertaining place.

- The most important attribute is \(C_0 \), regarding the quality of beaches and sea water, then cost (\(C_{14} \)) and \(C_3 \), the existence of a rich and diverse cuisine. This result is a congruent one relate to first one, because explain why the existence of a pool is not a key problem.

Table III Expected values of attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>(M(\mathcal{C}_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>0.56331</td>
</tr>
<tr>
<td>(C_2)</td>
<td>0.59863</td>
</tr>
<tr>
<td>(C_3)</td>
<td>0.70988</td>
</tr>
<tr>
<td>(C_4)</td>
<td>0.67575</td>
</tr>
<tr>
<td>(C_5)</td>
<td>0.58169</td>
</tr>
<tr>
<td>(C_6)</td>
<td>0.59694</td>
</tr>
<tr>
<td>(C_7)</td>
<td>0.53969</td>
</tr>
<tr>
<td>(C_8)</td>
<td>0.59769</td>
</tr>
<tr>
<td>(C_9)</td>
<td>0.83481</td>
</tr>
<tr>
<td>(C_{10})</td>
<td>0.61788</td>
</tr>
<tr>
<td>(C_{11})</td>
<td>0.68519</td>
</tr>
<tr>
<td>(C_{12})</td>
<td>0.53888</td>
</tr>
<tr>
<td>(C_{13})</td>
<td>0.46844</td>
</tr>
<tr>
<td>(C_{14})</td>
<td>0.75981</td>
</tr>
</tbody>
</table>

Table III: Expected values of attributes

Table IV: Correlations of the levels of importance

E. Correlations of the levels of importance

The correlation coefficients between weights of attributes is interesting too and it give us some important informations. Applying (5) we obtain the results in Table IV for correlation between any two weights (to emphasize the differences, the values calculated by (5) are multiplied by \(10^5 \) and only the last three digits are considered). It furnish us at least the following conclusions:

- The lowest correlation is between the quality of beaches and sea water and the existence/non existence of pool
- The highest correlation is between the cost and the existence of a rich and diverse cuisine

Table IV: Correlations of the levels of importance

F. Performances of locations and preliminary preparation

Let us assume that a travel agency has possibility to contract \(m \) locations \(A_1, ..., A_m \). We have in view to provide a method to hierarchy these locations from the point of view of the virtual customers, the respondents to the questionnaire. In this way, the agency will have the possibility to choose the most suitable destinations for its clients.

It is natural to assume that the performances of each location relatively to each attribute are known by the agency. We can use the procedure proposed in [19] and presented in Section III, B. We consider that the decision will be made based on the performance of the attribute criteria, taking also into account the importance given to them by the client.

In what follows we consider a list of eight destinations \(A_1, ..., A_8 \), possible to be contracted by a travel agency in a fixed country and the attribute criteria determined using the focus group method (see Table II). From the information the agency has, result the levels of attribute satisfaction in Table V.
Table V: Attributes and linguistic variables associated to destination

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
<th>A_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>F</td>
<td>G</td>
<td>F</td>
<td>G</td>
<td>VG</td>
<td>P</td>
<td>VG</td>
<td>G</td>
</tr>
<tr>
<td>C_2</td>
<td>VG</td>
<td>G</td>
<td>G</td>
<td>VG</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>P</td>
</tr>
<tr>
<td>C_3</td>
<td>G</td>
<td>VG</td>
<td>F</td>
<td>F</td>
<td>VG</td>
<td>VP</td>
<td>G</td>
<td>VG</td>
</tr>
<tr>
<td>C_4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>VG</td>
<td>VG</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>C_5</td>
<td>VG</td>
<td>G</td>
<td>VG</td>
<td>F</td>
<td>VG</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>C_6</td>
<td>VG</td>
<td>G</td>
<td>F</td>
<td>G</td>
<td>F</td>
<td>P</td>
<td>VG</td>
<td>G</td>
</tr>
<tr>
<td>C_7</td>
<td>G</td>
<td>VG</td>
<td>F</td>
<td>VG</td>
<td>G</td>
<td>F</td>
<td>VG</td>
<td>G</td>
</tr>
<tr>
<td>C_8</td>
<td>G</td>
<td>VG</td>
<td>F</td>
<td>VG</td>
<td>P</td>
<td>P</td>
<td>F</td>
<td>VG</td>
</tr>
<tr>
<td>C_9</td>
<td>G</td>
<td>VG</td>
<td>VG</td>
<td>G</td>
<td>VG</td>
<td>P</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>C_{10}</td>
<td>5*</td>
<td>4*</td>
<td>5*</td>
<td>5*</td>
<td>5*</td>
<td>4*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{11}</td>
<td>150</td>
<td>m</td>
<td>50</td>
<td>m</td>
<td>10</td>
<td>m</td>
<td>60</td>
<td>m</td>
</tr>
<tr>
<td>C_{12}</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{13}</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{14}</td>
<td>600</td>
<td>E</td>
<td>500</td>
<td>E</td>
<td>800</td>
<td>E</td>
<td>400</td>
<td>E</td>
</tr>
</tbody>
</table>

Criteria 1-9 are subjective, criteria 10-13 are benefit criteria and attribute 14 is a cost criterion (see Table II).

Because the entire information is offered by agency, we consider here $k = 1$. The triangular fuzzy number $r_{ij} = (e_{ij}, f_{ij}, g_{ij}), i \in \{1, \ldots, 8\}, j \in \{1, \ldots, 9\}$ are representations of the linguistic variables $\{VP, P, F, G\}$ (see Table I) attached to performance of the alternative $A_i, i \in \{1, \ldots, 8\}$ for the subjective criteria $C_j, j \in \{1, \ldots, 9\}$. With respect to objective criteria $C_j, j \in \{10, \ldots, 14\}$ we apply (8) and (9) to calculate $r_{ij} = (e_{ij}, f_{ij}, g_{ij}), i \in \{1, \ldots, 8\}, j \in \{10, \ldots, 14\}$. All the triangular fuzzy numbers $r_{ij}, i \in \{1, \ldots, 8\}, j \in \{1, \ldots, 14\}$ are in Table VI.

The triangular fuzzy numbers $w_j = (a_j, p_j, q_j), j \in \{1, \ldots, n\}$, expressing the weight criteria are already calculated according to formula (20) in Table II.

Table VI Triangular fuzzy numbers corresponding to objective attributes and destinations

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
<th>A_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>(0.3,0.5,0.7)</td>
<td>(0.5,0.7,0.9)</td>
<td>(0.3,0.5,0.7)</td>
<td>(0.5,0.7,0.9)</td>
<td>(0.7,1,1)</td>
<td>(0.1,0,3,0.5)</td>
<td>(0.7,1,1)</td>
<td>(0.5,0,7,0.9)</td>
</tr>
<tr>
<td>C_2</td>
<td>(0.7,1,1)</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.7,1,1)</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.5,0,7,0.9)</td>
</tr>
<tr>
<td>C_3</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.7,1,1)</td>
<td>(0.3,0,5,0.7)</td>
<td>(0.3,0,5,0.7)</td>
<td>(0.7,1,1)</td>
<td>(0.0,0,3)</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.7,1,1)</td>
</tr>
<tr>
<td>C_4</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.7,1,1)</td>
<td>(0.7,1,1)</td>
<td>(0.5,0,7,0.9)</td>
</tr>
<tr>
<td>C_5</td>
<td>(0.7,1,1)</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.7,1,1)</td>
<td>(0.3,0,5,0.7)</td>
<td>(0.3,0,5,0.7)</td>
<td>(0.1,0,3,0.5)</td>
<td>(0.7,1,1)</td>
<td>(0.5,0,7,0.9)</td>
</tr>
<tr>
<td>C_6</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.3,0,5,0.7)</td>
<td>(0.7,1,1)</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.3,0,5,0.7)</td>
<td>(0.3,0,5,0.7)</td>
<td>(0.7,1,1)</td>
<td>(0.5,0,7,0.9)</td>
</tr>
<tr>
<td>C_7</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.3,0,5,0.7)</td>
<td>(0.7,1,1)</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.3,0,5,0.7)</td>
<td>(0.3,0,5,0.7)</td>
<td>(0.7,1,1)</td>
<td>(0.5,0,7,0.9)</td>
</tr>
<tr>
<td>C_8</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.7,1,1)</td>
<td>(0.3,0,5,0.7)</td>
<td>(0.7,1,1)</td>
<td>(0.1,0,3,0.5)</td>
<td>(0.1,0,3,0.5)</td>
<td>(0.3,0,5,0.7)</td>
<td>(0.7,1,1)</td>
</tr>
<tr>
<td>C_9</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.7,1,1)</td>
<td>(0.7,1,1)</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.5,0,7,0.9)</td>
<td>(0.7,1,1)</td>
<td>(0.1,0,3,0.5)</td>
<td>(0.5,0,7,0.9)</td>
</tr>
<tr>
<td>C_{10}</td>
<td>(1,1,1)</td>
<td>(0.5,0,5,0.5)</td>
<td>(1,1,1)</td>
<td>(1,1,1)</td>
<td>(1,1,1)</td>
<td>(0,0,0)</td>
<td>(1,1,1)</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>C_{11}</td>
<td>(0.64,0.64,0.64)</td>
<td>(0.9,0,9,0,9)</td>
<td>(1,1,1)</td>
<td>(0.87,0.87, 0.87)</td>
<td>(0.26,0.26, 0.26)</td>
<td>(0.51,0.51, 0.51)</td>
<td>(0.9,0,9,0,9)</td>
<td>(0,0)</td>
</tr>
<tr>
<td>C_{12}</td>
<td>(0,0,0)</td>
<td>(1,1,1)</td>
<td>(0,0,0)</td>
<td>(1,1,1)</td>
<td>(0,0,0)</td>
<td>(1,1,1)</td>
<td>(0,0,0)</td>
<td>(1,1,1)</td>
</tr>
<tr>
<td>C_{13}</td>
<td>(1,1,1)</td>
<td>(0,0,0)</td>
<td>(1,1,1)</td>
<td>(1,1,1)</td>
<td>(0,0,0)</td>
<td>(1,1,1)</td>
<td>(0,0,0)</td>
<td>(1,1,1)</td>
</tr>
<tr>
<td>C_{14}</td>
<td>(0.62,0.62,0.62)</td>
<td>(0.77,0.77, 0.77)</td>
<td>(0.31,0.31, 0.31)</td>
<td>(0.15,0.15, 0.15)</td>
<td>(0.92,0.92, 0.92)</td>
<td>(0,0,0)</td>
<td>(1,1,1)</td>
<td>(0.62,0.62, 0.62)</td>
</tr>
</tbody>
</table>

G. Determining the most desired tourist destinations by Chu and Lin’s method

After complicate calculus by using (11)-(19), formula (10) leads to the following values $M(G_i)$:

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
<th>A_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M(G_i)$</td>
<td>5.09</td>
<td>2.75</td>
<td>3.34</td>
<td>3.69</td>
<td>2.91</td>
<td>2.26</td>
<td>3.51</td>
<td>2.27</td>
</tr>
</tbody>
</table>

therefore the destination A_1 is the first which must be contracted, then destinations A_4, A_7, A_3, A_2 and, at the end, destinations A_6 and A_8.

V. Conclusion

The advantages of this method are the following:

- choosing destinations which follow to be contracted is proper; the level of customer satisfaction will increase because the chance to find an adequate destination will increase
- determining the attributes using the focus group method and the evaluating their importance is not necessary anymore as long as the structure of the target public does not change
- any travel agency can implement it, with minimum effort
In the numerical example, the weights assigned to criteria and the level of performance of each attribute, with respect to a destination, were measured on a five linguistic scale. To obtain refined results in applications, smoother scales can be employed. As example, in [13] the importance is presented in terms of a nine linguistic scale (extra low, very low, low, slightly low, middle, slightly high, high, very high, extra high).

REFERENCES
