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Abstract— This paper describes different GARCH type portfolio 

models using a bivariate Markov process. In particular we 
approximate the GARCH process with a Markov chain in order to 
value the price/return distribution at the investor’s temporal horizon. 
Then we discuss the computational complexity of the optimization 
problem and we implement an heuristic algorithm for the global 
optimum. Finally we propose an ex-post comparison among portfolio 
selection strategies based on reward/risk performance ratios.  
 

Keywords— GARCH models, Portfolio selection, Performance 
strategies, Ex-post analysis , Heuristic, Global optimization, Markov 
chains. 

I. INTRODUCTION  
N this paper, we model the return portfolios with a Markov 
chain that account the GARCH evolution of the returns. In 

particular, we use the Duan and Simonato’s  approximation of 
the returns evolution (Duan, Simonato 2001) in portfolios 
selection problems. Under this distributional hypothesis we 
compare the ex-post performance of some portfolio selection 
strategies.  

There is a general consensus on the importance to model 
the time varying volatility (Engle [1982], Bollerslev [1986]) 
and the leverage effect (Black [1976]). Several  empirical 
studies have showed that these statistical aspects serve to 
solve many biases between theoretical and empirical prices 
(see Bakshi, Cao and Chen [1997], Engle and Mustafa [1992], 
and Heston and Nandi [2000]). Because there is wide 
consensus that the variance of the financial asset returns is 
time variant, a great amount of efforts are directing to realize 
mathematical models which, by choosing the variance 
dynamics as the model corner-stone, should be effectively 
able to model financial prices. Surely the GARCH model is a 
reference instrument to study the volatility dynamics, and 

 
 

among its advantages there is its high flexibility to be suitable 
to capture the most important features of the financial 
variables. In this work we analyze the impact of choices based 
on the GARCH parametric characterization of financial asset 
series. It is to note that the passage from the GARCH 
parametric characterization of financial asset series to the 
computation of the price/return distribution at some future 
time is not immediate. In order to build portfolio wealth 
distribution we use Duan and Simonato's GARCH 
approximation (Duan, Simonato 2001). Moreover, we extend 
the Duan and Simonato's ideas to other possible GARCH type 
models (see Glosten, et al.(1993), Nelson (1991)). As these 
authors explain many GARCH models and in particular the 
GARCH(1,1)  models can be represented as a bivariate 
Markovian system (i.e., the state of the process is uniquely 
represented by price and variance states). This feature allows 
to approximate GARCH models by a discrete Markov chain. 
The Markovian and semi-Markovian models has been used in 
different fields of the financial literature typically in option 
pricing and credit risk (see, among others, Duan and Simonato 
(2001); D’Amico and Di Biase, (2009), D’Amico et al. (2009, 
2010)), and in portfolio theory (see Angelelli and Ortobelli 
(2009), Iaquinta et al. (2010)). To build the transition matrixes 
we use the method discussed by Duan and Simonato (2001), 
Duan et al. (2003) for parametric Markovian processes.  

With parametric portfolio selection models the transition 
matrix depends on the parameters of the underlying 
multivariate Markov process and the parameters are functions 
of the portfolio weights. Therefore we should check for a 
global optimum  for most of the portfolio selection problems. 
In the paper we implement  an optimization heuristic 
algorithm Angelelli and Ortobelli (2009) that reduces 
enormously the computational complexity with respect to 
other global optimization approaches like simulated annealing. 

In the following empirical comparison, we present some 
portfolio selection strategies that use different GARCH 
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models. All of them are based on the estimation of the 
distribution of the returns at future times under the assumption 
that the residuals of log returns portfolios follow a GARCH 
process.  

The paper is organized as follows.  
In Section 2 we show the models implemented. In Section 3 

we discuss the Markovian approximation of portfolio value 
and we formalize the portfolio selection model discussing the 
computational complexity of the problem. In section 4 we 
perform an empirical comparison among different portfolio 
selection models. Finally, we briefly summarize the paper.  

II. PORTFOLIO VALUE WITH GARCH VOLATILITY DYNAMICS 
Let us consider a discrete-time economy and   risky assets 

with log returns1 1 1, 1 , 1, , 't t n tr r r+ + +⎡ ⎤= ⎣ ⎦… . If we denote by  

[ ]1 , , 'nx x x= …  the vector of the positions taken in the n   
risky assets, then the portfolio wealth at time 1t +   is given by  

, 1
1

=1

( ) = e .i t
n

r
t i

i

W x x +

+ ∑
 

(1) 

In particular, we assume that investors want to maximize 
the performance of their choices at a given future date T. 

Now we introduce the alternative GARCH volatility 
dynamics models implemented in this work. 

Suppose that under the historical measure P  the daily 
portfolio log-return is described by the following relation: 

 
( )
( )

1
1 1 1ln t

t t t
t

W x
r

W x
μ σ ε+

+ + +

⎛ ⎞
= = +⎜ ⎟⎜ ⎟

⎝ ⎠  
 (2) 

where ( )tW x  is the portfolio value at time t, with asset 

position  x , and ( )1 | ~ 0,1t tε φ+   under P . 
For convention we consider the initial portfolio wealth 

equal to 1 (i.e. 0 1W = ). In this work we use the standard 
GARCH(1,1) (see Bollerslev, T.(1986)) and some well-known 
extension of the standard GARCH(1,1). Each model can be 
represented as: 

( )1 , ,t t tfσ ρ σ ε+ =  
where the relation expresses that the conditional variance at 

time 1t +  is function of the lagged value of the variance ( tσ ), 
the lagged shock ( tε ) and a set of parameters ( ρ ). 

The variance dynamics models we consider are: 
Model I: GARCH (1,1) (G11): (see Bollerslev, T.(1986)) 

2 2 2 2
1t t t tσ ω βσ ασ ε+ = + +   (3) 

where , 0ω α >  and 0 1β< <  . 
Model II: GJR-GARCH (GJR-G): (see Glosten, et 

al.(1993)) 

 
1 Generally, we assume the standard definition of log return between time t 

and time t+1 of asset i, as , 1 ,[ , 1]
, 1

,

= log i t i t t
i t

i t

S d
r

S
+ +

+

+  , where ,i tS  is the price of 

the i-th asset at time t and ,[ , 1]i t td +   is the total amount of cash dividends paid 
by the asset between t and t+1. 

2 2 2 2 2 2
1t t t t t t tIσ ω βσ ασ ε γσ ε+ = + + +   (4) 

where , 0ω α >  and 0 1β< <  and 
1; 0
0;otherwise

t
tI

ε <⎧
= ⎨

⎩
 

 
Model III: E-GARCH (E-G): (see Nelson (1991)) 

( ) ( ) ( )2 2
1ln ln | |t t t tσ ω β σ α ε γε+ = + + −   (5) 

where 0α >   and  0 1β< < . 

The parameters of the models are ( ),θ μ ρ=  where μ  is 

the constant drift term and ( ), , ,ρ ω α β γ=  is the parameter 
vector related to the variance dynamics. 

In the model II and III the parameter γ  allows to model the 
asymmetric behavior of the variance, sometime called Black's 
effect. It consists of a greater response of the variance when 
the news arrived in the market are negative ( 0tε < ) than 
when the news are positive ( 0tε > ). 

All conditions on the parameters ,ω α  are used to avoid 
theoretical inconsistence on the value for 2

tσ  (i.e., 0ω <  
should mean a potential negative value for the variance, while   

0α <  should mean that greater shock movements induce a 
decreasing variance), while the conditions on β  allow the 
variance process to be covariance-stationary. Let us consider 
the value of the stationary variance level in each model, 
supposing the weakly stationarity on 2

tσ  then we obtain2 : 

( ) ( )
* 2

21t P
t

h E
E

ωσ
β α ε

= =
− −

   in the G11 

( ) ( ) ( )
* 2

2 21t P P
t t t

h E
E E I

ωσ
β α ε γ ε

= =
− − −

  in the GJR 

( ) ( )* 2 | |
ln

1

P
t t

t

E
q E

ω α ε γε
σ

β
− −

= =
−

    in the E-G 

 
Since we have to avoid the asymptotic divergence and the 

negativity of the variance process we need the following 
additional conditions: 
• ( )2 1P

tEβ α ε+ <  in the G11 

• ( ) ( )2 2 1P P
t t tE E Iβ α ε γ ε+ + <  in the GJR 

Note that in the normal innovation case (i.e., 

( )1 | 0,1
P

t t Nε φ+ ∼  ) 

*

1
h ω

β α
=

− −  
in G11,  *

1 / 2
h ω

β α γ
=

− − −
 in GJR, 

( )* * 2 /exp exp
1

h q ω α π
β

⎛ ⎞−
≅ = ⎜ ⎟⎜ ⎟−⎝ ⎠

 in E-G. 

 
2 We use the GARCH property that: 

( ) ( )( ) ( )( ) ( )( )t t t tE f g E f E gσ ε σ ε=  where f  and g  are some 

measurable function, since tσ , and thus each its function, is measurable with 
respect to the sigma-algebra at time 1t −   
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and the conditions are: 1β α+ <  in the G11, / 2 1α β γ+ + <  
in the GJR-G. In the E-GARCH model the value h* is 
approximated with the exponential of the expected log 
volatility. The GARCH(1,1) model is a benchmark model and 
it is used for model comparisons. The main characteristics of 
other GARCH models used can be summarized in: 

1. Parsimonious model, only 4 parameters to model the 
variance dynamics 

2. Two state variables: price and variance 
3. Time varying variance: GARCH models drive the 

variance process. 
4. Models are potentially able to explain the well-known 

stylised-facts as the "Leverage effect" ( γ  parameter) and the 
"Clustering effect" in the stochastic volatility ( β  parameter) 

III. PORTFOLIO VALUE DYNAMICS AS MARKOVIAN EVOLUTION PROCESS 
Duan and Simonato have shown that the GARCH(1,1) 

model can be represented as a bivariate Markovian system 
(i.e., the state of the process is uniquely represented by 
( )2

1,t tW σ +  so the process is markovian of the first order). This 

feature allows to approximate GARCH models by a discrete 
Markov chain. Duan and Simonato’s analysis can be extended 
to GJR-GARCH and E-GARCH models as we show here in 
the following. In particular, we present the Markov chain 
approximation of a GARCH (1,1) process (Duan, Simonato 
2001) adapted to the work models. 

Let us consider an underlying portfolio log-return modeled 
by the equation (2) or equivalently let us consider 

( ) ( )1ln lnt t t tW x W x zμ σ−= + +  where tW  denote the portfolio 
value at day t . Let Q  be some probability measure and tσ  be 
the variance modeled by G11, GJR or E-G. Let tz  a 
standardized random variable independently distributed with 
respect to the information up to time 1t − , i.e.,  

( )1| ~ 0,1
Q

t tε φ − . 
Following Duan and Simonato's suggestions, we form the  

partitions by using the logarithm of adjusted wealth and log 
variance for the two state variables considered. The adjusted 
wealth is used to reduce the dimension of the transition matrix 
by a wealth conversion. The logarithms of the values used are 
justified mainly for its better convergence behavior. 

The adjusted wealth is computed by * t
t tW e Wμ−= �  where   

and * / 2hμ μ= −�  is the stationary variance, the pre-adjusted 
wealth can be easily recover later. Also the unconditional 
variance can be computed in all the GARCH model 
mentioned. 

Note that in term of log-adjusted wealth the log return 
dynamics becomes: 

( )
*

* 2
*
1 1

1ln ln
2

t t
t t t

t t

W W
h

W W
μ σ σ ε

− −

⎛ ⎞ ⎛ ⎞
= − = − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
� . 

The unconditional expectation of the continuously 
compounded return on the adjusted wealth is zero, since 

( )2 *Q
tE hσ =  and ( ) 0t tE σ ε = . 

Let  tp and  tq be the logarithm of the adjusted wealth (let 
us say log wealth) and the logarithm of the variance 
respectively (i.e., ( )*lnt tp W= and ( )2lnt tq σ= ) then the 

models can be rewritten with: 

( )*
1

1
2

t tq q
t t tp p h e e ε−= + − +  

( )2
1 ln t tq q

t tq e eω β α ε+ = + +
 

in the G11 case, 

( )2 2
1 ln t t tq q q

t t t tq e e e Iω β α ε γ ε+ = + + +  in the GJR case  

or 

( )1t t t tq qω β α ε γε+ = + + −  in the E-G case. 

To find a states partition to approximate the GARCH 
process we use: 

1) A log wealth partition centered on the logarithmic of the 
initial portfolio wealth: 0 0[ , ]p pp I p I− + , where pI  is 
determined by studying the conditional behavior of the 
logarithm of the adjusted portfolio wealth over the investor 
time horizon T : 

( ) ( )2
01

|
T Q

p p tt
I m Eδ σ φ

=
= ∑   (6) 

2) An analytical formula of the conditional variance of the 
log wealth can be derived for many GARCH processes. 

3) Log variance partition: to form the partition we would 
study the conditional behavior of the logarithm of the variance 

( )2lnT Tq σ= . From the GARCH process features we know 

that there are two notable values of the variance:  
a) the initial variance, which the process starts from,  
b) the unconditional variance ( *h ) to whom the process 

asymptotically is attracted.  
Both these values have to be considered in the variance 

partition, but the second has increasing importance as we are 
far from the begin instant The partition center can be 

computed as: 
( ) ( )* 2 *

1 1

min , min ,
ln

T T
q h

τ τ τ
σ

τ τ
⎛ ⎞−

= +⎜ ⎟⎜ ⎟
⎝ ⎠

 . The 

value of τ  is a temporal index used to form the weights. As it 
increases as the relative weight of the unconditional variance 
respect to the initial variance increases. Then in the study of 
long-term horizon τ has to be small. Anyway it is important to 
ensure that 1q  belongs to the partition. The log variance 
partition is * *

1 1[ , ]q qq I q I− + . In order to compute the width qI  

of the partition it should be enough to study  ( )0|Q
TVar q φ , 

but in-G11 and GJR-G it could result analytically complex. 
We know by the Jensen inequality that   so Duan and 
Simonato propose to use a width 

( ) ( )( )2
0 0| ln |Q Q

T TVar q Varφ σ φ≤ : 

( ) ( )( )1 2
0 1ln |q Q

q q TI e n Var qδ σ φ= + −   (7) 

Only in the E-G case we have to note that the log variance 
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partition can be constructed directly by the E-GARCH 
equation, because it expresses the variance in logarithmic 
terms: * *

1 1[ , ]q qq I q I− +   where: 

( ) ( ) ( ) ( )* 2 *
1 1

min , min ,
ln ln

T T
q h

τ τ τ
σ

τ τ
−

= +   and 

( ) ( )01
|

T Q
q q tt

I n Var qδ φ
=

= ∑   (8) 

In the E-G the sum of the conditional variance up to T  is 

given by3:  ( ) 2 2
0

1

2| 1
T

Q
T

t

Var q Tφ α γ
π=

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∑  

Duan and Simonato showed that ( )
m

p mδ
→∞

→ ∞  and  

( )
0

m
p m
m

δ →∞

→
 

are sufficient partition conditions for the 

approximating Markov chain to converge to its target GARCH 
process. 

The logarithmic adjusted wealth partition and the 
logarithmic variance partition are equally divided in   and   
odd parts respectively in order to determine the state of the 
bivariate process: 

• ( ) 0

2 1
1 p

i mp i p I
m
− −

= +
−

 and the corresponding cells are 

( ) ( ) ( )[ , 1 )C i c i c i= +  for 1,...,i m= , where  ( )1c = −∞ , 

( ) ( ) ( )1
2

p i p i
c i

− +
=   for  2,...,i m=  and ( )1c m + = +∞    

• ( ) *
1

2 1
1 q

j nq j q I
n
− −

= +
−

 and the corresponding cells are 

( ) ( ) ( )[ , 1 )D j d j d j= + for 1,...,j n= , where ( )1d = −∞ , 

( ) ( ) ( )1
2

q i q i
d j

− +
=

 
for 2,...,j n=  and ( )1d n + = +∞ . 

The Markov transition probability from state ( ),i j  at time 

t  to state ( ),k l  at time 1t +  is defined as 

( ) ( ) ( ) ( ) ( )1 2 1, ; , Pr { , | , }Q
t t t ti j k l p C k q D l p p i q q jπ + + += ∈ ∈ = =

for  0,..., 1t T= − . 
It is typical in the GARCH(1,1) models that the variance at 

time 2t +  is a deterministic function of the information set at 
time 1t + . In particular in the models investigated we can 
write the variance as function of its lagged value, and two 
lagged wealth, i.e. ( )2 1 1, ,t t t tq q p p+ + += Φ . 

First we recover 1tε +  from the log price equation written 
one time forward: 

( )1

1

*
1

1

1
2

t

t

q
t t

t q

p p e h

e
ε

+

+

+

+

− + −
= and substituting in the log 

variance equation we obtain: 
 

3   Note that in E-G case: 

 
( ) ( )2

2 2 2
0

2| | | 2 / 1Q Q
tVar q Eφ α ε γε π α γ

π
⎛ ⎞= − − = + −⎜ ⎟
⎝ ⎠

   

where ( )~ 0,1Nε  

( )

( )1 1 1

11
1 1

2

*
1

, ,

1ln
2

t t t

G
t t t

q q q
t t

q p p

e p p e h eω β α γ+ + +

+ +

+

Φ =

⎛ ⎞⎛ ⎞= + + − + − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

( )

( ) ( )1 1

1 1

2

*
1

, ,

1ln
2

t t

GJR
t t t

q q
t t t

q p p

e I p p e hω β α γ+ +

+ +

+

Φ =

⎛ ⎞⎛ ⎞+ + + − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

( )

( ) ( )1 1

1

1 1

1 1

* *
1 1

, ,

1 1
2 2

t t

t

t t

E G
t t t

q q
t t t t

q

q q

q p p

p p e h p p e h
e

e e
ω β α γ

+ +

+

+ +

−
+ +

+ +

Φ =

⎛ ⎞
− + − − + −⎜ ⎟

+ + −⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

  

This implies a source of sparsity in the markovian transition 
matrix: for each combination of ( ), ,i j k  it exists only an 
index l  where the transition probability can be non zero. Thus 
we can rewrite the Markov transition probability as: 

( )
( ) ( ) ( )

( ) ( ) ( )( ) ( )

Q
1 1Pr { | , }

, , , , ,

0,otherwise                                            

t t tp C k p p i q q j

i j k l if q j p k p i D lπ
+ +⎧ ∈ = =

⎪⎪= Φ ∈⎨
⎪
⎪⎩

 

The conditional probability can be computed as: 
( ) ( ) ( )1 1Pr { | , }Q

t t tp C k p p i q q j+ +∈ = = =  

( )( ) ( )*
1

1Pr ( ) ( ) ( 1)
2

q j q jQ
tc k p i h e e c kε +

⎧ ⎫= ≤ + − + < + =⎨ ⎬
⎩ ⎭

 

( )( )
( )

( )( )
( )

* *

1

1 1( ) ( ) ( 1) ( )
2 2Pr

q j q j

Q
tq j q j

c k p i h e c k p i h e

e e
ε +

⎧ ⎫− − − + − − −⎪ ⎪⎪ ⎪= ≤ <⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

  

Clearly these transition probabilities can be easily computed 
for any classical distributional assumption on the innovations. 
In this paper we use Gaussian distributed innovations.  

Once we have computed the transition matrix M we can 
obtain the wealth distribution at time T considering the power 
of the transition matrix MT. As a matter of fact, given the state 
(i,j) of the bivariate process (return, variance) corresponding 
to the k-th raw of the transition matrix, the distribution of the 
bivariate process at time T conditioned to start by (i,j) state is 
given by the k-th raw of  the matrix MT . Thus, to get the 
probability the log wealth is in the state “s” after T steps 
starting by (i,j) state we have to sum the probabilities for the 
different variance states, i.e., ( ) ( )

1
, , , , ,

n

T Ti
i j s i j s lπ π

=
= ∑  

where ( ), , ,T i j s lπ  is the probability corresponding to the k-th 
raw of the matrix MT to go in the state (s,l) after T steps. 
Doing so we easily obtain the cumulative distribution of the 
forecasted final wealth for any described GARCH type model. 

IV. PORTFOLIO VALUE DYNAMICS AS MARKOVIAN TREE PROCESS 

In the portfolio selection problem we assume the initial 
wealth 0 = 1W  and all admissible wealth processes 

( ) = {W x 0( )}t tW x ≥  depending on an initial portfolio x S∈  are 
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defined on a filtered probability space ( )( )0
, , , Prt t≤ ≤∞

Ω ℑ ℑ . 

The portfolio selection problem when no short sales are 
allowed, can be represented as the maximization of a 
functional ( ): , , Prf Ω ℑ 6 \  applied to the random final 
wealth WT(x) obtained with the portfolio weights belonging to 
the n -dimensional simplex 

{ }=1
= | = 1; 0 ,

nn
i ii

S x x x∈ ≥∑\  

 i.e.,  max ( ( ))Tx S
f W x

∈
 

Typical examples are the performance measure type 

functionals 1

2

( )
( ) =

( )
X

f X
X

ρ
ρ

−  where 1 2(.), (.)ρ ρ  are two 

positive increasing functions of coherent risk measures (see 
Rachev et al. (2008) and the reference therein). These 
functionals are isotone with the monotony order, but 1 (.)ρ  
and 2 (.)ρ  are consistent with risk averse preferences. Thus, 

the functional 1

2

( )
( ) =

( )
X

f X
X

ρ
ρ

−  is not isotone neither with 

risk lover nor with risk averse preferences. We refer to 
Rachev et al. (2008) for further examples of the above 
measures. Here in the following we introduce the two 
performance type measure used in the choice problem: the 
Sharpe ratio and the Rachev ratio. 
Sharpe ratio (SR). The Sharpe ratio (see Sharpe (1994)) 
serves to value the expected excess return for unity of risk 
(standard deviation), i.e., 

,)(=)(SR
brX

brXEX
−

−
σ

 

where br  is a given benchmark and 
brX −σ  is the standard 

deviation of the random variable .brX −  When the 
benchmark br  is the riskfree rate and X  is the portfolio 
return, the Sharpe ratio is isotonic with non-satiable risk 
averse preferences. 

 
Rachev ratio This performance functional is defined as 

( )
( , )

( )

( ( ) 1)
OA RR ( ( )) =

( ( ) 1)
T b x

T
T x b

ETL W r z
W x

ETL W z r
α

α β
β

− −
−

− −
  

When the benchmark br  is the riskfree rate and ( )xz  is the 

chosen portfolio gross return (i.e.
 ( )( ) exp( )x xz r= ) and 

( )( ) 1T x bW z r− −  is the final wealth at time T  we obtain 

investing in the excess return ( ) .x bz r−   

ETLα  is the Expected Tail Loss or Average Value at Risk 
(AVaR) which is a coherent measure defined as 

1

0

1( ) = ( )YETL Y F u du
α

α α
−−

∫  

where ( ){ }1 ( ) = inf / PrYF u t Y t u− ∈ ≤ ≥\  is the left inverse 

of the distribution function. Recall that the classic consistent 
estimator of expected tail loss is given by  

1=1 [ ( )]

1( )
T

tt Y Ft Y
ETL Y Y I

Tα αα −≤

−
≈ ∑  

where 
1

1[ ( )]

1 if ( )
= .

0 otherwise
t Y

Y Ft Y

Y F
I

α

α−

−≤

⎧ ≤
⎨
⎩  

When the benchmark br  is the riskfree rate, X  is the 
portfolio return, and the numerator and the denominator are 
positive (negative), then the Rachev ratio is isotonic 
(consistent) with non-satiable preferences of investors who are 
neither risk averse nor risk lover (see Rachev et al. (2008)). 
 

A. Computational Complexity and an heuristic for global 
optimization 

 
Some recent studies (see Stoyanov et al. (2007), and Rachev 
et al. (2008)) have classified the computational complexity of 
reward-risk portfolio selection problems. In particular, 
Stoyanov et al. (2007) have shown that we can distinguish 

four cases of reward/risk ratios 
)(
)(

(2)

(1)

Xf
Xf

 that admit an unique 

optimum in myopic strategies: 
 

1. The ratio is a quasi-concave function when the risk 
functional )((2) Xf  is convex and the reward 

functional )((1) Xf  is concave. 

2. The optimal ratio problem reduces to a convex 
programming problem when in addition to the 
conditions of point 1, both functions )((1) Xf  and 

)((2) Xf  are positively homogeneous. 

3. The optimal portfolio problem reduces to a quadratic 
programming problem if in addition to the conditions 
of point 2, the reward function )((1) Xf  is linear (or 

linearizable), and the risk function )((2) Xf  is an 

increasing function of a quadratic form. 
4. The optimal ratio problem reduces to a linear 

programming problem if the reward function 
)((1) Xf  is linear and the risk function )((2) Xf  is 

linearizable .  
 
While the maximization of the Sharpe ratio can be solved as a 
quadratic type problem (it enters in the third category), the 
Rachev ratio (that is the ratio between two convex measures) 
is not included in this classification and it could present more 
local maxima. Moreover, when we approximate the bivariate 
process with a Markov chain, the transition matrix change 
with the portfolio weights x . Thus, the discretization process 
we adopt when we build up the approximating Markov chain 
implies that none of the above cases apply and the 
computational complexity increases. For example, Angelelli 
and Ortobelli (2009) have shown that non-parametric Markov 
portfolio models generally admit many local maxima even if it 
has to give a unique maximum as a consequence of the 
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monotony of the integral. Thus we can loss the monotony of 
the utility functional when we adopt our discretization 
process.  
In order to illustrate the situation we consider 2000 historical 
observations of three components i j and k of the Dow Jones 
Industrial index and plot the values of different performance 
measures by varying the portfolio composition x  in the 3-
dimensional simplex 1,=|),,{(= kjikji xxxxxxS ++  

0}.,, ≥kji xxx  In particular, we consider Rachev ratio with 

temporal horizon  20=T  days. We consider a Markov chain 
with 28 states for the portfolio of returns and 6 states for its 
variance. Figure 1 reports the value of the Rachev ratio when 
we consider a GARCH(1,1) process. As we could expect the 
problem present more local maximum. 

 
Figure 1. The Rachev ratio performance when we use a 
GARCH(1,1) model and we vary the composition of a 3 
components portfolio. 
 
In order to solve this global optimization problem we 
implemented a local search algorithm whose required input is 
an objective function f  and an initial feasible solution x  
representing a portfolio from which the search is started. A 
current solution (portfolio) x is first defined as the initial 
solution at hand. Then the algorithm tries to iteratively update 
the current solution by a better one. Improving solutions, if 
any, are searched on a predefined grid of points fixed on the 
directions iex −  for ni 1,2,...,=  where x is the current 
portfolio and ie  is the portfolio where the share of asset i is 
equal to 1 and all other assets have share equal to 0. If a better 
solution is found on a search direction the current solution is 
updated and the search is continued from the new one. If no 
direction provides an improved solution the search ends. 
Actually, the search can be performed with two opposite 
orientations. Indeed the share of an asset i can be either 

increased or decreased. Accordingly, the algorithm, performs 
the search in three distinct steps. In the first step the 
algorithms tries to improve the current solution by increasing 
the share of assets i (i=1,…,n); in the second step the 
algorithm tries to improve the current solution by decreasing 
the share of assets i (i=1,…,n),  in the last step the algorithm 
the first two steps changing iteratively the ordering of the 
control and the distance between each portfolio. More details 
are provided below. The general scheme of the algorithm is 
defined by the following MATLAB-like pseudo code. 
 
function x = Optimize(f,xi) 

[x,improved] := 
improveByIncreasingSingleAssets(f,xi); 
Do: 
[x,improved] := 
improveByDecreasingSingleAssets(f,x); 
if improved 

[x,improved] := 
improveByIncreasingSingleAssets(f
,x); 

end if 
While improved 
return x; 

 
More in details, procedure 
 improveByIncreasingSingleAssets  
tries to improve the current solution x by iteratively increasing 
the share of single assets in the portfolio. The basic idea is to 
choose an asset i such that xi>0, define a finite set of 
alternative portfolios 

( ) = (1 )'
ix x eβ β β− +  

where parameter β  is assigned values 
p

h m
h

⎟
⎠
⎞

⎜
⎝
⎛=β  for 

.1,...,= mh  with 1,≥p and .N∈m  If there is a h  such that 
),(>))(( xfxf hβ  then the current portfolio x is updated by 

)( ∗h
x β  where ( )= arg max { ( ( )}h hh f x β∗ . The integer m 

defines the number of points in which the objective function 
will be evaluated, whereas the index 1≥p  defines how the 
points are distributed on the simplex iex ββ +− )(1 . In 
particular, for 1=p  the points are equidistributed, while if p  
gets larger the points get more concentrated around .x  The 
directions in the simplex are searched according to the 
increasing value of .i  Without loss of generality we can 
assume that )(>)( ji efef  for any ji <  so that the attempt to 

increase the share of the asset with highest performance is 
made first. If a better solution is found on a search direction 

kex −  for some k , the current solution x  is updated by the 
new solution and the search is continued on the new directions 

iex −  for 1.,1,2,...,1,...,= −+ knki  If no direction provides 
an improved solution the search is stopped. The procedure 
returns the best solution found, possibly the initial one, and a 
flag indicating whether an improvement has been achieved 
during the search. 
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Similarly, procedure 
improveByDecreasingSingleAssets  
tries to improve the current solution x  by decreasing the share 
of an asset i  such that 1<<0 ix . The scheme is the same as 
in procedure improveByIncreasingSingleAssets, 
but for any chosen asset ,i  the set of alternative portfolios 

)(β'x  is defined as  

)()(1=)( xPxx i
' ⋅+− βββ  

where )(xPi  is the projection of the portfolio x  from 
portfolio ie  on the hyperplane  

⎪⎩

⎪
⎨
⎧∑

0=
1=

i

kk
x

x  

which can be obtained by  

.
1

)(=)(
i

ii
i x

exxxP
−

−  

The main advantages of this algorithm are: 
1. The algorithm permits to approximate the global 

optimum with an error of  
p

m
⎟
⎠
⎞

⎜
⎝
⎛ 1 when the objective 

function is a non-constant concave function (the 
optimum is unique) and the lines )(β'x  are not 
particular contour lines of the objective function4. 

2. The algorithm checks the m  points hβ  on the lines 

)( h
'x β  of the n -dimensional simplex. So, we can 

better explore the whole simplex and approximate the 
global optimum. 

3. The computational complexity is much less than that 
of classic algorithms for global optimum such as 
Simulated Annealing type algorithms (see Angelelli 
and Ortobelli 2009).  

 

V. AN EX-POST EMPIRICAL COMPARISON AMONG GARCH TYPE MODELS 
In this section, we compare portfolio selection strategies 

based on the GARCH models introduced in the previous 
sections. We use 32 assets quoted on the US markets (NYSE 
and NASDAQ) from 01/02/97 till 06/14/2010 for a total of 
3384 daily observations. We compare the performance of: 

1) Rachev ratio under the hypothesis the log wealth follows 
or  a GARCH(1,1),  or a GJR-GARCH  or an E-GARCH.  

2) Sharpe ratio (see Sharpe 1994) under the assumption we 
consider historical iid returns. 

We recalibrate daily the portfolio and for the dynamic 
strategies we use a temporal horizon  T=20 working days.  

 

 
4However, we can still approximate the optimum by updating the solution 

x  with a point (1 )h h ix eβ β− +   choosing an h  among 

= 1,..., 1h m −  any time the lines (1 ) ix eβ β− +  with 0,1]β ∈  are 
particular level curves of the concave objective function. 

 
Figure 2. Ex-post final wealth process when European 

strategies are applied with daily recalibration and temporal 
horizon T=20 days. 

 
We forecast the future wealth using 28 states for the 

portfolio of returns and 6 states for its variance. As coefficents 
of AVaR in the Rachev ratio we use 0.05α β= = . The 
comparison consists in the ex post evaluation of the wealth 
produced by the strategies. For each strategy, we consider an 
initial wealth 0 = 1W  at the date 04/30/2009, and at the k th 
recalibration ( = 0,1, 2,...k ), three main steps are performed to 
compute the ex-post final wealth: 

Step 1 Determine the market portfolio ( )k
Mx  that maximizes 

the performance ratio ( ( ))W xρ , i.e. the solution of the 
following optimization problem: 

( )

( )

( )

( )

( )

( ( ))max

s.t.

= 1,

0; = 1, , .

k

kx

'k

k
i

W x

x e

x i n

ρ

≥ …

  

As shown by Angelelli and Ortobelli (2009) this type of 
problems could present more local optimum then we use the 
heuristic developed from them to approximate the global 
optimum.  

Step 2 Determine the ex-post final wealth given by: 

( )( )( ) ( )

1
= ,

'k ex post
t t Mk k

W W x z
+

 

where )(expostz  is the vector of observed gross returns 
between kt  and 1kt + . 

Step 3 The optimal portfolio ( )k
Mx  is the new starting point 

for the ( 1)k + -th optimization problem. 
Steps 1, 2 and 3 are repeated until the observations are 

available and for each performance ratio. 
The output of this analysis is represented in Figure 2. 

Figure 2 reports the ex -post wealth process using different 
GARCH models. In particular these results emphasize the 
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good performance of the classic GARCH(1,1) model that in 
the last year present earnings of about the 100%. Instead the 
other GARCH models are almost never comparable to the 
classic one. However the comparison with static classic 
strategy is amazing and it suggests us that we should never 
use the classic strategies in portfolio choices. 

Thus, the empirical results show that volatility GARCH 
models could be very important in portfolio theory. 

 

VI. CONCLUSION 
This paper examines the impact of GARCH type return 

evolution in portfolio selection problems. We describe how to 
approximate GARCH type processes with Markov chains and 
we deal the portfolio selection problem under these 
distributional assumptions. Thus we propose algorithms that 
permit to solve computationally complex problems in 
acceptable computational times. Finally, we propose an 
empirical comparison among the myopic portfolio selection 
models and those based on the GARCH approximation. The 
ex-post empirical comparison among classic approaches and 
those based on Markovian trees shows the greater predictable 
capacity of the latter.  
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