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Abstract—Nitrogen diffusion coefficients during the growth of 

nitrided concomitant layers produced by microwave post-discharge 

nitriding were estimated through an inverse problem model. 

Diffusion coefficients in each phase are estimated by setting the 

inverse problem associated with growth of compacts nitrided layer  

’-Fe4N1, austenite layer , and a nitrogen diffusion zone in ferrite. 

The evolution of nitrogen concentration profile from supersaturated 

ferrite to the formation of compact nitride layers is described. 

Nitrogen concentrations in each phase and diffusion zone are not 

considered to be bounded by their solubility limits. Evolution for 

large periods (quasi-steady periods), coincides with layer growth 

evolution considered in mass balance models. 
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I. INTRODUCTION 

itriding is a thermo-chemical treatment for the 

introduction of nitrogen to the surface of metal parts. 

Generally this surface treatment has been accomplished 

with no reduction in the core properties of the part. This 

technology has been employed to increase superficial 

hardness, as well improve fatigue strength and to improve 

resistance to wear and corrosion. This method was used for the 

first time in late 1920 and since then has steadily increased its 

application because it can be applied to a wider range of steels 

other than originally thought. The thermochemical nitriding 

treatments produce an important improvement in the 

mechanical, tribological and chemical properties in steel, thus 

enhancing their fatigue corrosion and wear resistance, the 

wearing down and the corrosion [1-4]. Nitriding processes 

involve several sensitive issues as the evolution of the 

concentration of nitrogen in the surface and the evolution of 

the concentration of nitrogen within the metal    [5-8].  

        The evolution of the nitrogen concentration in the 

surface is inherent to the process. In the processes where the 

diffusion  takes place through a thermochemical balance 

between a gaseous mixture and the solid, for example 

mixtures with ammonia, the nitrogen concentration in the 

surface depends on the nitrogen potential [9-11]. 

    Among the nitriding process can distinguish the gas 

nitriding, plasma nitriding or pulsed discharge [14-20], in the 

processes attended by weakly ionized plasma, the surface is 

the residence of the pulverization events, adsorption and 

diffusion [19-21].  The nitrogen concentration in the surface 

evolves quickly. The nitrogen concentration in the surface 

corresponds to a dynamic balance between pulverization 

 
 
 

towards the atmosphere and the diffusion towards the solid. 

    It is important to know the phases present, their 

morphology and developed layer thickness on the substrate, 

which are controlled by the variables involved in the process. 

The formation of compacted layers depends on the reactions 

that take place between the atmosphere and the substrate, in 

particular the production of species. Absorbed species density 

determines the concentration of nitrogen in the surface and the 

formation of "early stage" (initial states) that precedes the 

development of compact layers on iron substrates. It is 

therefore an interest for us to understand the formation of 

these phases, through the analysis of products obtained in 

experiments that subsequently lead to a proposed mechanism 

of formation of phases. 

An immediate purpose of the study of the phenomena of 

nitriding is the automation and control of it. To this end 

mathematical models are needed of the phenomenon and it is 

also necessary to have the solution, exact or approximate these 

models. In the mathematical simulation of the diffusion of 

nitrogen in the iron or the steel reported in literature, the 

nitrogen concentration in the surface is assumed constant from 

the beginning of the treatment [22,23], consequently is 

considered that the thickness of the layers is zero for the initial 

moment. 

    The control or automation of the nitriding processes 

depends on the instrumentation necessary to identify the 

concentration of nitrogen in the surface as well as of a 

mathematical model adapted to estimate the growth kinetics of 

compact concomitant nitride layers.  On the other hand, the 

understanding and interpretation of the mechanisms of 

transport of mass in the solid require of the experimental 

validation of the diffusion coefficients.  

    The calculation of the coefficients of diffusion with base 

in experimental results has assumed a profile of parabolic 

growth for each layer from the beginning of the process, 

nevertheless the nitrogen concentration take different way in 

each process and depends of each one.  If the nitrogen 

concentration in the surface evolves slowly, the condition of 

parabolic regime will not be observed during the initial stages, 

in addition will limit the precision of the calculation of the 

diffusion coefficients. 

        The nitriding attended by post-discharge, generates an 

atmosphere with excited neutral species or dissociated, these 

species produce a fast evolution of the nitrogen concentration 

in the surface [24-27]. 

    It has been observed that the atomic nitrogen presence in 

the post-discharge significantly increases the transference of 

mass to the solid in comparison with other processes. With 

base in obtained experimental results in iron  nitriding under 
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atmosphere  produced by post-discharge microwaves, the 

present work considers a one-dimensional model of kinetics of 

layer growth, studies the inverse problem to estimate the 

diffusion coefficients of each phase  from the consideration of 

the stabilization of the layers after a certain period of 

treatment, such consideration is also justified experimentally 

and taking into account the analytical expression from the 

kinetics of layer grow. 

    The experimental results generated by means of 

treatments attended by post-discharges generated by a 

microwave source also allow, to accurately determining values 

for the diffusion coefficients on the basis of the one-

dimensional model of growth kinetics of concomitant nitride 

layers.   

II. EXPERIMENTAL PROCEDURE 

    Samples were obtained from a commercial ARMCO iron 

bar (25.4mm in diameter and 7mm thick.  Mn 880ppm; C and 

P, 200ppm; and S 150ppm). Nitriding was carried out in post 

discharge microwave-generated plasma described elsewhere 

[25]. The general sequence of the nitriding experiments started 

with heating of the sample to 770 K in a tubular resistance 

furnace in a non oxidized and non nitriding atmosphere 

composed of  26Ar-80H2 sccm at  a total pressure of 900 Pa.            

    The applied and reflected power was 200W and 65 

respectively and the distance from the discharge point was 

7cm. Upon reaching the prescribed temperature, the 

atmosphere was switched to a mixture of 300N2-26Ar-80H2 at 

1200 Pa and recording of the nitriding time started. After the 

nitriding time was completed, the atmosphere was switched 

back to the initial non–oxidizing, non-nitriding atmosphere.  

III. CHARACTERIZATON 

    An overview of the morphology of the phase ´-Fe4N1-x 

by optical microscopy (OM) is shown in Figs. 1 (a-d). The 

micrographs correspond to samples treated for (a) 30, (b) 60 

(c) 180; y (d) 600 s. They allow us to observe more closely 

the evolution of the microstructure on the surface of the 

sample based on time and under conditions of constant 

treatment.  Fig. 1 shows the evolution of the surface structure 

with the nitriding time in a series of SEM top views. After 30 

s of nitriding, very small needles are observed on the surface 

(Fig. 1a). However, 30 s later; Fig. 1b shows that the surface 

is already fairly covered with nitrides, although some areas 

within the grains are still free of precipitates. After nitriding 

for 180 s, the surface view of Fig. 1c depicts an almost 

continuous network of needles. Finally, Fig. 1d, which 

corresponds to 600 s of treatment, displays a surface heavily 

covered with nitrides. 

 

 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Fig.1. Evolution of the surface structure nitrided from a top view of 

the sample:  (a) 30; (b) 60, (c) 180; and (d) 600 s. 
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It should be noted in these micrographs that the size of the 

needles does not change appreciably with time and that the 

coverage of the surface by nitrides mainly occurs by 

continuous needle nucleation, although some contribution also 

arises from branching of the ´-Fe4N1-x precipitates. The 

details of growth by branching are clearly displayed in Fig. 2, 

which also shows that the needles have a prismatic shape. 

 

 
Fig. 2. Details of surface needle growth of ´-Fe4N1-x by branching 

 

The evolution of the nitride layer can be followed in   Fig. 

3(a-d), which is a series of cross-sectional views 

corresponding to the surface micrographs of Fig. 1. 

The micrograph of cross section shown in Fig. 3a shows the 

growth phase  '-Fe4N1-x, whose morphology resembles that 

of a tooth or sharp cone. The thickness at the root of the cones 

corresponds roughly to the thickness of the needle on the 

surface, reaching lengths of 2 to 4  m and its size depends on 

the local value of the free energy in the growth zone. Gibbs 

free energy is the function that represents the energy stability 

of the phase, this in turn can be represented by the chemical 

potential. The migration of nitrogen in solid solution and the 

concentration gradient in the substrate depend on this energy. 

The crossing of the precipitates in some areas comes from the 

grain boundaries, regions of higher energy for nucleation and 

growth of precipitates. 

The micrograph in Figure 3.b shows the phase thickening        

'-Fe4N1-x in a cone shape, however, still can’t see any 

noticeable change in its length. The initial coalescence 

between the precipitates begins to take shape from the surface, 

as a consequence of increasing the treatment period. The 

growth profile of the acute phase  '-Fe4N1-x, with respect to 

its depth, is also an indicator of high initial concentration 

gradient that forms between the surface and solid. 

In the micrograph shown in Figure 3.c can be seen as a 

clear shift in terms of the initial morphology of the cone-

shaped nitrides. The sharp profile of the cones has practically 

disappeared, the thickening resulted in a globular-shaped 

structure present along the cut and which promotes the 

coalescence of nitrides, forming the beginning of an irregular 

front. In this area, the flow of N governed by the chemical 

equilibrium between phases leads to the evolution of a plane 

front growth. 

Figure 3.d shows a cross-sectional micrograph of the 

surface nitrided at 600 s. Note the initial formation of a 

globular precipitates irregular front that tends to form a 

compact layer from the coalescence of these. The average 

thickness of the front of  '-Fe4N1-x is approximately 4  m. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Fig.3. Cross sectional views corresponding to the surface 

micrographs: (a) 30; (b) 60; (c) 180; and (d) 600 s. 
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Fig. 4 shows the diffraction patterns obtained from X-ray 

analysis of the sample nitrided for a period of   180 s. We can 

see signs that clearly identify the presence ´-Fe4N1-x on the 

surface. It also shows the presence of meta-stable phase ´´, 

which precipitated during cooling . And obviously we can 

see the peaks corresponding to the ferrite matrix  iron in 

greater number. 

 

 
Fig. 4.  Pattern of X-ray diffraction of the sample nitrided for 180 s. 

 

    Fig. 5 presents a cross-sectional view of a sample 

nitrided for 120 min under the conditions described 

previously. The nitrides below the compact nitrides layers 

precipitated during cooling of the sample due to the 

desaturation of the ferrite, the width of this zone is between 

40 to 50 μm, and however the diffusion zone of nitrogen in 

the ferrite is near 3 mm. 

         
 

Fig.5. Cross sectional view of a nitride iron sample in postdischarge 

conditions. 

 

Fig. 6 presents a schematic representation of the evolution 

of the surface concentration C as a function of time, which is 

the initial concentration profile of the process. This figure 

show that a certain time t* is necessary to precipitate the ’ 

phase corresponding to limit of the solubility of this phase in 

the diagram iron-nitrogen. 

 

 

 

Fig.6. Sequence of initial nitride formation. (a) evolution of the 

surface concentration. (b) N concentration profile and surface 

structure right after Cs is reached. (c) Nitrogen concentration profile 

and initial stage of formation of the flat front by coalescence of 

nitrides 

 

IV. MODEL AND ITS CONSEQUENCES 

Let us propose a mathematical model which describes the 

layers growth during the post-discharge nitriding process. We 

suppose that the diffusion is one dimensional and planar and 

the temperature at every point in the specimen is identical 

during the whole process. This model presents five steps. The 

first step corresponds to a normal diffusion process which 

takes place before the formation of the layers '  ,   and  .  

The first step ends when the surface reaches the concentration 

SC  at a time 
*t  (Fig. 6a). This step is modeled by  

0,0,
2
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    Where  is the constant of the kinetic reaction and   

),( txC  represents the concentration of N .  
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Fig. 7. Schematic representation of concentration gradient as a 

function of depth for the case of two compact nitride layers where 

nitrogen is in solution in ferrite. 

 

   

The solution of (1)-(4) is given by 
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    A certain time 
*t should pass for the concentration to reach 

the umbra value SC , which follows from:       
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Let us put:     
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)(xf  denotes the concentration initial profile when the 

layers formation begins. 

The second step contains the beginning of the layers and 

interface formation (Fig. 7a) and is modeled by: 
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Where:  xxx ,,' are defined through 
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 are the largest values of the concentration C  

at the layers  ,  respectively. Mean while 1t  is defined by 

1

min1'1 ),( CtxC  , the smallest value of C  at the layer '  

      During the third step layers  ,'  grow and the interface 

between them moves following a moving boundary problem 

behavior (Fig. 7b) 
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  Here 2t  is defined by
2

min22 ),( CtxC  , the smallest 

value of C  at the layer . The layer  follows an standard 

diffusion process. 
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    By the end of this step the three layers are completely 

formed. 

The fourth step corresponds to the growth of the layers and 

layers and the movement of the interfaces according to the 

following moving boundary problem (Fig. 7c). 
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and  3t  is such that 
3

min33 ),( CtxC  , the smallest value 

of C  at the layer  . Notice that we are assuming 

321 ttt  , i.e. the interfaces stabilize in the indicated order. 

    The fifth and last step corresponds to a period previous to 

the layers growth “stabilization”, where the layers and 

interfaces follow the full picture of a moving boundary 

behavior (Fig. 7d). 
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 Once fifth step is over for large time 4t , the layers growth 

become negligible, which is justified from experimental 

essays and also analytically: interfaces move with velocities 

proportional to t/1 , which become smaller for large values 

of time. So the process arrives to a quasi-stationary stage, 

where variation 
t

C




 is very small. Moreover, from the fact in 

every stage diffusion equation fulfills:  
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and the rate of change of the concentration is positive, then 
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 and iC  for every t  is a convex function  in x , 

which is also decreasing, reaches its maximum and minimum 

values at the beginning and at the end of the phase 

respectively. 

 

V. SIMULATION OF THE CONCENTRATION PROFILE 

IN THE QUASI-SATATIONARY STAGE 

 

We propose: 
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    where ix  is the depth of which reaches each phase when 

quasi-stabilizes (experimental observation). im (integers 

greater or equal than two), , , , 1, 2,3a b c ii i i   are constants 

to be determined. 

    The form of (47) guarantees that the last two terms also 

satisfy the stationary stage equation 0
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    While the first term should be such that:                                                                                 

( ) ( ) im
m m a x xi i i i


 

2
1                                                (48) 

be very small for x  in the i-th phase. Form (47) is inspired by 

Goodman’s method. So, the problem is to determine 

relationships between mi , , , , 1, 2,3a b c ii i i   such that 

conditions for decreasing and convexity of the concentration, 

for jump and null net flow in the interfaces are fulfilled. More 
exactly we write down:   
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From the null net flow in the third interface it follows: 

03 b , so (49-51) take the form: 
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In straightforward fashion we got: 
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A. Lemma.  

 Function cxxbxxaxC m  )()()( 00
 , m integer 

greater or equal than two,  is decreasing and convex in an 

interval ],[ 0xx  if and only if:  
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  Numerical experiments have been conducted to choose 

suitable values for knm ,,  in (49-51). 
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VI. INVERSE PROBLEM OF COEFFICIENT IDENTIFICATION 

    To find diffusion coefficients 1, 2,iD i   we use the 

solution of (49-51) of the quasi-stationary problem and an 

optimization algorithm. We consider a generalized solution of 

the quasi-stationary problem in ),0( 3

1

0 xH and then 

minimize the functional associated to the norm in ),0( 3

1

0 xH  

:                                                                 
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subject to the restrictions: 
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(  small enough for the associated profile to be quasi-

stationary) 
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  which allows to find approximate values of 
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VII. NUMERICAL EXPERIMENTS 

  They were done in a PC at 900 Mhz, using  Matlab version 

6.5 regression programs. Results were compared to those 

obtained in a traditional fashion. 

Experiments yield that: 

a) Estimate is not sensitive to the increase of the number of 

measurements in the third phase.    

b) Estimate is very sensitive to the initial vector. It seems that 

an initial value of 
13 / DD near to 1000 is the best option, 

while for 
12 / DD  it does not matter the initial value when no 

errors are considered. 

c) Estimate needs at least two large weight coefficients in the 

objective function. One in the first or second phase and the 

other in third one when no errors are considered. 

d) Estimate is sensitive to measurement errors. A 

regularization process is needed to improve results. 

e) More numerical experiments are needed to confirm these 

preliminaries conclusions. 

 

ITER     IFUN            FMIN             ||G|| 

       0           1       130.46699365       148844719.91815180 
 1000     1002           3.95163563       4589.43828985 
 2000     2002           1.34832675       265.05001931 
 3000     3004           0.02426624       26808.27486805 
 4000     4004           0.00077306       653.60070554 
 4320     4324           0.00000000       0.00000190 
 

TERMCODE = 0  - Convergence to a local minima. 
Fdif 1 = 0.000007  Udif 1 = 0.000007. 
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