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Abstract - In this paper, the kinematic analysis of 
constructed assistive robotic leg for rehabilitation of patients 
who encounter the neurological injury is presented. In order 
to design an efficient new mechanism, studies were carried 
out to distinguish the human architecture and dynamics. In 
the study, the motion of a healthy physical subject in 
walking situation of 1 km/h speed was recorded. Thereafter, 
a novel robotic leg mechanism was developed to produce 
similar motion. The robotic leg is driven by a single actuator 
to drive both the hip and the knee joints mechanism. In 
order to verify the robot motion with respect to human 
motion, kinematic analysis of all robot’s joints and links are 
formulated and are simulated in MATLAB software. The 
results obtained from the kinematic analysis of the 
developed assistive robotic system show that its motion 
conforms to the motion and dynamics of a healthy human. 
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I. INTRODUCTION 
 
 The third and seventh causes of death in the world are 
stroke and accident, respectively. In USA for example, 
according to the American Heart Association and the 
National Heart, Lung, and Blood Institute (NHLBI), the cost 
of tending to people who suffer from cardiovascular 
diseases and stroke in 2009 is estimated to be $475.3 billion, 
making stroke a major financial burden to society. This cost 
includes both direct and indirect costs; direct costs include 
the cost of physiotherapists and other professionals, hospital 
and nursing home services, the cost of medications, home 
health care and other medical durables and indirect costs 
include lost productivity that results from illness and death. 
Patients with hemiplegia and palsy may not able to carry out 
the daily activities such as talking, walking, crouching and 
grasping; therefore, they need to improve their abilities by 
active and passive rehabilitation therapy iteratively and 
regularly. In passive exercises, the patient receive the 
rehabilitation exercises by physiotherapist; whereas, the 

active exercises are done by the patients. Unfortunately, 
although many attempts and researches have been done to 
prevent the people from accident and death, the number of 
stroke and injured patients who survive from these events 
which require rehabilitation services increase with time and 
also the number of specialists, physiotherapists and 
rehabilitation centers is not sufficient to respond to a large 
number of patients efficiently. Thus, after successful 
presence of robot in industries, the robotic knowledge has 
been applied in order to carry out the rehabilitant tasks 
efficiently and less costly. However, medicine and medical 
doctor must be involved in the development to assure the 
robot is employed in an ethical way [1]. 

In recent years, the attention on robotic rehabilitation has 
been increasing in order to train the patient base on their 
daily activities. However, because of some disadvantages of 
medical robots such as neglecting the social and 
psychological needs of patients, suppression the 
individuality and uniqueness of services, rejection of 
autonomous services, and increase of cost, they are not 
widely applied in medical and rehabilitation centers these 
days [1]. Hence, researchers have been trying to improve the 
interaction of robots and their environments and patients in 
order to carry out some beneficial repetitive exercises. 

Indeed, psychological feedback as one of significant step 
in medical robot design should be taken into account to 
assess the patients and their performance. Medical robot 
should be able to record and quantify patient’s performance 
and provide score, statistics, comparisons between normal 
human and tested patient as well as comparison between 
new and previous performance to show the patient’s 
progress. In addition, the feedback should able to motivate 
patients to utilize all their efforts in improvement; also it can 
inform the user and physiotherapist about movement errors 
and patients’ motion conditions. 

As the number of survivors from incidents such as 
accident, wars and strokes grows, the attention of 
researchers on developing rehabilitation robots for lower 
and upper extremity exoskeletons to help hemiplegic 
patients has been augmented, [2-7, 8]. Professor Sankai in 
University of Tsukuba for example, has developed a hybrid 
assistive leg (HAL-3) which assists the disabled in 
developing normal walking motion. He uses two DC motors 
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Fig: 14: Velocity vector diagram 

 
 

െ	:ݔ ஺ܸߠ݊݅ݏ஺ ൅ ௃ܸ/஺ܿߠݏ݋௃஺ ൅ ௄ܸܿߠݏ݋ଶ െ ௌܸ௛௄ܿߠݏ݋ௌ௛௄ ൌ 0
 (15) 
 
	:ݕ െ ஺ܸܿߠݏ݋஺ െ ௃ܸ/஺ߠ݊݅ݏ௃஺ ൅ ௄ܸߠ݊݅ݏଶ ൅ ௌܸ௛௄ߠ݊݅ݏௌ௛௄ ൌ 0
 (16) 
 
 
Case III (180° ൏ ଵߠ ൏ 180° ൅  :(ௌ௠௔௟௟ߠ

 
 

 
 
 
 
 
 
 
 
 

Fig: 15: Velocity vector diagram 

െ	:ݔ ஺ܸߠ݊݅ݏ஺ ൅ ௃ܸ/஺ܿߠݏ݋௃஺ ൅ ௄ܸܿߠݏ݋ଶ െ ௌܸ௛௄ܿߠݏ݋ௌ௛௄ ൌ 0
 (17) 
 
െ:ݕ ஺ܸܿߠݏ݋஺ െ ௃ܸ/஺ߠ݊݅ݏ௃஺ െ ௄ܸߠ݊݅ݏଶ ൅ ௌܸ௛௄ߠ݊݅ݏௌ௛௄ ൌ 0
 (18) 

 
 

Case IV (180° ൅ ௌ௠௔௟௟ߠ ൏ ଵߠ ൏  :(௦௧௢௣ିଶߠ
 
 
  
 

 
 
 
 
 
 
 
 

Fig: 16: Velocity vector diagram 
 
 

െ:ݔ ஺ܸߠ݊݅ݏ஺ െ ௃ܸ/஺ܿߠݏ݋௃஺ ൅ ௄ܸܿߠݏ݋ଶ ൅ ௌܸ௛௄ܿߠݏ݋ௌ௛௄ ൌ 0
 (19) 
  
െ:ݕ ஺ܸܿߠݏ݋஺ ൅ ௃ܸ/஺ߠ݊݅ݏ௃஺ െ ௄ܸߠ݊݅ݏଶ െ ௌܸ௛௄ߠ݊݅ݏௌ௛௄ ൌ 0
 (20) 

 
 

Case V (ߠ௦௧௢௣ିଶ ൏ ଵߠ ൏ 360°): 
 
 
 
 
 
 
 
 

 
 
 
 

Fig: 17: Velocity vector diagram 
 
 

െ:ݔ ஺ܸߠ݊݅ݏ஺ െ ௃ܸ/஺ܿߠݏ݋௃஺ െ ௄ܸܿߠݏ݋ଶ ൅ ௌܸ௛௄ܿߠݏ݋ௌ௛௄ ൌ 0
 (21) 
 
െ:ݕ ஺ܸܿߠݏ݋஺ ൅ ௃ܸ/஺ߠ݊݅ݏ௃஺ ൅ ௄ܸߠ݊݅ݏଶ െ ௌܸ௛௄ߠ݊݅ݏௌ௛௄ ൌ 0
 (22) 

 
Since the magnitudes of KV and AV are computed from 

(7) and (8), the values and direction of /Sh KV and /J AV are 

obtained using (12) and the known angular position of link 1 
( 2 ) and ߠ஺. The angular velocities of link 2 and link 3 can 

be found by analyzing the relative velocities of /Sh KV  and 

/J AV . Once the angular velocity of link 2 is calculated, the 

relative velocity /Bot KV can be obtained using (23) below.  

௄ܸ 

ௌܸ௛/௞ 
௃ܸ/஺ 

஺ܸ 

௄ܸ 

ௌܸ௛/௞ ஺ܸ 
௃ܸ/஺ 

௄ܸ 

஺ܸ 
ௌܸ௛/௞ 

௃ܸ/஺ 

௃ܸ/஺ 

௄ܸ

ௌܸ௛/௞
஺ܸ 
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4
/ /

2
bot K Sh K

LV V
r

  (23) 

 
Since of KBotV /  can be found, the magnitude as well as 

the direction of ankle velocity are obtained based on (24) 
through (27). 

 

/B B K KV V V   (24) 

 
2 2

/ / 2 /2 cos( )A K B K K B K Sh KV V V V V       (25) 

 
In addition, the angle between	 ௞ܸ and	 ஻ܸ	for different 

cases is obtained, using (18) with respect to Fig. 18 to Fig. 
22 in which also provide the direction of BV for each cases. 

 
2 2 2

1 /cos ( )
2

B K B K
B K

B K

V V V
V V

 


 


 
 (26) 

It can be seen from the figures that the value of ߠ஻ 
depends on the configuration of ஻ܸ,	 ௞ܸ and	 ஻ܸ/௞ for the 
respective cases. 

 
 
 

Case I (0° ൏ ଵߠ ൏  :(௦௧௢௣ିଵߠ
 

 
 
 
 
 
 
 
 
 

 
Fig. 18: Velocity vector diagram 

 
 

2[90 ( )]B B K       (27) 

 
 

 
Case II (θୱ୲୭୮ିଵ ൏ θଵ ൏ 180°): 

 
 

 
 
 
 
 
 
 
 

Fig. 19: Velocity vector diagram 

 

஻ߠ ൌ െሾߠ஻ି௄ െ ሺ90 െ  ଶ|ሻሿ (28)ߠ|
 
 
 

Case III (180° ൏ ଵߠ ൏ 180° ൅  :(ௌ௠௔௟௟ߠ
 

 

 
 
 
 
 
 
 
 
 
 

Fig. 20: Velocity vector diagram 
 
 

஻ߠ ൌ െሾሺߠ஻ି௄ െ ଶ|ሻߠ| െ 90ሿ (29) 
 
 
 

Case IV (180° ൅ ௌ௠௔௟௟ߠ ൏ ଵߠ ൏  :(௦௧௢௣ିଶߠ
 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 21: Velocity vector diagram 
 
 

஻ߠ ൌ ሾሺߠ஻ି௄ ൅ ଶ|ሻߠ| ൅ 90ሿ (30) 
 
 
 
Case V (ߠ௦௧௢௣ିଶ ൏ ଵߠ ൏ 360°): 

 
 

 

 
 
 
 
 
 
 
 
 
 

Fig. 22: Velocity vector diagram 
 
 

஻ߠ ൌ ሾሺ90 െ ଶ|ሻߠ| ൅  ஻ି௄ሿ (31)ߠ
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