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Abstract— The restriction on the Euclidian edge length is an
important consideration in the study of geographical network mod-
eling. We herein investigate a network model developed in a one-
dimensional (1-D) lattice, in which the restriction on the Euclidian
edge length is a result of dynamical processes on the network, the
prosperity of random transports represented by a random walker,
and the ageing of edges. Based on numerical calculations, we show
that the time evolution of the distribution of the edge length is
subject to the 1-D heat conduction equation with a radiation term.
According to this equation, the typical equilibrium length of edges is
determined by a balance between the diffusion rate and the decrease
rate of the edge length density. We can relate these rates to a
model parameter that adjusts the aging of edges by comparing the
solution of the equation with numerical results. The calculation of
the mean shortest path length and the sum of the edge length along
the shortest paths shows that the model assumption provides a large
traffic capacity on the network and an automatic mechanism causes
a natural extinction of the unapproachable area for the walker with
the consequent removal of circuitous routes with long edges. The
calculation of the clustering coefficient also reveals that the local
clustering strength on each vertex is stabilized for a certain value,
regardless of the vertex degree. These global and local properties of
resulting networks emerge spontaneously from random events in the
network, the movement of the random walker, and the aging of edges.

Keywords— Network modeling, Euclidian length of edges,
heat conduction equation, random walk, clustering coefficient.

I. INTRODUCTION

D IVERSE systems in the real world, such as the Internet,
species that interact socially, technological systems, and

biological systems, can be modeled by networks in which
individuals constituting the system are regarded as vertices
and interactions between individuals are regarded as edges [1],
[2], [3]. For the last two decades, common network structures
in different systems have been discovered. For example, the
power law observed in vertex degree distributions of various
systems is known as the scale-free property (the vertex degree
indicates the number of edges connected to the vertex), and
networks with both a large clustering coefficient and a small
mean shortest path length between vertices are known as
small-world phenomena. Studies on processes in networks
have clarified that network structures play an important role in
the functions of processes such as spreading processes, syn-
chronization, and tolerance to errors and attacks [4]. Therefore,
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studies on network structure can help to provide fundamental
insights in various research fields.

Network modeling is an effective tool for clarifying the
principles behind common properties of various networks.
For example, the scale-free property can be described using
a simple rule, that is, vertices of large degree tend to gain
more new links than vertices of small degree [5]. While
random networks intrinsically have small mean shortest path
lengths with respect to network size, adding small fractions
of random links can reduce the mean shortest path length,
even for lattice type geographical networks [6]. However, the
simple addition of random links does not allow for sufficient
consideration of the geographical properties of networks,
because this produces only a uniform distribution of edge
length. The Euclidian edge length distribution is an important
characteristic in real geographical networks, such as airport
networks and highway networks [7], [8], [9], because the Eu-
clidian edge length distribution reflects the spatial constraints
on the network topology that are specific to the system. An
interesting problem is encountered when rewiring between
vertices in a lattice. Specifically, the question arises as to
what distribution of length of edges added to a lattice can
lead to small-world property in geographical networks [10],
[11]. However, previous studies introduced a specific form of
the edge length distribution in the first place. The emergence
process of the Euclidian length distribution of edges has not
yet been investigated.

In the present paper, we investigate the time evolution of the
edge length distribution in a network model in which random
walkers’ movements stimulate shortcuts between vertices on
lattice points. This model was proposed in order to consider
the increase and decrease in the strength of links in networks
due to the prosperity of random transports, and this model
was primarily investigated with respect to topology, such as
the degree distribution [12]. Modified versions of this model,
in which the dimension of the initial lattice was extended [13]
and a field affecting the random transports were considered in
a one-dimensional (1-D) lattice [14], have been also investi-
gated. However, the geographical aspects of networks, such as
the Euclidian length of edges, have been overlooked. Although
the present paper considers only a special case of a 1-D lattice,
the model provides an example of the emergence process of
the edge length distribution resulting from a dynamical process
in a networked system.

The remainder of the present paper is organized as follows.
Section II explains the model. In Section III, the time evolution
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of the graph and the degree distribution are reviewed. Although
most of the results presented in Section III have been reported
in our preceding study [13], these results are needed in order
to understand the following sections. The primary novel results
of the present paper are introduced in Sections IV and V. In
Section IV, phenomenological equations describing the time
evolution of edge length distribution are derived from an
investigation of the time series of the maximum and mean
lengths of edges. In Section V, after an explanation of the
mean shortest path length between vertices, the sum of the
edge length along the shortest path length, and the clustering
coefficient, the phenomenological equation is interpreted based
on the numerical results obtained for these quantities. Section
VI presents a summary of the results.

II. MODEL

The rules that generate the graph investigated in the present
paper are as follows [12]. Initially, a random walker starts
from one vertex in a 1-D lattice. The walker is able to move
randomly from one vertex to another directly connected vertex
in one time step. The process that regulates the addition and
removal of edges at each time step is divided into the following
three parts:
Æ Creation of edges. At each time step, a shortcut is created

between the vertex at which the walker is currently located
and the vertex at which the walker was located two times
steps earlier (shortcut creation) as long as an edge does not
already exist between these vertices. The random walker is
assumed to be able to pass through not only edges in the
initial lattice but also newly created edges. In the following,
we refer to these vertices, which have gained additional
edges due to the passage of the walker as vertices with
created edges. In the present paper, we focus primarily on
the subgraph that consists of vertices with created edges.

Æ Strengthen of edges. Each edge is associated with an integer
’strength’. Initially, strength � is assigned to newly added
edges. At each time step, the strength of two edges is
increased by �. One of these edges is the edge that the walker
has passed. The other edge is the edge, if such an edge
already exists, that connects the vertex at which the walker
is currently located and the vertex at which the walker was
located two times steps earlier.

Æ Aging of edges. At each time step, each strength of the
edge is decreased by � with probability ��. Edges that
attain strength � are removed, with the exception of edges
constituting the 1-D lattice, which exist from the initial
time. These exceptional edges are assumed to maintain their
strength with the minimum value of �. This assumption
guarantees the permanent maintenance of the 1-D structure
in the resulting networks.

The principal characteristic of this model is that the increase
and decrease in the vertex degree is determined by the
frequency of the walker visiting the vertex. While vertices
of large degree are likely to attract the walker via their
edges, vertices lose their added edges continuously without
the walker’s visiting.
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Fig. 1. (a) Time dependence of the sum of degrees on vertices with created
edges � and the number of vertices with created edges � . In the first stage
of the network evolution, � is described by ������� , which is indicated by
the lower straight line. The relation � � �� indicated by the upper straight
line implies the creation of a nearly complete subgraph. Just after the relation
� � �� no longer holds, the next stage of the network evolution begins. (b)
Typical degree distribution of the subgraph ���� (number of vertices in the
subgraph of degree �) in the first stage of the network evolution (� � �����

, �� � �����). (c) Typical degree distribution of the subgraph in the third
stage of the network evolution (� � ��� � ��� , �� � �����). The plot of
��� � 	� �� is omitted in these figures.

III. TIME EVOLUTION OF THE GRAPH

The time evolution of the graph is obviously dependent on
the rate of diffusion of the walker because a vertex over which
the walker has passed can gain a new edge at each step. Note
that, as explained in the previous section, the walker is able to
pass not only through edges constituting the initial lattice but
also through shortcuts that were created by movements of the
walker. Therefore, the movement of a random walker is always
restricted by past movements of the walker. Consequently, the
subgraph consisting of all of the vertices with created edges,
which is embedded in the 1-D lattice, evolves through three
distinct stages, as follows.

References [13], [15] reported that, in the first stage of the
time evolution, a nearly complete subgraph spreads in the 1-
D lattice such that � � �������, where � is the number
of vertices with created edges and � is an integer denoting
the number of time steps. This behavior is illustrated in Fig.
1(a) as a straight line in the log-log plot. The nearly complete
subgraph consists of � continuously aligned vertices, most of
which are connected to each other, that are centered at the
start point of the walker. The vertex degree distribution in this
stage is a function with a peak at � (Fig. 1(b)).

The next stage of network evolution begins when the condi-
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tion � � �
�
���� is satisfied. This stage is characterized by

the collapse of the nearly complete subgraph created during the
first stage owing to the impossibility of maintaining a complete
subgraph under the condition whereby � � �

�
����. This is

because, under this condition, the rate of decrease of the sum
of edge strengths ����� � ���� is larger than 2, the rate
of increase of the edge strength per time. The balance of the
decrease and increase of the sum of strength on the edges
leads to stagnation of the increase in the number of created
edges. Consequently, the number of created edges fluctuates
around an equilibrium value, whereas the number of vertices
with created edges continues to increase gradually.

In the third stage of the network evolution, the number of
vertices with created edges also reaches an equilibrium value.
The equilibrium state of the number of created edges and
the number of vertices with created edges also implies an
equilibrium distribution of the vertex degree with a constant
mean vertex degree. Fig. 1(c) illustrates one example of
such a degree distribution. Note that the broad shape of the
distribution is different from binary distributions obtained by
random linking of � vertices.

As might be expected, the time evolution of the edge length
distribution is closely related to the change in structure of the
subgraph described herein. Therefore, these three stages of
network evolution must be kept in mind in order to interpret
the calculations in the following sections.

IV. DISTRIBUTION OF EUCLIDIAN LENGTH OF EDGES

The Euclidian distance between two vertices is assumed
to be measured in the initial 1-D lattice, in which all of
the vertices are located at a constant interval of � along a
straight line. Then, the Euclidian edge length distribution ����
(number of edges of Euclidian length �) always takes an infinite
value at � � � for the free boundary condition of the 1-D
lattice. Therefore, only edges longer than � are considered in
the following discussion.

A. Time Series of the Maximum Edge Length and the Edge
Length Distribution

In the first stage of network evolution, an analytical form of
the Euclidian edge length distribution can be easily obtained
as ���� � �� � �� for �� � � � � � �� and ���� � � for
�� � �� due to the simple structure of the nearly complete
subgraph. The maximum length of edges, which is a parameter
that characterizes the edge length distribution in this stage,
is subject to time dependence proportional to � � ����, as
explained in the previous section. However, the distribution
begins to change to a broad-type distribution after entering the
second stage of network evolution. The numerically obtained
time series of the maximum length of edges yields some
valuable information about the edge length distribution, as
follows.

Figure 2(a) shows an example of a time series of the mean
edge length and the maximum edge length, which change
irregularly with respect to time. Therefore, the time series
of the shape of the distribution also changes irregularly with
respect to time, corresponding to the irregular changes in
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Fig. 2. (a) Example of a time series obtained for the mean edge length (dotted
line) and the maximum length (solid line) when �� � ����. (b) Edge length
distributions ���� at � � � � ��� (in the third stage of network evolution)
averaged over ��� calculations when �� � ����.
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Fig. 3. (a) Example of a time series obtained for the mean edge length
(dotted line) and the maximum length (solid line) when �� � �����. (b)
Edge length distributions ���� at � � �� ��� (in the third stage of network
evolution) averaged over �� calculations when �� � �����.
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the maximum length. However, the distribution obtained by
repeated calculations suggests that the edge length distribution
can be approximated by an exponential decay (Fig. 2(b)). As
�� decreases, a detailed understanding of the changes in the
maximum length begins to appear, as shown in Fig. 3(a). The
figure shows a sudden decrease in the maximum length of
edges after a slow increase, which occurs repeatedly. This
result implies that edges that exceed a certain length can exist
only in an unstable state, while the distribution obtained by
repeated calculation has a finite probability for the existence
of such long edges (Fig. 3(b)).

The sudden decrease in the maximum length implies that
the longest edge that connects vertices that are far from each
other has been removed. One example of such a removal of
long edges is illustrated in Fig. 4. On the other hand, the
slow increase in the maximum edge length and mean edge
length implies that edges tend to be rewired to longer edges.
The exponent that characterizes the shape of the distribution
is expected to be determined by competition of these two
effects, namely, the removal and expansion of edges. The
parameter that adjusts these conflicting effects is ��. Figure
5 shows the dependence of the characteristic length of edges
on ����, according to which the edge length distribution is
approximated as

���� � ��	 ��������� (1)

where ���� is regarded as a characteristic length of edges, and
parameter � is estimated to be approximately �	�
 in Fig. 5.

B. Phenomenological Equation Describing Edge Length Dis-
tribution

The concept that the typical edge length is determined by
the balance between the rate of removal of edges and the
expansion rate of the edge length provides a means by which
to deduce an equation describing the time evolution of the edge
length distribution. According to this concept, the increment
of the number of edges of length � is the sum of the number
of edges that have been rewired from edges of length � � �
or � � � to that of �, and the net number of edges of length
� that have been removed. Therefore, given that changes in
the distribution with respect to � and � are slow enough to
enable the continuous approximation to be applied, the balance
equation for ���� �� is


���� ��


�
� �
j��� ��


�
� ����� ��� (2)

where j��� �� is the flux of the edge length density with respect
to the � axis, and � is the net decrease in the ratio of edges
of length � per unit time.

For the detection of the behavior of the flux j��� �� it is
helpful to calculate the temporal rate of increase in mean
length of edges when �� is so small that a sudden decrease
in the maximum length is hardly noticeable. As shown in Fig.
6, the mean and maximum edge lengths are approximately
proportional to � ����. In other words, the changes in � behave
as a normal diffusion. This is not a trivial result, because this is
not the diffusion of the random walker, but rather the diffusion
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Fig. 4. Two subgraphs realized in the time series indicated in Fig. 3. The
oval enclosing the vertices appears strictly for the purpose of visualization,
and all vertices are actually assumed to be aligned along a straight line with a
constant interval. (a) Subgraph near a local maximum point of the maximum
edge length (� � 	��� ���). (b) Subgraph just after the sudden decrease of
the maximum edge length (� � 	�� � ���) showing that some long edges
have been removed.
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Fig. 6. (a) Log-log plots of the time dependence of the mean edge length
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approximately 0.5. (b) Normalized edge length distribution 	 ��� obtained
when �� � �����. At � � ��� in the first stage of network evolution, as
expected, the distribution is triangular. From � � � � ��� to � � � � ��� ,
the width of the distribution spreads at a rate of ��� � ���� , as shown in (a).

of the length of the created edges. The changes in � are a
consequence of the cumulative effect of the past movement of
the random walker. As a result, the flux is expected to be of
the following form:

j��� �� � ��
���� ��


�
� (3)

where � is a parameter describing the rate of diffusion of
the edge length in � space. With (2) and (3), we obtain a
phenomenological equation describing the time evolution of
the edge length distribution, as follows:


���� ��


�
� �


����� ��


��
� ����� ��	 (4)

This equation is similar to the heat conduction equation for a
one-dimensional thin rod with outer heat conduction through
the lateral surface of the rod [16]. The boundary condition is

��� ��� �� � �� (5)

�

��� � �� ��


�
� ��

�
���� ��� � ���� (6)

where the number of created edges � is approximately con-
stant because the graph is entering the second or third stage of
evolution. The boundary condition (6) expresses the situation
in which the decrease in the number of edges is compensated
by the creation of new edges with the shortest length. However,
the left-hand side in (6) must be estimated using a region near
� � �, but not just on � � �, because � � � is so close to the

singular point � � �, at which ��� � �� ��, that the theory
does not work at this point.

Comparing the stationary solution for (4), � ��
�

����, with
the numerical results (1), parameters � and � can be related
to �� in the following form:

��� � �����	 (7)

Here, the decrease ratio � can be related to the lifetime of
the edges in � space, � , via the following relation: ��� �� � �
��� ��� ������ � ���� as

� � ���	 (8)

Considering that � is expected to decrease as �� decreases,
Eqs. (7) and (8) show that the lifetime � is a very rapidly
increasing function as �� � �.
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with a period of 
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Edge length distribution obtained by 100 calculations (� � ��� , � � ��� ,
and � � 	 � ���) when the periodic boundary condition is imposed. The
analytical solution for (9) with the initial condition of triangular form ��	


�
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is superimposed, where � � ��, 
 � ��, � � 	�, 	��, or ��� (solid
lines). Decreases in the number of edges that are shorter than a certain value
are compensated by increases in the number of edges that are longer than the
value.

Here, the question arises as to whether Eq. (4) is applicable
to cases with different boundary conditions. However, Eq. (4)
is not applicable the case of a periodic boundary condition. A
periodic boundary condition is achieved by taking � vertices
located on a ring as an initial lattice. In this case, the length of
the created edges is limited in the range � � � � ����. Figure
7(a) illustrates a typical graph created under the condition that
all the number of vertices � in the lattice is approximately
equal to the equilibrium number of vertices with created edges.
The figure shows intuitively that the maximum length of the
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edges takes the value of the upper boundary ��� and that
the mean length of the edges also takes an approximately
constant value. This behavior suggests that the net decrease
ratio in edges � is approximately zero because the net removal
of edges is considered to be accompanied by the fluctuation
in the value of the longest length of edges. Then, the phe-
nomenological equation for edge length distribution for this
case is as follows:


���� ��


�
� �


����� ��


��
	 (9)

Here, the boundary condition for ���� is the adiabatic con-
dition, ���������

�� � ����	������
�� � �, because the number

of created edges is nearly constant after entering the second
stage of network evolution. The numerically obtained time
evolutions of the edge length distribution, some of which
are illustrated in Fig. 7(b), are consistent with the analytical
solution of (9) for both the adiabatic boundary condition and
the initial condition, wherein ���� � � � �, which is the
edge length distribution in the first stage of network evolution.
(The initial time for the analytical solution must be adjusted
artificially to the time when the second stage begins.) There is
a mismatch between the analytical solution and the numerical
data, however, especially in the region of � � � � �. The
reason for this mismatch is that the number of edges is
influenced by the singular point at which � �� � �� � � for
the periodic condition and at which � �� � �� �� for the free
boundary condition. Therefore, it is not possible to apply (4)
and (9) directly to this region. This region acts as a heat bath,
which provides new edges of small length to the � space for the
free boundary condition, whereas, for the periodic condition,
the area outside this region is not seriously affected by this
region.

Returning to the free boundary cases, we must be aware that
there is no reason to distinguish the free boundary condition
and the periodic boundary condition until the number of
vertices with created edges reaches the period interval of the
1-D lattice. The maximum length of edges is limited by the
periodicity when the periodic boundary condition is imposed,
and the maximum length in the second stage of network
evolution is also limited by the range of location of vertices
that can add created edges. Therefore, at least until the end
of the second stage, the appropriate equation that describes
the time evolution of edge length distribution must be (9)
even for free boundary conditions. After entering the third
stage of network evolution, parameter � in (4) must begin
to approach its equilibrium value. Although an appropriate
equation to describe the time evolution of � has not yet been
found, the changes in � can be related to the differentiation
of the edge length distribution through the boundary condition
(6).

V. OTHER PROPERTIES

In this section, some properties that provide valuable in-
formation on the network topology, namely, the shortest path
length, the sum of the edge lengths along shortest paths, the
clustering coefficient, and the mean local clustering ���� over
vertices of degree �, are determined.

A. Shortest Path Length and the Sum of Edge Lengths on the
Shortest Path

The shortest path length between vertex � and vertex �, � 	
 ,
is defined as the minimum number of edges on paths that
connect � and �. The mean shortest path length �� 	
� is then
defined by

��	
� � �

��� � ��

�
	�	


�	
 � (10)

where the summation is performed over vertices with created
edges, � and �, because our interest is in the subgraph
consisting of vertices with created edges.

The shortest path length is reduced by adding new edges
to the initial lattice for any � and �, but the sum of Euclidian
edge lengths along the shortest path tends to become larger
than that for the initial lattice for any � and �, because we are
treating a 1-D lattice. We estimate the degree of expansion of
the Euclidian distance via the shortest path as follows:

�
	
�

�
	


�
�

�

��� � ��

�
	�	


	

�	


� (11)

where 	
 is the sum of Euclidian edge lengths along the
shortest path between vertex � and vertex � in the subgraph,
and �	
 is that for the initial lattice. This formula has been used
to investigate the efficiency in spatial networks [17]. We also
calculate the mean edge length over edges along the shortest
path �	
��	
�,

�	
��	
� � �

��� � ��

�
	�	


	

�	


� (12)

which express the length of typical edges that frequently occur
in shortest paths.

Figure 8 presents the results of the calculation of these
values for graphs for which the changes in maximum edge
length are presented in Fig. 3. Figures 8(a) and 8(b) show
that both

�
	
�

�
	


�
and �	
��	
� keep pace with the changes

in mean length of edges with considerable accuracy. Con-
sidering that increases in mean edge length are associated
with increases in the maximum length of edges, as mentioned
in Subsection IV-A, this result implies that the creation of
long edges contributes to the production of short paths with a
circuitous route measured by the edge length. As for the mean
shortest path length, which is shown in Fig. 8(c), the change in
the shortest path length does not exhibit a sensitive response
to changes in mean edge length. Instead, Fig. 8(c) exhibits
instantaneous increases in mean shortest path length, which
implies that graphs with a large mean shortest path length
are in an unstable state, the structure of which can only be
maintained for a short time interval. (For example, based on
Fig. 8(c), ��	
� � � � � appears to be unstable.)

These results for time dependence can be interpreted based
on the assumptions in the model, according to which it is
difficult for the walker to reach to a certain vertex via several
edges, although there is no limit on the length of edges that
the walker passes. Therefore, the movement of the walker
can respond to increases in ��	
� by not moving toward an
unapproachable area, although the movement of the walker is
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Fig. 8. Time dependence of the degree of expansion of Euclidian distance
via the shortest path
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. (b) Mean shortest path length ����.

not influenced by the edge length that the walker passes. As a
result, instantaneous increases in ��	
� can be interpreted as a
sign of removal of a part of the subgraph consisting of vertices
with created edges, because the unapproachable area for the
walker continuously loses created edges. In comparison, the
results for

�
	
�

�
	


�
and �	
��	
� suggest that increases in

these values only increases the risk of accidental creation of
unapproachable areas, although these increases do not directly
affect the movement of the walker.

For cases of the periodic boundary condition, not only �� 	
�,
but also

�
	
�

�
	


�
, exhibits stable changes in time, as indicated

in Figs. 9(a) and 9(b). In this case, in contrast to the cases of
free boundary conditions, control of the maximum length of
edges induced by the periodicity of the lattice results in a
stabilization of changes in the mean shortest path length. The
stabilization of changes in these values provides a basis for
the condition � � �, which was assumed in the derivation
of (9), because stabilization of changes in mean shortest path
length is equivalent to controlling the occurrence of areas that
are unapproachable by the walker.

(a) (b)

i
a

b

i
a

b

Fig. 10. Processes adding strength to edges connecting two adjacent vertices
of vertex �. (a) Walkers passing through an edge that connects two adjacent
vertices, � and �, of vertex �. This process strengthens the edge between �
and � by � (b) Walkers passing vertex �. This process strengthens not only
edges passed by the walker but also edges between � and � by �.

B. Clustering Coefficient

The local clustering strength �	 of a vertex � of degree �	
is defined as follows:

�	 �
��	

�	��	 � ��
� (13)

where �	 denotes the number of edges that directly connect two
adjacent vertices of vertex �. The mean clustering strength �
is defined as the average of �	 taken over all vertices under
consideration, and ���� is defined as the average of � 	 taken
over all vertices of a given degree �. The clustering strength
measures the local group cohesiveness and yields valuable
information on the networks structure because ���� exhibits
non trivial behavior in real networks. For example, the power
law behavior in ���� is reported for several cases, including
biological networks [18] (���� � ���), the language net-
work [19] (���� � ���), the Internet at the AS level [20]
(���� � ��
���), and technological networks [19] (���� is
nearly constant).

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 5, 2011 564



0 1 2 3 4

x 10
6

0

0.2

0.4

0.6

0.8

Time

C

5 10 15 20 25 30 35
0

0.2

0.4

0.6

k (degree)

C
(k
)

10 20 30 40
0

0.2

0.4

0.6

k (degree)

< 
C
(k
) 
> t = 3 ∼ 5 × 10 6

t = 1.5 × 10 6
(b)

(c)

(a)

Fig. 11. Mean clustering strength � and ����. The calculation is performed
using the same data as in Fig. 3 (�� � �����). (a) Time dependence of mean
clustering strength when �� � �����. The instantaneous increase observed
at � � 	�� � ��� corresponds to a temporal reduction in the subgraph by
the removal of edges and vertices with long created edges on a broader scale
than that shown in Fig. 4. (b) ���� and the standard deviation of �� with
vertex degree � (� � ��� � ���). (c) ���� averaged over 	�� graphs in
� � � � �� ��� and the standard deviation of �� with vertex degree �. The
fitting curve superimposed in this figure is estimated as � ������ .

In the model under consideration, ���� can be related to
the frequency of the passage of the walker near a vertex of
degree � by considering the balance between the decrease in
the sum of the strengths over edges that directly connect two
adjacent vertices of vertex � and the increase in this sum �� 	,

��	 �
�	��	 � �����	���

�
	 (14)

Here, ��	 can be interpreted as being proportional to the
frequency of the passage of the walker over or near vertex �,
because the passage of such a walker strengthens edges that
directly connect two adjacent vertices of vertex � (See Fig.
10). Of course, the identity (14) does not always hold for all
vertices �. The identity is only valid for cases in which the
rate of change of the right-hand side is far smaller than the
time scale ����.

Figure 11(a) illustrates the time dependence of the mean
clustering strength over all vertices with created edges. As
shown in the figure, after the collapse of the nearly complete
subgraph, the mean clustering strength immediately reaches
its equilibrium value, which is in the range �	� to �	�.

Figures 11(b) and 11(c) shows the dependency of ���� on
the value of vertex degree �. Roughly speaking, the figure
shows that ���� can take large values regardless of the value
of vertex degree �, although the ��dependence is estimated
to be � ��
��� in the calculation. As � increases, the standard

deviation of ���� decreases. This constancy of ���� with
respect to � implies that the time dependence of the local
clustering strength of a vertex of large degree is also nearly
constant with respect to time, because the vertices of the
largest � must have evolved slowly via vertices of smaller
vertex degrees. Therefore, the results support the validity of
identity (14), especially when � is large. The constancy of
���� with respect to � and (14) reveal that the frequency
of the passage of the walker near vertex �, �� 	, depends
roughly on � in the form � ��. Such an ability of vertices
of large degree to attract a walker is thought to be necessary
for the long lifetime of such vertices of large vertex degree,
are associated with the occurrence of long edges. The creation
of shortcuts caused by the movement of the walker provides
not only a control of the global topology of the subgraph, but
also stabilization of the local structure such as ����.

VI. SUMMARY AND DISCUSSION

We have investigated the distribution of Euclidian edge
length in networks generated by shortcuts created in a 1-
D lattice after traces of a random walker on the network.
We found that the edge length distribution ���� �� evolves
according to the three stages of the time evolution of the graph,
where � is the length of edges and � is a time variable.

In the first stage, in which a nearly complete subgraph
embedded in the 1-D lattice is created by the movement of
the walker, the edge length distribution takes a triangular form
���� � � � �, where the number of vertices with created
edges � evolves as � � �������. In the second stage, where
the nearly complete subgraph collapses while maintaining
the number of created edges, the edge length distribution
begins to be subject to the heat conduction equation (9)
with the adiabatic condition at � � �. (The theory is not
applicable to the interval near the singular point � � �, where
��� � �� ��. Therefore, the boundary condition is imposed
on � � �, but not just on � � �.) After entering the third
stage, in which not only the number of created edges, but
also the number of vertices with created edges, are in an
equilibrium state, a radiation term ������ �� appears in the
heat conduction equation indicated in (4). As a result, for a
stationary condition �

������ �� � �, the solution ���� � � ��
is an exponential function that shows that the equilibrium
distribution is stabilized by the balance between the diffusion
rate of the edge length and the lifetime of edge length in
the � space. Compared to the numerically obtained data, we
concluded that �� � �����, where � is the lifetime of the
edges in � space, and � is the rate of diffusion of the edges
in � space, which shows that � increases rapidly as �� � �. If
the maximum length of edges is limited by the periodicity of
the initial lattice with a period smaller than the characteristic
length of edges determined by the above case, the equilibrium
distribution of the edge length is a uniform distribution that is
a stationary solution of (4).

Considering that the time scale of changes in the edge length
distribution is far larger than that for the movement of the
walker, the diffusion image of edges in � space will never be
realized without the frequent visitation of the walker to each
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vertex with created edges. In other words, the diffusion image
is a consequence of the statistics of the walker visiting vertices.

The calculation of the mean shortest path length suggests
that the subgraph is maintained in a state such that the
walker can easily visit all vertices in the subgraph. Such
a large traffic capacity enables the subgraph to exist in a
widespread structure in the 1-D lattice as well as the long
lifetime of vertices of large degree. Even if an unapproachable
area for the walker accidentally appears in the subgraph, the
unapproachable area will immediately become extinct. Such a
natural extinction of the unapproachable area for the walker
is associated with the removal of a number of edges and
circuitous routes with long edges. The movement of the walker
provides the subgraph with an automatic control with which
to maintain the large traffic capacity in the subgraph. The
calculation of the clustering strength also shows that ����
takes large values regardless of the value of vertex degree
�. This result not only indicates that that movement of the
walker stabilizes the local structure of the subgraph, but is also
considered to be an indicator of such a large traffic capacity
for every vertex in the subgraph.

Note that 1-D lattices are a very special case. According to
previous research [15], similar models on two-dimensional and
three-dimensional lattices exhibit different behaviors regarding
the traffic capacity of the subgraph, even when �� � �.
Therefore, the results obtained in the present study should be
considered to be unique to 1-D cases.

Note also that the random transports modeled by a random
walker are extreme in that the vertices are only waiting
for visits by the transports. Transports (or transmission of
information) in networks can be modeled in various manners.
With respect to the random walker model, a walker might
be aware of the length of edges that the walker passes. The
development of stochastic models of networks considering
such transports should therefore be an interesting subject to
study.
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