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Abstract—In automotive applications large-scale nonlinear dynam-
ical models are utilized for hardware-in-the-loop simulations and
model-based controller design. A projection-based order reduction
of these models, on the one hand, yields substantial advantages in
computational speed and on the other hand, simplifies the controller
design procedure. In this work a mathematical-empirical approach is
chosen for the order reduction of a real-time diesel engine model. It
is based on recorded time-snapshots for typical system excitations.
Flat and nonlinear Galerkin approximations are obtained by projec-
tion onto a lower-dimensional sub-space. In the nonlinear Galerkin
approach a novel scheme for the reconstruction of the omitted states
is introduced. It makes use of the local model parameters in the
local Jacobian matrix, obtained from a linearization of the complete
nonlinear model for various points of a local model network. The
results from the application of the reduction methods to the engine
model are presented and discussed for different reduced model orders
and the benefits of the iteration scheme are demonstrated.

Keywords—Diesel engine modeling, Model order reduction, Sin-
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I. I NTRODUCTION

Modern internal combustion engines are very complex sys-
tems with a variety of different calibration parameters and
actuators. Especially regarding today’s rigorous legal emis-
sions regulations, conflicting goals between fuel efficiency,
driveability, performance and emissions must be handled (see
Fig. 1), which is a very challenging task for control engineers
[1],[2].
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Fig. 1. Modern diesel engine’s conflicting goals

The mathematical models used in the automotive industry

are often deployed for offline and online simulation of the
real engine behavior. They mostly comprise nonlinear ordinary
differential equations and are typically utilized in practice
using commercially available modeling and simulation tools.
Online simulations require real-time capable models which
are computationally very demanding due to their extensive,
nonlinear structure. These models are often run in hardware-
in-the-loop applications, using the engine model on a test
bench for the validation of the engine control unit (ECU)
performance, and frequently serve for model based controller
design [3],[4]. They require very powerful and fast numerical
integration algorithms. The main requirements for such real-
time engine models are: the ability to sufficiently reproduce
the system’s main dynamic behavior, computational speed, and
numerical accuracy and stability. From these standpoints a re-
duction of the complex nonlinear model to a simplified version
only containing the main dynamic characteristics seems to be
a very promising approach for subsequent online hardware-in-
the-loop operation as well as controller design procedures.

The main idea behind model order reduction techniques
is to simplify the original system to its dominating dynamic
modes by significantly reducing the model order. There exists
a multitude of different model order reduction techniques
in literature, some of which are specified in section II. In
this work a model order reduction will be applied to a real-
time heavy-duty diesel engine model. The engine features a
single-stage turbocharger and exhaust gas recirculation (EGR),
and measurements can directly be acquired at the test bench
for the parameter identification. It offers highly nonlinear
dynamics through a wide operating range in engine speed
and torque and constitutes a well-suited application example
for the performance evaluation of model order reduction
approaches. Two powerful methods are applied: the linear
(flat) and the nonlinear Galerkin approximation methods. In
the application of the nonlinear Galerkin method, a novel
approach for the iterative solution of the nonlinear invariant
manifold is adopted. It is based on the idea of decomposing
the operating range into single subdomains (see section III)
where the local model parameters in the local Jacobians are
obtained by numerical linearization of the nonlinear model.
The local Jacobians are assumed to be constant within each
subdomain and then utilized for the iterative solution in the
nonlinear Galerkin manifold (see section V). This approach
provides substantial advantages concerning computation time,
since the local Jacobians can be calculated from the original
model in an offline a priori linearization. Direct simulation
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outputs from the original nonlinear model for all states are
used in the snapshot method for the assembly of the projection
matrices (see section IV-D).

The paper is structured in the following way: in section
II the basics of model order reduction with an overview of
state-of-the-art techniques are presented. Then, in section III,
the fundamentals of local model structures of nonlinear model
domains are introduced. Section IV describes the principles
of the flat and nonlinear Galerkin methods and shows the
procedure of the snapshot methodology for the composition
of the projection matrices calculated from a proper orthogonal
decomposition. Section V deals with the iteration on the
nonlinear invariant Galerkin manifold using the local Jacobian.
In section VI the results of the application of the Galerkin
methods to the engine model are given and the performances
compared to each other. Section VII gives a conclusion and
an outlook to forthcoming work.

II. M ODEL REDUCTION SCHEMES

When dealing with large, complex nonlinear models, con-
sisting of systems of nonlinear ordinary differential equation
systems, there exist different schemes of model order reduc-
tion. One main group of such methods are singular value
decomposition (SVD)-based approximation methods. They
contain balanced approximations (first encountered in [5]),
Hankel-norm approximations (see [6], [7]), proper orthogonal
decomposition (POD), which comprises the Galerkin projec-
tion, and modal approximation methods. A very well-arranged
compilation of POD and other model order reduction methods
can be found in [8] and [9].

The basic idea of POD is the assumption that a state
trajectory in the original state manifold of dimensiond can
be approximated by a projection of the trajectory onto a
lower-dimensional state space (a sub-manifold) of dimension
m < d. In this work the projection is obtained using a Galerkin
projection which will be discussed in this paper in section IV.
Because of the fact that there is no linear system behavior
in this application, the eigenfunctions used for the projection
are obtained from an empirical approach, called the snapshot
method (see section IV-D), which takes advantage of system
outputs collected in measurements or simulation [10].

The application of the aforementioned model order re-
duction methods has already been focus of several publica-
tions. In [11], the dimension reduction of the dynamics of a
fluid conveying tube is presented, using linear and nonlinear
Galerkin methods and center manifold reduction. In [12] an
approach for the identification of the temporal coefficients
of an empirical approximator of a process is shown. It uses
experimental data gained from the process for a POD. [13]
introduces a model order reduction using a nonlinear Galerkin
projection for a finite element model of a horizontal axis
wind turbine which serves for material fatigue assessment
in long-time simulations. The application of the method of
model reduction is controlled by error estimation. In [14],
state aggregation techniques are applied in order to obtain a
reduced-order model of tokamak devices. [15] uses Krylov
subspaces for the model order reduction. Further approaches
can be found in [16], [17], [18] and [19].

III. L OCAL MODEL NETWORK APPROACH

A. General

Modern diesel engines, may it be in the automotive area or
for heavy-duty applications, offer a variety of inputs used for
control purposes (Fig. 1). As mentioned before, the models
consist of generally extensive systems of coupled nonlinear
ordinary differential equations.

For a large class of these nonlinear dynamic systems,
there exist methods that are based on the identification of
subdomains of the system that can sufficiently accurately be
described by local models [20]. The idea is to partition the
utilized operating range of the model into smaller subdomains
and approximate the nonlinear behavior by local models within
each of these subdomains. The assembly of the subdomains is
called local model network (LMN) which provides multilateral
characterization of the overall system [21],[22]. A schematic
example of such a local model network can be seen in Fig.
2. It shows the operating range in speed and load of a diesel
engine with the single local model domains.

The local model networks are a very frequently adopted
approach in automotive industry because they feature an
appropriate structure for the representation of nonlinear static
and dynamic systems where the incorporation of prior physical
knowledge into the model structure is easily possible [23].
Additionally, in automotive applications at test benches usually
numerous measurements from the engine are available for
various dynamical test runs. Typically, the adopted local model
network approaches make use of the input/output data of the
system for the identification [24],[25].
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Fig. 2. Operating regime modeling using local models

In contrast to the identification purely from measurement
data, the local model structure can also be composed from
the known system behavior in the form of nonlinear ordinary
differential equations [26]. In the present work the local
models, which are derived from the nonlinear model, are used
for a novel iterative scheme for the solution of the nonlinear
invariant Galerkin manifold (see section V). The idea of this
scheme is based on the notion that for typical operating modes
of a heavy-duty engine the system dynamics in the vicinity
of an operating point can sufficiently accurately be described
by the local Jacobian matricesA andB (see section (V-A)).
The choice of appropriate operating points for the linearization
and the partitioning of the operating range into adequate
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subdomains, for which the local model parameters are valid,
is of particular importance. This procedure is to be specified
in the following.

B. Local Model Network Architecture

A local model network approximates the behavior of the
nonlinear model within its operating range as good as possible
by using locally valid sub-models. In the following only linear
local models will be considered.

The nonlinear model of the system is described by the state
equation

ẋ(t) = f (x(t), u(t)), (1)

with the state vectorx ∈ R
d and the input vectoru ∈ R

r.
The operating range of the model is described by a so-called

partition space. The partition space is a set of (mostly input)
variablesx̃ = [x̃1 . . . x̃p], with which the nonlinear behavior
of the model can sufficiently be described. Within the partition
space of the model a local linearization can be carried out for
an arbitrary stationary operating pointx̃:

A(x̃) =
∂f(x, u)

∂x

∣

∣

∣

∣

x̃
. (2)

A is the (local) Jacobian matrix, representing the local system
dynamics around the operating point.

In the local model network approach the partition space is
decomposed inton smaller subdomains. Every subdomaink
possesses a local model which is specified by two components:
its local Jacobian matrix

Ak =
∂f(x, u)

∂x

∣

∣

∣

∣

x̃k

(3)

and a corresponding validity function

φk = φk(x̃1, x̃2) = φk(x̃), (4)

which defines the area of validity of each local model. The
task is now the determination of the locations of the particular
operating points̃x1 . . . x̃n for the local JacobiansA1 . . . An

and the validity functionsφ1 . . . φn for each local model,
which will be described below.

For an arbitrary point̃x of the partition space the local
model network approach yields

A∗(x̃) =
n

∑

k=0

Akφk(x̃), (5)

with n being the number of local models.
Fig. 3 shows the example of a two-dimensional partition

space spanned by the input variablesx̃1, x̃2 and two local
models (n = 2). In the application of the diesel engine the
input variables could be e.g. the engine speed and the injection
mass. In this case

A∗(x̃1, x̃2) = A1φ1(x̃1, x̃2) + A2φ2(x̃1, x̃2). (6)

The locationsx̃1, x̃2 of the particular operating points for
the local JacobiansA1 and A2 of the two local models are
now determined in the following way: the partition space is

discretized by a grid along the partition space axes, using the
grid indicesi1 andi2 for the description of every grid point in
the partition space. Then, the following performance function
is minimized over the complete partition space grid:
∑

i1,i2

‖A∗(x̃1(i1), x̃2(i2)) − A(x̃1(i1), x̃2(i2))‖
2

2 → min
φ1,φ2,x̃1,x̃2

.

(7)
When the constraint
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Fig. 3. Partition space for two inputs with two local models

‖A∗(x̃1(i1), x̃2(i2)) − A(x̃1(i1), x̃2(i2))‖2
≤ q (8)

for the error boundaryq is not fulfilled for every grid point
within the partition space, then the number of local models is
increased and the optimization procedure is repeated.

Fig. 3 shows the two local models with the local Jacobians
A1 and A2 obtained at the operating points̃x1 and x̃2, as
well as the model transition boundary which is marked by the
black bold line.

In the current work the local Jacobian matrix is obtained
from a numerical linearization about the respective network
subdomain operating point. It is then adopted in the iteration
scheme of the nonlinear invariant Galerkin manifold (see sec-
tion IV-C) for the computation of the vector of the inessential
states. The realization of this approach is shown in section V.

IV. M ODEL REDUCTION BY GALERKIN METHODS

The Galerkin reduction methods were originally introduced
for the approximation of dissipative partial differential equa-
tion problems. In a geometrical interpretation, they can be
regarded as an approximation of the system dynamics on the
phase manifold by projection onto a sub-space, which is able
to capture the essential dynamical behavior of the original
system. The two methods shown in this paper are the linear
(also called flat) and the nonlinear Galerkin methods (see
sections IV-B and IV-C).

In the general case a nonlinear model of the real process
is obtained from a mathematical-physical modeling approach.
Such a model can be written in state space representation as

ẋ(t) = f (x(t), u(t)), (9)

with x ∈ R
d the state vector of dimensiond andu ∈ R

r the
r-dimensional input vector.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 5, 2011 569



A. System Projection

The assumption is made that only certain modes of the
original system play a relevant role in the representation of
the system dynamics. In order to reduce the system order,
a projection of the complete differential equation from the
original state space onto a sub-space is performed. Galerkin’s
method now assumes that only the essential modes on this
sub-space of the underlying model are important for the
main dynamical behavior, whereas the remaining modes can
either be neglected completely (flat Galerkin method) or are
governed by the ”main” modes in some algebraic relation
(nonlinear Galerkin method).

For the solution of equation (9) the following approach is
chosen:

x = Φ1ξ + Φ2η, (10)

whereξ ∈ R
m is the vector containing the essential modes

andη ∈ R
d−m contains the less important remaining modes

in the reduced system. The matricesΦ1 andΦ2 spanm- and
d − m-dimensional sub-spacesX and Y . The composition
of these matrices will be the topic of chapter IV-D.

Substituting (10) in (9) yields

Φ1ξ̇ + Φ2η̇ = f(Φ1ξ + Φ2η, u). (11)

A projection onto the sub-spacesX andY is accomplished
by multiplication of (11) with the matricesΦT

1 andΦ
T
2 :

Φ
T
1 Φ1ξ̇ + Φ

T
1 Φ2η̇ = Φ

T
1 f(Φ1ξ + Φ2η, u) (12)

Φ
T
2 Φ1ξ̇ + Φ

T
2 Φ2η̇ = Φ

T
2 f(Φ1ξ + Φ2η, u) (13)

AssumingΦT
1 Φ1 = I, ΦT

1 Φ2 = 0 andΦ
T
2 Φ1 = 0, ΦT

2 Φ2 =
I, equations (12) and (13) lead to

ξ̇ = Φ
T
1 f(Φ1ξ + Φ2η, u) (14)

η̇ = Φ
T
2 f(Φ1ξ + Φ2η, u). (15)

After the projection of the original system two coupled sys-
tems of differential equations are thus obtained.

B. Linear Galerkin Method

The linear, or also called flat Galerkin method finds an
approximation to the system (14),(15) by neglecting the states
η: η = 0. For the approximate solution only equation (14) is
considered:

ξ̇ = Φ
T
1 f (Φ1ξ, u). (16)

Since the remaining states are neglected in this approach, the
flat Galerkin method only yields the approximation

x ≈ Φ1ξ. (17)

Geometrically, the linear Galerkin approach respresents a pro-
jection of the original differential equation from the state space
of orderd onto a sub-space of orderm without accounting for
the remainingd − m states.

C. Nonlinear Galerkin Method

The nonlinear Galerkin method assumes that an algebraic
relationship

η = Θ(ξ) (18)

can be found which means that the behavior of the modes
η is directly determined by the dynamic behavior of the
ξ modes. Such a relation is called invariant manifold. The
problem in this case is that there is no a priori information
about an invariant manifold and the calculation can be very
complex. Instead, one can come up with an approximate
invariant manifold (AIM), which can be found without too
much computational effort. The AIM can be described as the
approximate solution of the equation

η̇ = Φ
T
2 f(Φ1ξ + Φ2η, u). (19)

There exist different methods of finding these approximations
(see [27], [28] and [9] for more detailed information about
the AIM calculation). In this work the approach of Titi [29]
was used. Here, the dynamics ofη are disregarded in order to
obtain a quasi-stationary AIM. (19) then becomes an algebraic
relation:

Φ
T
2 f(Φ1ξ + Φ2η, u) = 0. (20)

This approach leads to a coupled system of differential-
algebraic equations (14) and (20). The algebraic part can be
solved by a fixed-point iteration, which is shown in section V.

D. Snapshot methodology for POD

In section IV-A the projection of the state space equation
onto the sub-spacesX andY was brought up. In this context
the matricesΦ1 and Φ2 were utilized, computed from a
snapshot analysis, which is the topic of this section.

Measurement results and analysis of the complete nonlinear
model show that for typical operating conditions of an engine
only certain modes show significant dynamic behavior. The
idea behind the snapshot method is to excite the system with
the inputsu in a way that is typical for the real engine
operation. It is based on an empirical concept using the outputs
generated from measurements or directly from the model
simulation. It is a well-acknowledged technique, which has
proved to be very efficient in several previous works, see e.g.
[18] and [12]. For a defined input signal the states of the
system are recorded and analyzed according to the dominant
dynamic behavior. The (n×d) matrixX is called the snapshot
record matrix, whered is the number of states in the reduced
system andn the number of recorded snapshots, according to
the simulation time and the time step width. For the assembly
of X andY the principal eigenmodes are needed, extracted
from the (d × d) covariance matrix

C =
1

d
((X − µ)T (X − µ)), (21)

whith µ containing the mean values over all samples for
each state. The eigenvaluesλj and the eigenvectorssj of the
covariance matrix are computed according to

Csj = λjsj . (22)
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For the POD, the eigenvectors ofC are assembled in the
matricesΦ1 and Φ2 according to the relative magnitude of
the eigenvalues compared to each other:

Φ1 = [s1 . . . sm] , Φ2 = [sm+1 . . . sd] . (23)

For the application to the diesel engine system, appropriate
input signal excitation sequences have to be found. As already
mentioned in this section, the aim is to keep only the modes
which show distinct dynamic behavior and disregard the
remaining ones. Modern internal combustion engines undergo
strongly dynamic exposures, as for example abrupt load al-
ternations or rapid acceleration maneuvers. These cycles are
accompanied by partly rough actuator position variations. For
the composition of the snapshot matrix in order to obtain
preferably much information from the original system, the
input signals should contain as much dynamical portions as
possible. Fig. 4 shows one example of the input excitation of
the throttle actuator signaluthr, actuated around its halfway
opened position (uthr = 50%) in a rectangular distribution
with an amplitude of±20% and superposed with additional
noise. Corresponding signal sequences have been chosen for
the other system inputs.
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Fig. 4. Input signal sequence of the throttle actuator position uthr

Of course the range of validity for the snapshot method is
limited. For a certain excitation of the system with certain
input variables, very sufficient results can be obtained in the
reduced model using the same input variables. The method
reaches its limits when additional inputs are actuated that are
not accounted for in the snapshot acquisition process. Then
the reduced model is not able to correctly map the dynamic
response of the original system to these additional inputs.

V. I TERATIVE NONLINEAR GALERKIN PROJECTION

In section IV-C the nonlinear equation (20) emerged. For
reasons of computational speed and accuracy, an efficient
numerical procedure has to be introduced to find approximate
solutions on the invariant Galerkin manifold. On this account
a local linear model structure, described in section III, is
adopted, using the local Jacobian for the iteration scheme.

A. Linearized System

The nonlinear system equation (9) can be linearized in the
current operating point (compare to section III-B), yielding the

Jacobian matricesA andB according to

A =
∂f(x, u)

∂x

∣

∣

∣

∣

0

, B =
∂f(x, u)

∂u

∣

∣

∣

∣

0

. (24)

Using an LMN approach, the operating region of the nonlinear
model is separated into single subdomains (compare Fig. 2).
Within these subdomains, the local Jacobians are computed
and assumed to be constant for each of these partitions. The
local Jacobians are now applied for the AIM iteration of (20)
(see the following subsection).

B. Equation Error Minimization Problem

The solution of (20) is obtained recursively in the following
way: the equation error is calculated and minimized in order to
compute the optimal step width in theη direction. According
to a Taylor series expansion approximation, the change off

in the η direction is

∆f =
∂f

∂η
(x, u)∆η. (25)

∆f is used for the calculation of the change off in the η

direction:

fk+1 = fk + ∆f = fk +
∂f

∂η
(x, u)∆η (26)

Using the chain rule of differentiation and eq. (10),∂f/∂η

yields
∂f

∂η
(x(ξ, η), u) =

∂f

∂x

∂x

∂η
=

∂f

∂x
Φ2 (27)

The Jacobian matrix∂f/∂x = A is computed offline for the
different operating regimes and is chosen online according to
the regime the model is currently running in. Combining the
equations from above, the current equation error for the next
step inη can be computed:

rk = Φ
T
2 fk (28)

rk+1 = Φ
T
2

(

fk +
∂f

∂η
∆η

)

= Φ
T
2

(

fk +
∂f

∂x
Φ2∆η

)

(29)
The error is now used for optimizing the performance function

J =
1

2
rT

k+1rk+1 → min
∆η

, (30)

from which the optimal∆η step size follows to

∆η = −Φ
T
2

(

∂f

∂x

)

−1

fk. (31)

The described iteration scheme is performed in parallel to
the numerical integration of the reduced system states. The
advantage of this method is that due to the fact that the local
Jacobians, which are calculated offline for the subdomains
of the LMN, can be switched online during simulation, a
constitutive increase in performance with a low additional
computing expense is allowed for. The results obtained are
discussed in the following section.
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VI . RESULTS

The goal of this work was to adapt the model order
reduction methods described in sections IV and V to a real-
time heavy-duty diesel engine model. The model description
and the results of the reduction methods are the topics of this
section.

A. System description

Air

Exhaust gas

throttle
Intercooler

Engine

Compressor

Turbine

Air filter

EGR
valve

EGR
cooler

Fig. 5. Diesel engine system overview

The configuration of the diesel engine is schematically
illustrated in Fig. 5. The model considered was obtained from
a physical-mathematical modeling approach using the concept
of mean value modeling (MVM) [30],[31]. MVM means the
replacement of the discontinuous operation of the pistons
by continuous processes for mass transportation through the
cylinders and production of power. The thermodynamic and
chemical processes inside the cylinders during the combustion
cycles are considered as mean values over a cycle. Such
a simplifying modeling approach is well-suited for realtime
test stand applications because of low computational demand
and thus higher simulation speed. Additionally, it achieves
sufficient accuracy. The model is built up by modularly con-
nectable zero-dimensional tank components, which reproduce
the thermodynamic characteristics inside pipe connections,
coolers, etc. They assume perfect mixing of the gas compo-
nents inside so that a homogeneous distribution of pressure and
temperature is sufficiently justified. These storage elements are
connected to each other through coupling elements (valves,
throttles). The exhaust gas turbocharger is modeled by a quasi-
stationary, parameter based approach. The complete system
has a state order of 16. The parameters of the model were
identified using measurements from the test bench.

B. Results

The linear (flat) and nonlinear Galerkin methods were now
applied to the engine model and the results were compared
to the solution of the original system. The solution of the
original system was computed using a fixed-step Runge-Kutta
numerical integration method with an integration step size
of 0.001s. The original system was also used for the offline
calculation of the local Jacobians∂f/∂x. The main focus of
this work lies in the examination of the general functionality
of the two presented Galerkin methods and the sensitivity of
the performance with respect to the reduced model order.

Different input signal and operating condition test cases
were designed, with three input variables: the throttle actuator
position uthr, the EGR valve actuator positionuegr and the
engine speedneng. For the snapshot recording procedure and
the subsequent proper orthogonal decomposition, these input
variables were varied in the range deployed for the respective
use case (compare section IV-D). Consequently, the model
order was reduced and the differences in performance of the
model order reduction methods are discussed.

Case 1:neng = 600 U/min, uegr = 100 %, uthr varied.
The throttle actuator input signal was varied around its halfway
opened position and superposed with additional noise, see also
Fig. 4. In Fig. 6 the result for the exhaust turbocharger speed
is shown for a reduced model order of 10. In the behavior
of the solutions the following can be noticed: the system
dynamics are reproduced sufficiently by both the flat and
the nonlinear Galerkin methods. Obviously, the flat Galerkin
method shows a clear offset from the original solution, which
is also increasing with time.

0 2 4 6 8 10

1.6

1.8

2

2.2

2.4

2.6

x 10
4 exhaust turbocharger speed [rpm]

time [s]

 

 

original system
flat Gal. meth.
nonl. Gal. meth.

Fig. 6. Exhaust turbocharger speed, reduced system order 10

Next, the order of the reduced system was lowered to nine.
For the same input signal the results were compared, see
Fig. 7. It can be recognized that for a model order reduction
by one the results of the flat and the nonlinear Galerkin
methods show even more significant differences. The nonlinear
Galerkin method traces the solution of the original system very
well, whereas the flat method already indicates strong errors
in the amplitude. The performance discrepancy is even more
obvious, when the reduced order is dramatically decreased to
4 states, see Fig. 8. Here, the solution of the flat Galerkin
method can not reproduce the dynamics of the original system
any more (outside the plot range), but the nonlinear Galerkin
method can still perform well, showing decent accord with the
reference solution.

Case 2:neng = 1200 U/min, uegr = 100 %, uthr varied.
Here, the throttle actuator input signal was varied according
to the sequence given in Fig. 9 for a higher engine speed of
1200 U/min. The results for the exhaust turbocharger speed,
the intake manifold pressure and the intake throttle mass flow
are presented in Fig. 10 for a reduced model order of 9.

Again, the dynamics of the flat and nonlinear Galerkin ap-
proximations achieve good dynamical accordance, with the flat
solution showing a little offset. For a reduction of the reduced
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Fig. 7. Exhaust turbocharger speed, reduced system order 9
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Fig. 8. Exhaust turbocharger speed, reduced system order 4

model order by one to 8 states (see Fig. 11), no dramatic
decline of accuracy can be noticed for both approximation
methods, but another interesting property can be recognized:
the flat Galerkin solution shows signs of numerical instabilities
for strong amplitudes in the range between 8 and 9 seconds of
simulation time, whereas the nonlinear approximation features
very robust numerical behavior. This is a crucial advantage of
the nonlinear Galerkin method compared to the flat reduction
when it comes to real-time hardware-in-the-loop applications
where the limitation of the time step width and numerical
stability are very important.

Case 3:uegr = 100 %, uthr and neng varied simultane-
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Fig. 9. Input signal sequences of the throttle actuator positionuthr
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Fig. 10. Exhaust turbocharger speed, intake manifold pressure and throttle
mass flow, reduced system order 9
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Fig. 11. Exhaust turbocharger speed, intake manifold pressure and throttle
mass flow, reduced system order 8

ously. In this test case two input variables are varied at the
same time: the throttle actuator position and the engine speed.
The according pattern is shown in Fig. 12.

Analyzing the results for the exhaust turbocharger speed,
the intake and the exhaust manifold pressures (Fig. 13), it can
be clearly seen that already for a system order of 9 the results
of the nonlinear Galerkin method are much better, especially
at the beginning of the simulation.

The difference becomes more distinct again when the
system order is further reduced, in this case from 9 to 8
states (Fig. 14). The nonlinear Galerkin approximation fits the
original solution very well, whereas the flat Galerkin method
result shows poor behavior.

Case 4:uthr = 20 %, uegr and neng varied. Again, two
input variables - the EGR valve actuator signal and the engine
speed - are varied according to the pattern given in Fig. 15.

Fig. 16 shows the results for the intake manifold pressure,
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Fig. 12. Input signal sequences of the throttle actuator positionuthr and
the engine speedneng
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Fig. 13. Exhaust turbocharger speed, intake and exhaust manifold pressure,
reduced system order 9

the EGR mass flow and the exhaust manifold pressure for the
reduced system order 10. When the model order is further
reduced - here from 10 to 8 states - again one can see the
considerably better results of the nonlinear method (see Fig.
17). The results of the nonlinear Galerkin method seem even
more remarkable when the wide range of passed nonlinear
system behavior (1000 - 2500 rpm) is envisioned.

The results of this section allow for some important con-
clusions: The linear and nonlinear Galerkin methods are both
able to reproduce the main system dynamics very well for high
orders of the reduced model. In the process of decreasing the
model order, the omitting of relevant dynamic states is clearly
better compensated by the nonlinear Galerkin method due to
the fact that it can account for these omitted states using the
AIM. The use of the local Jacobian achieves impressive results
even for running through strongly nonlinear operating regions.
However, the linear method, completely neglecting the omitted
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Fig. 14. Exhaust turbocharger speed, intake and exhaust manifold pressure,
reduced system order 8
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Fig. 15. Input signal sequences of the EGR valve actuator position and the
engine speed

states, shows considerable performance declines for reduced
system orders.

VII. C ONCLUSION

In this work the basic principles of flat and nonlinear
Galerkin methods for the model reduction of computationally
expensive dynamical systems, applied to a mean value diesel
engine model, were presented. The existing approach of the
nonlinear Galerkin method was combined with an iterative
solution scheme using local Jacobians. The local Jacobians
were obtained from a local model network approach and
assumed constant within each operating subdomain. A proper
orthogonal decomposition on the basis of the snapshot method
for the determination of the principal eigenvalues was per-
formed and used for the flat and nonlinear Galerkin reduction
schemes. The achieved results proved that both the linear and
nonlinear Galerkin method yield very viable reduced order
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Fig. 16. Intake manifold pressure, EGR mass flow and exhaust manifold
pressure, reduced system order 10
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Fig. 17. Intake manifold pressure, EGR mass flow and exhaust manifold
pressure, reduced system order 8

models. Subsequent reduction of the model order revealed
significant performance advantages of the nonlinear Galerkin
method using the local Jacobian-based iteration scheme. The
low computational expense increase is outweighed by remark-
able benefits in dynamic accuracy.

The obtained results provide an outlook to further ap-
plications in other technical disciplines. Forthcoming work
is intended to deal with the comparison of the flat and
nonlinear Galerkin methods with other model order reduction
techniques, such as balanced reduction and Krylov-based
approximation methods.
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