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Abstract—An S-I-R epidemiological model with clinical 

diagnosis of dengue transmission, Dengue Fever (DF), Dengue 
Haemorrhagic Fever (DHF), Dengue Shock Syndrome (DSS) 
dynamics in a population in Thailand is discussed. Our model 
consists of seven non-linear differential equations. The standard 
dynamical analysis is used for analyzing the behavior for the 
transmission of dengue disease. Local existence results are given for 
the resulting ordinary differential system. The numerical results are 
discussed in terms of threshold parameters and the numerical 
simulations are shown to confirm our results.  
 

Keywords—Clinical diagnosis, numerical simulation , ordinary 
differential system, S-I-R .   

I. INTRODUCTION 

ATHEMATICAL model have been widely used in various 
areas of infectious disease epidemiology. Mathematical 
modeling of dengue disease transmission in human and 

vector populations has been done since the beginning of last 
century. Some of the recent models could be seen in [1-6]. 
Several studies on infection model within human have been 
done for various cases [7-8]. Mathematical models are used in 
comparing, planning, implementing, evaluating, and 
optimizing various detection, prevention, therapy, and control 
programs.  Epidemiology modeling can contribute the design 
and analysis of epidemiological surveys, suggest crucial data 
that should be collected, identify trends, make general 
forecasts, and estimate the uncertainty in forecasts [9-10]. 

The epidemiological systems often exists a peculiar 
equilibrium the disease free equilibrium, which corresponds to 
a steady state of the population without disease. The another 
one equilibrium is the endemic equilibrium state. It is the 
steady state solutions where the disease persists in the 
population. In the context of within host dengue viral 
infection, the basic reproductive number is defined as the 
average number of secondary infected monocytes generated 
by a single infected monocyte placed in an uninfected 
monocyte population [11].  

In this paper, we are developing mathematical models to 
better understand the transmission and spread of dengue 
disease. Dengue is an acute fever caused by a Flavivirus. The 
disease can occur in three forms: Dengue Fever (DF), Dengue 

Haemorrhagic Fever (DHF) and Dengue Shock Syndrome 
(DSS). 

 
 
 

DF is an acute viral disease manifesting with myalgias, 
headache, retro-orbital pain, vomiting, maculopapular rash, 
leucopenia and thrombocytopenia. DHF is characterized by 
four major clinical features: high fever, hemorrhagic 
phenomena, hepatomegaly and signs of impending circulatory 
failure. The major pathophysiological abnormality 
differentiating DF from DHF is the plasma leakage syndrome. 
The severity of disease in DHF depends on the quantum of 
plasma leakage. The DHF patients are presented with shock 
due to excessive plasma loss are labeled as dengue shock 
syndrome (DSS). DHF/DSS are potentially fatal conditions.  

As DF, DHF, DSS are endemic in Thailand, cases are 
reported every years. A total of 220,885 cases of DF, 650,810 
cases of DHF and 17,267 cases of  DSS have been reported 
during twelve year review period. Between 1997 and 2008, 
the percentage of mortality DF, DHF and DSS cases reported 
1.04%, 40.83% and 58.13% , respectively.  Fig. 1, shows the 
percentage of cases by clinical diagnosis in Thailand between 
1997 and 2008. Fig. 2, shows the percentage of deaths by 
clinical diagnosis in Thailand during 1997 to 2008. 

 

  
Fig. 1 The percentage of cases by clinical diagnosis in Thailand 

    between 1997 and 2008 [12]. 

M 
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Fig. 2  The percentage of deaths by clinical diagnosis in Thailand 

   [12]. 
 
It can be seen in the Fig. 1 that the percentage of deaths of  
DSS cases is higher than DHF and DF death cases.  

A basic S-I-R (Susceptible-Infected-Recovered) model is 
used for representing DF, DHF, DSS transmission system in 
this study.  This paper is organized as follows. In the first 
section, we present the introduction that guided the dengue 
disease and model’s structure. In section 2, we present the 
model’s equations and definition of the variables and 
parameters. In section 3, we deduce the basic reproductive 
number, which can be used for predicting all the possible 
behaviors of the system. Finally, the numerical solutions of 
this model are presented.   

II. MATHEMATICAL MODEL 

A. Model Formulation 
The model describes the dynamic of dengue in the two 

components of transmission, namely human hosts and vector. 
The total human population is denoted by HN , it is partitioned 

into five classes, the susceptible, infectious with DF clinical 
diagnosis, infectious with DHF clinical diagnosis, infectious 
with DSS clinical diagnosis and recovered are denoted by HS , 

DFI , DHFI , DSSI  and HR , respectively. 

The total vector population is vN  and the vector population 

is divided into two classes, the susceptible and infectious 
vector are denoted by   and ,respectively. vS vI

The total human population size HN  can be determined by  

H H DF DHF DSS HN S I I I R= + + + +

v

. The total vector population 

size N  can be determined by  v v vN S I+= . 

This model is shown in Fig. 1. 
 

 

 
Fig. 3  Compartmental transmission model of DF, DHF, DSS system 
following a Susceptible-Infectious-Recovered structure in human 
population and Susceptible-Infectious structure in vector population. 

 
The parameters in our model are defined in Table 1.  
Table 1. Parameter involved in the transmission of dengue, 
incorporated into the model shown in Fig. 1. 

Symbol Meaning 

HN  Total human population size 

vN  Total vector population size 

A  The constant recruitment rate of mosquitoes 

λ  Birth rate of human population 

Hμ  The natural death rate of human population 

DFμ  Death rate of human population (with DF) 

DHFμ  Death rate of human population (with DHF) 

DSSμ  Death rate of human population (with DSS) 

VDFβ  Transmission probability from infectious vector to 
human and human becomes to infectious with DF 

VDHFβ  Transmission probability from infectious vector to 
human and human becomes to infectious with DHF 

VDSSβ  Transmission probability from infectious vector to 
human and human becomes to infectious with DSS 

HVβ  Transmission probability from infecious human to 
vector and vector becomes to infectious 

1σ  The contact rate from infectious vector to susceptible 
human and human becomes to infectious human with 
DF 

2σ  The contact rate from infectious vector to susceptible 
human and human becomes to infectious human with 
DHF 

3σ  The contact rate from infectious vector to susceptible 
human and human becomes to infectious human with 
DSS 

4σ  The contact rate from infectious human to susceptible 
vector and vector becomes to infectious vector 

vμ  

 

Death rate of vector 

b  
 

Average rate of biting per vector per day 
r   

Human recovery rate 

 
From the averaging of the real data in Thailand between 

1997 to 2008, we have   and  VDHFβ > VDFβ > VDSSβ
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DSSμ > DHFμ > DFμ

B. Model Equations 
When In our model, the dynamic of epidemic model is 
established: 
 

H
H H 1 2 3 v

dS
N H( ( )I )S

dt
= σ + σ + σλ − μ + , 

 

DF
1 H vS I= σ D(− μ F DF

dI
r)I

dt
+ , 

 

DHF
2 H vS I= σ DHF DHF

dI
r)I

dt
+(− μ , 

 

DSS
3 HS I= σ v (− μDSS DSS

dI
r)I

dt
+ ,                                     (1) 

 

H
DFr(I I= + DHF DSS H H

dR
I ) R

dt
+ − μ , 

 

v
vA (= − μ 4+ σ DF DHF DSS v

dS
(I I I ))S

dt
+ + , 

 

v
4 DF(I I= σ + DHF DSS v v v

dI
I )S I

dt
+ − μ . 

 
The first five equations represent the susceptible, infectious 
with DF, infectious with DHF, infectious with DSS and 
recovered human population densities, respectively.   

The sixth and seventh equations represent the susceptible 
and infectious vector population densities. 

 Before we analyze the system (1), we reduce the number of 
parameters by introducing  

 

( )H HNHS S=$ , ( )DF DF HI I N=$ , ( )DHF DHF HI I N=$ , 

 

( )DSS DSS HI I N=$ , � ( )H H HR R N= , ( )v v vS S N=$ ,  

 

( )v v vI I N=$ .  

 
We get the following model 

 

H
HH H 1 2 3 v v

dS
( ( )I N )S

dt
= μ − μ + σ + σ + σ

$
$ $ , 

 

DF
H1 v v 1 DF

dI
N S I I

dt
= σ −ε

$
$ $ $ , 

 

DHF
H2 v v 2 DHF

dI
N S I I

dt
= σ −ε

$
$ $ $ ,           (2) 

 

DSS
H3 v v 3 DSS

dI
N S I I

dt
= σ −ε

$
$ $ $ , 

 

v

4 H DF DHF DSS v v v

dI
N (I I I )(1 I ) I

dt
= σ + + − − μ

$
$ $ $ $ $  

 
where  1 DF rε = μ + , 2 DHF rε = μ +  and 3 DSS rε = μ + . 

 
For the biological interest, the region of system (2) is 
restricted to  
 

{ }H DF DHF DSS v H DF DHF DSS v(S , I , I , I , I ) : 0 S , I , I , I , I 1 ,Ω = ≤ ≤$ $ $ $ $ $ $ $ $ $

 
 and all of the parameters used in system (2) are positive. 

III. MATHEMATICAL ANALYSIS 

A. Analysis of Models  
The local stability of an equilibrium state is determined 

from the Jacobian matrix of the right hand side of (2) 
evaluated at the equilibrium point. We obtain the Jacobian 
matrix  

 
* *

H H 1 v H 1 H

* *
11 1 v 1 1 H

* *
22 2 v 2 2 H

* *
33 3 v 3 3 H

* * * * * *
4 H v 4 H v 4 H v 4 H DF DHF DSS v

0 0 0I S

0 0I S

0 0I S

0 0I S

0 N (1 I ) N (1 I ) N (1 I ) N (I I I )

⎡ ⎤−μ −μ φ −μ φ
⎢ ⎥
⎢ ⎥
⎢ ⎥−εε η ε η
⎢ ⎥
⎢ ⎥
⎢ ⎥−εε η ε η⎢ ⎥
⎢ ⎥
⎢ ⎥

−εε η ε η⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥σ − σ − σ − −σ + + −μ⎣ ⎦

 

 
The equilibrium states  are found by 

setting the right hand side of (2) to zero, then we obtain: 

* * * * *
H DF DHF DSS v(S ,I ,I ,I ,I )

 

*
H *

1 v

1
S

1 I
=

+ φ
,  

*
* 1 v
DF *

1 v

I
I

1 I

η
=

+ φ
, 

*
* 2 v
DHF *

1 v

I
I

1 I

η
=

+ φ
, 

 
*

* 3 v
DSS *

1 v

I
I

1 I

η
=

+ φ
, and *

vI 0=  for the disease free state  or 

 

* 4 H 1 2 3 v
v

4 H 1 2 3 v 1

N ( )
I

N ( )

σ η + η + η − μ
=

σ η + η + η + μ φ
 for the endemic disease 

state  where   
 

1 2 3 v
1

H

( )Nσ + σ + σ
φ =

μ
, 1 v

1
1

Nσ
η =

ε
, 2 v

2
2

Nσ
η =

ε
, 3 v

3
3

Nσ
η =

ε
. 
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For this case there are two equilibrium states, those are, the 

disease free equilibrium  when 1E (1,0,0,0,0)= *
vI 0=  which 

always exists and the endemic equilibrium  

 when 

* *
2 HE (S , I *

DF DH, I= F ,

*
DSSI , *

VI ) * 4 H 1 2 3

4 H 1 2 3

N ( )

N ( )
v

v 1
vI

σ η + η + η − μ
=

σ η + η + η + μ φ
. 

 

B. Analysis of Stability  
The local stability of an equilibrium state is determined 

from the above Jacobian matrix evaluated at equilibrium state 

around   and *
vI 0= * 4 H 1 2 3 v

v
4 H 1 2 3 v 1

N ( )
I

N ( )

σ η + η + η − μ
=

σ η + η + η + μ φ
. 

The local stability property of those equilibrium state is 
given in the following proposition. 
 
Proposition 1  If , the equilibrium  is locally 

asymptotically stable. If , the equilibrium  is 

unstable and  is locally asymptotically stable when  

0R < 1

1
1E

0R > 1E

2E

 

1 2 3 H 4
0

v

( )N
R 1

η + η + η σ
= ≤

μ
. 

 
Proof  The local stability of  is governed by the 

linearization of system (2) at . The eigenvalue of the 

disease free state  is  

1E

1E

Hλ = −μ    and the other eigenvalues are 

the roots of 
 

                         (3) 4 3 2
3 2 1 0a a a aλ + λ + λ + λ + = 0

v

 
where 
 

3 1 2 3a = ε + ε + ε + μ ,               (4) 

 

2 H 4 1 1 2 2 3 3 2 1 3 1 2 3a N ( ) ( ) ( )= − σ η ε + η ε + η ε + ε ε + ε + ε + ε + ε μv

)

0

0

, 

                       (5) 

1 1 2 3 H 4 1 2 3 H 4 2 2 1 3a ( N ( )) N ( ( )= − −ε ε + η σ ε + ε ε − σ η ε ε + ε +  

 
       ,           (6) 1 1 2 3 2 2 1 2 3 v( ))( ( ))η ε ε + ε ε ε + ε ε + ε μ
 

0 1 2 3 1 2 3 H 4 va ( ( )N= ε ε ε − η + η + η σ + μ .        (7)  

 
By the Hurwitz Criterion [13], all the roots of the polynomial 
order four have negative real part when 
 
i)    ,                   (8) 3a 0>
 
ii)   ,                   (9) 1a 0>
 
iii)  ,                   (10) 0a ≥
 

iv)   .              (11)  2 2
3 2 1 1 3 0a a a a a a> +

 
It can be seen   is always positive.  when 3a 0a ≥
 

                             1 2 3 H 4

v

( )N
1

η + η + η σ
≤

μ
.   

 
For the second and fourth conditions, we show the map by 
putting the regions in  phase space and 

 phase space to confirm two 

conditions in Fig. 4. 

1 VDSa − β S

2 2
3 2 1 1 3 0 VDSS(a a a a a a )− − − β

 

 
Fig. 4 The second and fourth conditions which satisfies the Routh- 
Hurwitz criteria. The value of parameters are defined in Table 2. 
 
Moreover, for , we have the characteristic equation  0R > 1

             

       5 4 3 2
1 2 3 4 5b b b b b 0λ + λ + λ + λ + λ + = .   (11) 

 
By the Hurwitz Criterion [13], all the roots of the polynomial 
order five have negative real part when  
i)   ib 0 [i 1,2,3,4,5]> = ,             (12) 

 

ii)  2 2
1 2 3 3 1 4b b b b b b> + ,              (13) 

 
iii) . 2 2 2

1 4 5 1 2 3 3 1 4 5 1 2 3 1 5(b b b )(b b b b b b ) b (b b b ) b b− − − > − + 2

S

                       (14) 
 
The roots of polynomial (11) have negative real parts when 
they are corresponding above three conditions.  We now map 
the regions in i VDSb − β  phase space, 

  phase space and   2 2
1 2 3 3 1 4 VDSS(b b b b b b )− − − β

2 2 2 2
1 4 5 1 2 3 3 1 4 5 1 2 3 1 5 VDS((b b b )(b b b b b b ) b (b b b ) b b )− − − − − − − Sβ

1
phase space in which the three above conditions are met and  

0R > . These are shown in the following figures. 
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Fig. 5 The three above conditions which satisfies the Routh-Hurwitz 
criteria. The value of parameters are defined in Table 2. 
 
From the above figure, Routh-Hurwitz Criterion are satisfied 
for . Thus, the endemic equilibrium state is locally 

stable when   
0R > 1

0R 1>
with 
   

1 2 3 H 4
0

v

( )N
R

η + η + η σ
=

μ
.          (15) 

 
 
 
 
 
 
 
 
 
 
 
 

able 2. Parameter involved in the transmission of dengue, they are 

For Fig. 6 
 
 

For Fig. 7 

T
used in Fig. 4, 5, 6 and 7. 

Symbol 
 

For Fig. 4 and 5 

HN  62, 62,226,009 62,226,009 226,009 

vN  10,000 10,000 10,000 

λ  1/(365x70) 0) 0) 1/(365x7 1/(365x7

b  1/3 1/3 1/3 

Hμ  
 

365x70)1/(    
 

365x70)1/(
 

365x70)1/(

vμ  
 

1/14 
 

1/14 
 

1/14 

DFμ  
 

0.1 
 

0.1 
 

0.1 

DHFμ  
 

0.2 
 

0.2 
 

0.2 

DSSμ  
 

0.8 
 

0.8 
 

0.8 

VDFβ  
 

0.3 
 

0.3 
 

0.3 

VDHFβ  
 

0.5 
 

0.5 
 

0.5 

VDSSβ  
 

0 VDSS 1≤ β ≤  
 

0.1 
 

0.1 

HVβ  
 

0.01 
 

01 0.
 

5 0.

1σ  ( VDFβ x b )/ HN  ( VDFβ x b )/ HN  ( FVDβ x b )/ HN  

2σ  ( VDHFβ x b )/ HN  ( VDHFβ x b )/ HN  ( VDHFβ x b )/ HN  

3σ  ( xVDSSβ b )/  HN ( xVDSSβ b )/  HN ( xVDSSβ b )/ HN  

4σ  ( HVβ x b )/ HN  ( HVβ x b )/ HN  ( HVβ x b )/ H  N
 

r  
 

1/3 
 

1/3 
 

1/3 

0R  

 

            - 67251 626 
 

0.02
 

1.33

0R  

 

            - 
 

0.163478 
 

1.15597 
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C. Numerical Results 

 

                          
 
 Fig. 7 Numerical solutions demonstrate  time series when 

. The values of parameters are defined in Table 2. 0R >

In this study, we consider the transmission of dengue 
disease when consider follow by the clinical diagnosis by 
using data in Thailand between 1997 and 2008. The value of 
the parameters used in this study are    per 

day, this corresponds to a life expectancy of 70 years in Thai 
people. The mean life of vector is 14  days  so  per 

day.  is defined in (15). 

H 1/(365 70)μ = ×

v 1/1μ = 4

0R 0R  is the basic reproductive 

number. 
The trajectories of the numerical solutions of system (2) are 

shown in the following figures. 

 

 

1

 

 

        
 

      
                          8a)                                              8b) 

Fig. 8   Numerical solutions demonstrate time series when R

are different. The value of parameters are defined in Table 3. 
0

                          
 
Fig. 6 Numerical solutions demonstrate time series when 0R 1< . 

The value of parameters are defined in Table 2.  
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Table 3. The value of parameters which we used for Fig. 8 
and 9. 

Symbol For Fig.8a) 
 
 

For Fig. 8b) 
 
 

For Fig. 9 

HN  62,226,009 62,226,009 62,226,009 

vN  10,000 10,000 10,000 

λ  1/(365x70) 1/(365x70) 1/(365x70) 

b  1/3 1/3 1/3 

Hμ  
 

1/(365x70) 
 

1/(365x70) 
 

1/(365x70) 

vμ  
 

1/14 
 

1/14 
 

1/14 

DFμ  
 

0.1 
 

0.1 
 

0.1 

DHFμ  
 

0.2 
 

0.2 
 

0.2 

DSSμ  
 

0.8 
 

0.8 
 

0.8 

VDFβ  
 

0.3 
 

0.3 
 

0.3 

VDHFβ  
 

0.5 
 

0.5 
 

VDHF0 1≤ β ≤   

 for Fig. 9a), 

VDHFβ =0.5  

 for Fig. 9b) 

VDSSβ  
 

0.1 
 

0.1 
 

VDSSβ =0.1 

for Fig. 9a), 

VDSS0 1≤ β ≤   

 for Fig. 9b). 

HVβ  
 

0.5 
 

0.8 
 

0.8 

1σ  ( xVDFβ b )/  HN ( xVDFβ b )/  HN ( xVDFβ b )/  HN

2σ  ( xVDHFβ b )/  HN ( xVDHFβ b )/  HN ( xVDHFβ b )/  HN

3σ  ( xVDSSβ b )/  HN ( xVDSSβ b )/  HN ( xVDSSβ b )/  HN

4σ  ( xHVβ b )/  HN ( xHVβ b )/  HN ( xHVβ b )/  HN
 

r  
 

1/3 
 

1/3 
 

1/3 

0R  

 

1.33626 
 

2.13801 
 

          - 

0R  

 

1.15597 
 

1.46219 
 

          - 

 
 

IV. DISCUSSION AND CONCLUSION 

In this model, we have used, it is assumed that the human 
population is constants. The epidemiological data from the 
Division of Epidemiology, Ministry of Public Health, 
Thailand between 1997 and 2008 are used.  
From our analysis, we obtain the following threshold number  

 

    1 2 3 H 4
0

v

( )N
R

η + η + η σ
=

μ
 

 

      
2 2 2

HV VDF HV VDHF HV VDSS

DF v DHF v DSS v

b b b

(r ) (r ) (r )

β β β β β β
= + +

+ μ μ + μ μ + μ μ
.        (16) 

 
 
The square root of  (16) is the basic reproductive number. 

We can see from Fig. 6, , , ,  and  approach 
to the disease free equilibrium state (1,0,0,0,0) respectively for 

HS$ DFI$ DHFI$ DSSI$ vI$

0R 1< . From Fig. 7, the fraction of populations spiral to the 

endemic disease state (0.74838021536, 0.00000000076, 
0.00000000103, 0.00000000010, 0.00002729495). Moreover 
we compare the numerical solutions when  is difference. 

We see the trajectories spiraling toward the different endemic 
disease states (0.74838021536, 0.00000000076, 
0.00000000103, 0.00000000010, 0.00002729495) in Fig. 8a) 
and (0.46776807538, 0.00000000160, 0.00000000217, 
0.00000000020, 0.00009236983) in Fig. 8b).  

0R

 Fig. 9, shows all proportions of population when the 
transmission probability from infectious vector to human and 
human becomes to infectious with DHF ( VDHFβ ) and 

transmission probability from infectious vector to human and 
human becomes to infectious with DSS ( VDSSβ  ) are 

difference.  
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[11] P. C. Park and V. Hahn, Stability Theory, Prentice Hall, London, 1993. 
M. Young, The techincal Writers Handbook. Mill Valley, CA: University 
Science, 1989. 

 
                               9a)                                             9b) 
 

Fig. 9   Numerical solutions demonstrate time series when VDHFβ  

and   are different. The value of parameters are defined in 

Table 3. 
VDSSβ

 
When  is higher, we can see the trajectories spiraling 

towards to the different endemic disease state,  decreases.

VDHFβ

HS$  

While , ,  and  increases. When  is higher, 

, ,  and  decrease while  increase.  

DF DHFI$

DHFI$

I$

DF

DSSI$

vI$

vI$ VDSSβ

HS$ I$ DSSI$

In this study, it is assumed that the human population is 
constant. The effect of the non-constant human population is 
not taken into mathematical model. So on the further research, 
the non-constant human population should also be considered 
in this model.   
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