
 

 

  

Abstract—Analytical solution for the change in impedance of a 

coil located inside or outside a multilayer conducting tube is obtained 

in the present paper. The electric conductivity and magnetic 

permeability of conducting cylindrical layers of the tube are assumed 

to be power functions of the radial coordinate. The change in 

impedance is expressed in terms of improper integral containing 

Bessel functions. Other analytical solutions are suggested in the 

paper. Three examples are discussed in detail: (a) a coil inside an 

infinite cylindrical layer, (b) a coil inside a two-layer tube, and (c) a 

coil outside a two-layer tube.  

 

Keywords—eddy currents, electric conductivity, magnetic 

permeability, change in impedance 

I. INTRODUCTION 

ddy current methods are widely used in practice in order 

to control properties of conducting materials. All problems 

where eddy current coils are used for inspection of materials 

can be divided into the following two categories: (a) 

estimation of properties and/or other parameters of conducting 

media (for example, electric conductivity of a conducting layer 

or thickness of metal coatings) and (b) detection of defects (or 

flaws) in a conducting medium (for example, estimation of the 

effect of corrosion or presence of voids or other non-metallic 

inclusions in the medium). In both cases theoretical models 

(with some unknown parameters) are usually compared with 

experimental data. Optimization methods (for example, the 

least squares method) are then used to estimate unknown 

parameters of the medium (see, for example, [1]-[4]).  

Thus, a necessary step for the solution of an inverse 

problem (determination of unknown parameters of a medium) 

is the existence of a mathematical model describing the 

interaction of an alternating current in a coil with the 

conducting medium (direct problem).  

Mathematical models for eddy current testing problems of 

conducting media with constant properties are well-known in 

the literature [5], [6]. Analytical solutions are presented in [7] 

for the case where a coil with alternating current is located 
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above a multilayer medium. Similar problems for coils 

encircling multiple coaxial conductors or coils inside multiple 

coaxial conductors are analyzed in [8]. The properties of all 

media in [8] are assumed to be constant.  

Some industrial applications (for example, surface 

hardening or decarbonization) modify the properties of a 

conducting medium (electric conductivity and/or magnetic 

permeability) which depend on geometrical coordinates. It is 

shown in [9], [10] that a thin layer of reduced magnetic 

permeability can exist in a medium which undergoes special 

treatment. In the case of a planar medium the magnetic 

permeability of the layer depends on the vertical coordinate. 

Thus, in order to analyze such cases in practice one needs to 

develop mathematical models where electric conductivity and 

magnetic permeability of conducting layers depend on 

geometrical coordinates. There are at least two methods that 

can be used in order to take into account variability of the 

properties of the medium with respect to one geometrical 

coordinate. Regions where the properties of the medium are 

not constant can be divided into sufficiently large number of 

sub-layers where the electric conductivity and magnetic 

permeability are assumed to be constant. Therefore, in the 

whole region of interest the properties of the medium are 

piecewise constant functions of, say, depth. For example, up to 

50 layers are used in [11] to model the change in electric 

conductivity with respect to a vertical coordinate.  

Another approach is based on an attempt to use relatively 

simple electric conductivity and/or magnetic permeability 

profiles in order to model the variation of the properties of the 

medium with respect to one spatial coordinate. Some 

analytical solutions for the case where the properties of the 

medium depend on the vertical or radial coordinates are 

presented in [6].  

In the present paper we follow the second approach. 

Analytical solutions are constructed for the case where a coil is 

located inside or outside a multilayer tube with varying 

properties. The electric conductivity and magnetic 

permeability are assumed to be power functions of the radial 

coordinate. The solution procedure is described for an 

arbitrary number of conducting layers with varying electric 

conductivity and magnetic permeability. Three cases are 

analyzed in detail: (a) the case of a coil inside one infinite 

outer layer, (b) the case of a coil inside a two-layer tube, and 

(c) the case of a coil outside a two-layer tube.  
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II. A COIL INSIDE A MULTILAYER TUBE WITH VARYING 

PROPERTIES 

Consider a single-turn coil of radius 
0r with alternating 

current located inside a multilayer tube where each coaxial 

layer (region 
iR ) is described by the inequalities: 

nizrrrR iii ,...2,1},,20,{ 1 =+∞<<∞−≤≤≤≤= + πϕ . 

Here 
ir   and  

1+ir  are the inner and outer radii of the 

cylindrical layer, respectively. Regions 
0R  and 

1+nR represent 

free space. In particular, 

},20,0{ 10 +∞<<∞−≤≤≤≤= zrrR πϕ and 

},20,{ 11 +∞<<∞−≤≤≥= ++ zrrR nn πϕ . The coil is 

located in the plane 
0zz =  perpendicular to the axes of the 

tubes.  

Due to axial symmetry the vector potential has only one 

nonzero component in each region 1,..2,1,0, += niR i
which 

is the function of r and z only. We assume that the electric 

conductivity 
iσ~ and magnetic permeability 

iµ~ in region 
iR is 

modeled by the following relations 

 

  ,,...2,1,~,~
0 nirr ii

iiii === βα σσµµµ                     (1) 

 

where 
iα and 

iβ are given constants and 
0µ is the magnetic 

constant.  

The system of equations for the amplitudes of the vector 

potential in regions 
110 ,...,, +nRRR has the form (see, for 

example, [6]): 
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where 
iii jp µµωσ 0= , j is the imaginary unit and ω is 

the frequency of the current in the coil.  

     Applying the Fourier transform of the form 
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to (2)-(4) we obtain 
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The boundary conditions are (see [6]): 
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In addition, 
0

~
A is bounded at 0=r and 

1

~
+nA is bounded as 

∞→r .  

In order to find the solution to (6) we consider two sub-

regions, 
cR 00

and 
cR 01
, of region 

0R , namely,  

},20,0{ 000 +∞<<∞−≤≤<≤= zrrR πϕ and 

},20,{ 1001 +∞<<∞−≤≤≤<= zrrrR πϕ , respectively. 

The solutions in regions 
00R and 

01R are denoted by 
00

~
A and 

01

~
A , respectively. The bounded solution to (6) in region 

00R is 

 

).(),(
~

1100 rIBrA λλ =                                                   (12) 

 

The general solution to (6) in 
01R has the form 
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131201 rKBrIBrA λλλ +=                              (13) 

 

Here )(1 rI λ and )(1 rK λ are the modified Bessel functions of 

order 1 of the first and second kind, respectively.  

     The functions ),(
~

00 λrA and ),(
~

01 λrA satisfy the following 

conditions at 
0rr = : 
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The first condition in (14) reflects the fact that the function 

),(
~

0 λrA is continuous at 
0rr = while the second condition in 

(14) is obtained integrating (6) with respect to r from ε−0r  

to ε+0r and considering the limit in the resulting expression 

as 0+→ε .  

     The bounded solution to (8) is 
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111 rKDrA nn λλ ++ =                                               (15) 

 

The solution to (7) can be expressed in terms of different 

special functions. For example, the solution to (7) for the case 

1,1 −=−= ii βα is  
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where 4/12 += ipν (see [12]). 

       Arbitrary constants ),..,2,1(,,,, 321 niDCBBB ii = and 

1+nD can be found from conditions (9)-(11) and (14). Then the 

solution in each region 1,...,1,0, += niR i
can be found by 

means of the inverse Fourier transform of the form 
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It can be shown that the induced vector potential in free space 

due to multilayer conducting tubes has the form 
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Three applications of the theory presented in this section are 

considered in detail in the next two sections: (a) a coil inside 

an unbounded cylindrical layer, (b) a coil inside a two-layer 

tube and (c) a coil outside a two-layer tube. 

III. A COIL INSIDE A CYLINDRICAL REGION 

Suppose that a single-turn coil with alternating current is 

located inside a cylindrical region 

},20,{ 11 +∞<<∞−≤≤≥= zrrR πϕ (see [13]). The 

radius of the coil, 
0r , is chosen as the measure of length 

(
10 rr < ). The solution in region 

0R  is given by (12) and (13). 

The solution to (7) in region 
1R that is bounded at infinity has 

the form 
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The unknown constants 
321 ,, BBB and 

1D in (12), (13) and 

(19) are determined using conditions (9) and (14). In 

particular,  
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The induced vector potential in free space due to the presence 

of a cylindrical region is given by (18) and (20). The induced 

change in impedance of the coil is given by the formula (the 

case 00 =z is considered below) 

 

   ,),(0 dlzrA
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j
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L
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where L is the contour of the coil. Substituting (18) and (20) 

into (21) we obtain 
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0 ZrZ
ind µω=                                                            (22) 

 

where  
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Formula (23) is used to compute the change in impedance of 

the coil. Calculations are performed with “Mathematica” since 

it has built-in functions to evaluate modified Bessel functions 

of complex order. “Mathematica” program which is used to 

compute the change in impedance (23) is shown in Fig. 1. The 

results of computations are shown in Fig. 2. The calculated 

points (from top to bottom) for each curve correspond to the 

following values of .10,...,2,1:η The parameter η is defined 

by 
1010 µµωση r= (in this case jp η=1

). The three 

curves in Fig. 2 (from right to left) correspond to the cases 

4.1;2.11 =r and 1.6, respectively.  
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R�1.6; mu1�1�Sqrt�R�;
Do��Do��p�eta  Sqrt���;nu�Sqrt�p^2  1�4�;

I1�x_�:� BesselI�1, x  R�;
K1�x_�:� BesselK�1, x  R�;
Knu�x_�:� BesselK�nu, x  R�;
I2�x_�:� BesselI�2, x  R�;
K2�x_�:� BesselK�2, x  R�;
Knup�x_�:� BesselK�nu  1, x  R�;
I1pr�x_�:�I2�x� 1��x  R� I1�x�;
K1pr�x_�:�  K2�x� 1��x  R� K1�x�;
Knupr�x_�:�nu��x  R� Knu�x� Knup�x�;
f1�x_�:�2  R  x  K1�x� Knupr�x�
 Knu�x��K1�x� 2  R  mu1  x  K1pr�x��;

f2�x_�:�2  R  x  mu1  Knu�x� I1pr�x�
 I1�x��Knu�x� 2  R  x  Knupr�x��;

f�x_�:�f1�x��f2�x��BesselI�1, x��̂2;
Z��  NIntegrate�f�x�,�x,0.0001, Infinity�, MaxRecursion� 50�;
data1�eta�� Re�Z�;
data2�eta��Im�Z��,�eta, 1, 10��;

data�Table�If�m� 1, data1�k�,
data2�k��,�k, 1, 10�,�m, 1, 2��;

gr1�n�� ListPlot�data,PlotStyle��PointSize�0.02��, AxesLabel��Re�z�,Im�z��, DisplayFunction� Identity�;
gr2�n�� ListPlot�data,AxesLabel��Re�z�,Im�z��, PlotJoined� True,

DisplayFunction� Identity�; R�R  0.2;
mu1�1�Sqrt�R��,�n,1, 3��

Show�gr1�1�,gr2�1�, gr1�2�, gr2�2�, gr1�3�,
gr2�3�, DisplayFunction� $DisplayFunction�
Remove�"Global̀  "�

 
Fig. 1. “Mathematica” program for numerical calculation of the 

change in impedance given by formula (23).  

 

 

It is seen that the modulus of the change in impedance 

increases as the parameter η increases (that is, if the frequency 

increases). In addition, the change in impedance is larger when 

the coil is closer to the cylindrical region.  
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Fig. 2. The change in impedance of a coil for different values of 
1r . 

 

IV. A COIL INSIDE A TWO-LAYER TUBE 

Consider a single-turn coil of radius 
0r located inside a two-

layer tube (see [14]). The electric conductivity and magnetic 

permeability of the inner layer are given by formula (1) while 

the electric conductivity 
2σ  and magnetic permeability 

2µ of 

the outer layer are constants. The outer layer is unbounded in 

the radial direction. The solution in region 
0R is given by (12) 

and (13). The solution to (7) in region 
1R is 
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Finally, the bounded solution to (8) in region 
2R is 
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where .2

2

2 pq += λ  

It is convenient to choose the radius of the inner coil, 
1r , as the 

measure of length. In this case 
2r  represents the ratio of the 

radii of the tube. The unknown constants 

11321 ,,,, DCBBB and 
2D  in (12), (13), (24) and (25) are 

determined from the boundary conditions (14) and (9)-(11) 

with 1=n . In particular,  
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The parameter 
6γ in (27) and (28) is defined by 

 

   ,/ 876 γγγ =  
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Using formulas (18), (21) and (26) we obtain the change in 

impedance of the coil in the form 

 

     ,2 0

2

10 ZrrZ
ind ωµ−=  

where 
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3 λλγ drIjZ ∫
∞
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Formula (29) is used to compute the change in impedance of 

the coil for different values of the parameters of the problem. 

In order to minimize the number of the parameters of the 

problem we introduce the following dimensionless variables: 

01111 µµωση r= and )/( 1122 µσµσ=s so that 

jp 11 η= , jp 22 η=  and .
12

ηη s=  Fig. 3 plots the 

real and imaginary parts of the change in impedance for three 

different values of 2.1,1.1:2r and 1.3 (from right to left). The 

curves correspond to the following values of 

10,...,4,31 =η (from top to bottom). The other parameters are 

5.1,9.0,4,1 021 ==== srµµ .  
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Fig. 3. The change in impedance computed by formula (29) for three 

different values of 
2r . 

 

 

 

It is seen from Fig. 3 that for higher frequencies (larger values 

of 
1η ) the modulus of the change in impedance decreases. The 

decrease is related to smaller values of the real part of the 

change in impedance.  

The values of Z for three different values of 
2µ , namely, 

6;4;22 =µ (from left to right) are plotted in Fig. 4. The points 

on each curve correspond to the following values of 

10,...,4,31 =η (from top to bottom). The other parameters are 

set at 5.1,9.0,1.1,1 021 ==== srrµ . 

 

0.25 0.3 0.35 0.4

Re�z�

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Im�z�

 
 

Fig. 4. The change in impedance computed by formula (29) for three 

different values of 
2µ . 

 

 

It follows from Fig. 4 that for high frequencies (large values of 

1η ) the calculated points are very close to one another as the 

parameter 
2µ increases. 

 

V. A COIL OUTSIDE A MULTILAYER TUBE 

There are many different types of eddy current probes that 

are used to control the properties of objects with cylindrical 

symmetry. Encircling coils are widely used for inspecting 

cylinders, rods or tubes. Mathematical models described in the 

previous sections can also be applied for the case of encircling 

coils. Consider a multilayer tube described in Section II. We 

assume that a single-turn coil of radius 
0r is located outside the 

tube (
10 rr > ). The axis of the coil coincides with the axis of 

the tube.  

The system of equations for the amplitudes of the vector 

potential in each region 

nizrrrR iii ,...2,1},,20,{ 1 =+∞<<∞−≤≤≤≤= + πϕ is 

given by (2)-(4) where 
0r (the radius of the coil) is larger than 

1r (the radius of the inner cylinder of the tube). The solution 

procedure is essentially the same as in Section II with minor 

modifications. Applying the Fourier transform to (2)-(4) we 

obtain the system of equations in the form (6)-(8). The 

boundary conditions (9)-(11) are the same. For the case of an 
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encircling coil we have to assume that 
0

~
A is bounded as 

∞→r and 
1

~
+nA is bounded at 0=r . As a result, the solution 

in regions 
0R and 

1+nR has to be modified. We consider two 

sub-regions of region 
0R , namely, 

00R and 
01R , which are 

defined as follows: 

},20,{ 0100 +∞<<∞−≤≤<≤= zrrrR πϕ , 

},20,{ 001 +∞<<∞−≤≤>= zrrR πϕ . The solutions in 

00R and 
01R are denoted, as before, by 

00

~
A and 

01

~
A , 

respectively. Solving (6) in regions 
00R and 

01R we obtain 
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and 
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The bounded solution to (8) in region 
1+nR is 
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where 2

1

2

++= npq λ . 

It is assumed here that the electric conductivity and magnetic 

permeability of the layer that contains the point 0=r are 

constant.  

The solution in other conducting layers can be constructed as 

in Section II. For example, if 1−=iα and 1−=iβ , the 

solution is 
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where 4/12 += ipν . 

    The constants niDCBBB ii ,..2,1,,,,, 321 = and 
1+nD can 

be determined from the boundary conditions (9)-(11) and (14). 

It can be shown that the induced vector potential in this case is 

given by  
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Applying the inverse Fourier transform (17) to (34) we 

obtain the induced vector potential due to a multilayer tube in 

the following form 

 

  .)(
2

1
),( 120 λλ

π
λ derKBzrA ziind

∫
+∞

∞−

=                         (35) 

 

As an example we consider the case where a single-turn coil of 

radius 
0r is located outside a two-layer coaxial conducting 

tube. The inner radius of the tube, 
1r , is chosen as the measure 

of length. The conducting layer (region 
1R ) is defined by the 

inequalities: },20,1{ 21 +∞<<∞−≤≤≤≤= zrrR πϕ . 

The electric conductivity and magnetic permeability of region 

1R are given by (1). The properties of region 

},20,0{ 22 +∞<<∞−≤≤≤≤= zrrR πϕ (
2σ and

2µ ) are 

assumed to be constant.  

 It can be shown that the change in impedance of the coil 

due to a two-layer tube is given by 
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Results of numerical calculations using formula (37) are 

shown in Fig. 5. The following values of the parameters are 

used for calculations: .3.1,9.0,5,1 221 ==== srµµ The 

points on each curve correspond to the values of 

10,...,4,31 =η (from top to bottom). The graphs in Fig. 5 are 

shown for the following three values of 
0r : 1.1, 1.3 and 1.5 

(from right to left). It is seen from Fig. 5 that for larger values 

of 
0r the induced change in impedance is weaker: the modulus 

of Z decreases as the distance from the coil to the tube 

increases.  
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Fig. 5. The change in impedance computed by formula (37) for three 

different values of 
0r . 

 

VI.    OTHER ANALYTICAL SOLUTIONS 

 

     Equation (7) is the second order ordinary differential 

equation with variable coefficients that depend on two 

parameters 
iα and 

iβ . As it is shown in the previous sections 

the solution to (7) for the case 1,1 −=−= ii βα is expressed 

in terms of the modified Bessel functions (see (16)). It is 

possible to construct closed-form solutions to (7) for other 

combinations of the parameters 
iα and 

iβ . If 

0,2 =−= ii βα the solution to (7) can be written in the form 

(see [12]): 
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A one-parameter family of analytical solutions is obtained for 

the case .2,1 −=+≠ iii βαα The solution to (7) in this case 

is (see [12]) 
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In addition, if 1,1 −=+≠ iii βαα equation (7) reduces to 
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which is a particular form of the confluent hypergeometric 

equation 
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with 
iii epdcba αλα +=−=−=−== 1,,,1,0 22 (see 

[15]). In this case the solution to (7) can be expressed in terms 

of Whittaker functions (see [15]).  

Probably, other analytical solutions of equation (7) can be 

constructed for other combinations of the parameters 
iα and 

iβ . 

In summary, the idea of using relatively simple model one-

parameter electric conductivity and magnetic permeability 

profiles allows one to obtain different analytical solutions that 

can be used in eddy current testing of objects of cylindrical 

shapes with varying electric conductivity and magnetic 

permeability.  

 

VII. CONCLUSION 

 

The change in impedance of a single-turn coil with 

alternating current located inside or outside a multilayer tube 

with arbitrary number of conducting layers is obtained in the 

present paper.  The electric conductivity and/or magnetic 

permeability of each conducting layer are assumed to be power 

functions of the radial coordinate. The closed-form solution is 

expressed in terms of improper integral containing Bessel 

functions. It is shown that for some combinations of the 

parameters the solution in a conducting layer with variable 

properties can be expressed in terms of different special 

functions (Bessel functions and Whittaker functions). 

Theoretical model is developed for an arbitrary number of 

concentric conducting layers. Three examples are considered 

in detail. The first two examples correspond to the case where 

a coil is located inside a multilayer tube: (a) the case of an 

infinite outer conducting layer with varying properties and (b) 

the case of a two-layer tube where the electric conductivity and 

magnetic permeability depend on the radial coordinate. In 

addition, the case of a coil located outside a two-layer tube 

with varying properties considered as well.  

Results of numerical calculations for all three examples are 

presented. Calculations are performed with “Mathematica”.  

There are at least two cases where analytical solutions for 

eddy current testing problems can be helpful. First, analytical 

solutions suggested in the present paper can be used to solve 

inverse problems in cylindrical geometry where the electric 

conductivity and magnetic permeability of each conducting 

layer depend on the radial coordinate. Second, analytical 

solutions are often used to test numerical algorithms developed 

for more complicated cases (examples include equations with 

variable coefficients where the coefficients depend on more 

than one variable or nonlinear equations).  
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