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A subclass of quasi self adjoint lubrication
equations: conservations laws

M.L. Gandarias and M. S. Bruzón

Abstract—In [20] a general theorem on conservation laws
for arbitrary differential equation has been proved. This new
theorem is based on the concept of adjoint equations for non-
linear equations. The notion of self-adjoint equations and quasi
self adjoint has been also extended to non-linear equations. In this
paper we consider a generalized fourth-order nonlinear partial
differential equation which arises in modelling the dynamics
of thin liquid films. We use the free software MAXIMA pro-
gram symmgrp2009.max derived by W. Heremann to calculate
the determining equations for the classical symmetries of the
modified lubrication equation. We determine the subclasses of
this equations which are self-adjoint and quasi-self adjoint and
we find conservation laws for some of these partial differential
equations without classical Lagrangians.

Index Terms—Symmetries, partial differential equation, exact
solutions,Self-adjointness,Conservation laws

I. INTRODUCTION

We consider the fourth order degenerate diffusion equation

ut = −∇ · (f(u)∇ · (∆u)) (1)

in one space dimension. This equation, derived from a ‘lubrica-
tion approximation’, models surface tension dominated motion
of thin viscous films and spreading droplets. The equation with
f(u) = |u| also models a thin neck of fluid in the Hele-Shaw
cell. The thin-film dynamics if the liquid is uniform in one
direction can be modeled by the one-dimensional equation

ut = −(f(u)uxxx)x (2)

u stands by the thickness of the film, the fourth order term
reflects surface tension effects

ut = −(f(u)uxxx)x. (3)

In previous papers [2],[12] we have classified the classical
symmetries admitted by the generalized equation (3) and a
modified version given by

ut = −f(u)uxxxx. (4)

By using symmetry reductions we found that for some par-
ticular functional forms of f the one-dimensional lubrication
model admits some solutions of physical interest as similarity
solutions, travelling-wave solutions, source and sink solutions,
waiting time solutions and blow-up solutions. We were also
able to characterize those solutions as solutions for some
lower-order ordinary differential equations (ODEs) and more-
over we obtained some particular solutions. In a previous paper
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[8] we have derived the subclasses of equations which are self-
adjoint. For these classes of self-adjoint equations we apply
Lie classical method and determine the functions for which
equations (4) have additional symmetries. We also determine,
by using the notation and techniques of [20], some nontrivial
conservation laws for (4).

Many equations having remarkable symmetry properties and
physical significance are not self-adjoint. Therefore one cannot
eliminate the nonlocal variables from conservation laws of
these equations by setting v = u, [21] generalized the concept
of self-adjoint equations by introducing the definition of quasi-
self-adjoint equations.

The aim of this paper is to determine, for the general-
ized modified equation (4) the subclasses of equations which
are quasi-self-adjoint. For these classes of quasi-self-adjoint
equations we apply Lie classical method and determine the
functions for which Eqs. (4) have additional symmetries.

We show how the free software MAXIMA program sym-
mgrp2009.max, derived by W. Heremann, can be used to cal-
culate the determining equations for the classical symmetries
of the generalized modified equation (4). We also determine,
by using the notation and techniques of [20] and [21] some
nontrivial conservation laws for Eqs. (4).

A. Classical symmetries

In a previous work, we have studied equation (4) from
the point of view of the theory of symmetry reductions in
partial differential equations. We have obtained the classical
symmetries admitted by (4) for arbitrary f and the functional
forms of f for which equation (4) admits extra classical
symmetries. We have used the transformations groups to
reduce the equations to ODEs.

To apply the classical method to equation (4), one looks for
infinitesimal generators of the form

v = ξ(x, t, u)∂x + η(x, t, u)∂t + ψ(x, t, u)∂u,

that leave invariant these equations.

B. Symbolic manipulation programs

In this section we first show how the free software MAX-
IMA program symmgrp2009.max derived by W. Heremann
can be used to calculate the determining equations for the
classical symmetries of the modified lubrication equation (4).
To use symmgrp2009.max, we have to convert (4) into the
appropriate MACSYMA and MAXIMA syntax: x[1] and x[2]
represent the independent variables x and t, respectively, u[1]
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represents the dependent variable u, u[1, [1, 0]] represents ux,
u[1, [2, 0]] represents uxx, u[1, [4, 0]] represents uxxxx, and
u[1, [0, 2]] represents ut. Hence (4) is rewritten as

u[1, [0, 1]] + f ∗ u[1, [4, 0]]

with f = f(u). The infinitesimals ξ, τ and φ are repre-
sented by eta1, eta2 and phi1, respectively. The program
symmgrp2009. max automatically computes the determining
equations for the infinitesimals. The batchfile batch containing
the MAXIMA commands to implement the program symm-
grp2009.max, which we have called lubrimo.mac is

kill(all);
batchload("c:\\cla
\\symmgrp2009.max");
/* u_t = f(u)u_xxx*/
batch("c:\\camb\\lubrimo.dat");
symmetry(1,0,0);
printeqn(lode);
for j thru q do
(x[j]:=concat(x,j));
for j thru q do
(u[j]:=concat(u,j));
ev(lode)$
gnlhode:ev(%,x1=x,x2=t,u1=u);
grind:true$
stringout("gnlhode",gnlhode);
derivabbrev:true;

The first lines of this file are standard to symmgrp.max and
explained in [9]. The last lines are in order to create an output
suitable for solving the determining equations. This changes
x[1], x[2] and u[1] to x, t and u, respectively. The file lubri.mac
in turn batches the file lubrimo.dat which contains the requisite
data about (4).

p:2$
q:1$
m:1$
parameters:[a,b]$
warnings:true$
sublisteqs:[all]$
subst_deriv_of_vi:true$
info_given:true$
highest_derivatives:all$
depends([eta1,eta2,phi1],
[x[1],x[2],u[1]]);
depends([f],[u[1]]);
e1:u[1,[0,1]]+f*u[1,[4,0]];
v1:u[1,[0,1]];

The program symmgrp2009.max generates the system of
twenty eight determining equations. From this system we get

ξ = ξ(x, t),
τ = τ(t),
φ = α(x, t)u + β(x, t)

and the following five determining equations

(αx x x x f + αt) u + βx x x x f + βt = 0

−4 f ξx + α fu u + f τt + β fu = 0

−f (3 ξx x − 2 αx) = 0

−f (2 ξx x x − 3 αx x) = 0

−f ξx x x x − ξt + 4 αx x x f = 0

(5)

Solving these equations we find that if f is an arbitrary
function, the only symmetries that are admitted by (3) are

v1 = ∂x, v2 = ∂t.

v3 = x∂x + 4t∂t

The functional forms of f which have extra symmetries and
the corresponding generators are:

f(u) = c(u+ b)a, f(u) = γeαu (6)

We can take in (6) c = 1, b = 0, α = −1, γ = 1

Case 1: f(u) = ua, a 6= 8
3

v1 = ∂x,
v2 = ∂t,
v3 = x∂x + 4t∂t

v4 = −at∂t + u∂u,

v5 = x∂x + (4 −
3

2
a)t∂t +

3

2
u∂u

Case 2: f(u) = u8/3,

v1 = ∂x,
v2 = ∂t,
v3 = x∂x + 4t∂t

v4 = −at∂t + u∂u,
v5 = x2∂x + 3xu∂u

Case 3: f(u) = e−u

v1 = ∂x,
v2 = ∂t,
v3 = x∂x + 4t∂t

v4 = x∂x − 4∂u

v5 = t∂t + ∂u.

II. OPTIMAL SYSTEMS AND REDUCTIONS

In order to construct the one-dimensional optimal system,
following Olver, we construct the commutator table and the
adjoint table which shows the separate adjoint actions of each
element in vi, i = 1 . . . 5, as it acts on all other elements.
This construction is done easily by summing the Lie series.
An example of these tables, corresponding to f(u) = ua,

appear in the Appendix.
In [13], reductions of the equation (4) to ODEs were

obtained using the generators of the optimal system.

A. Reductions for f arbitrary

1 Reduction with the generator µv1 + v2

z = x− µt, u = ω, (7)

and the ODE

f(w)ω′′′′ + µω′ = 0 (8)

2 Reduction with the generator v1
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z = t, u = ω, (9)

and the ODE

ω′ = 0 (10)

3 Reduction with the generator v3

z =
x

t

1/4
, u = ω, (11)

and the ODE

4f(w)ω′′′′ + zω′ = 0 (12)

B. Reductions for f = ua α = − 1
λα , β = − 4+λα

λα2

1 Reduction with (λ+ 4
a − 3

2 )v3 + v4

z = t−αx, u = tβω, (13)

and the ODE

waω′′′′ + αzω′ − βω = 0 (14)

2 Reduction with λv2 + ( 4
a − 3

2 )v3 + v4

z = xe−
t

λ , u = e
4t

aλω, (15)

and the ODE

aλwαω′′′′ + azω′ − 4ω = 0 (16)

3 Reduction with ( 4
a − 3

2 )v3 + v4

z = t, u = x
4

aλω, (17)

and the ODE

ω′ −
4

a
(
4

a
− 1)(

4

a
− 2)(

4

a
− 3)ωa+1 = 0 (18)

4 Reduction with µv1 + v3

z = x+ µ
a ln|t|, u = t−

1

aλω, (19)

and the ODE

wαω′′′′ − µω′ + ω = 0 (20)

5 Reduction with the generator µv1 + v2

z = x− µt, u = ω, (21)

and the ODE

ωaω′′′′ + µω′ = 0 (22)

6 Reduction with the generator v1

z = t, u = ω, (23)

and the ODE

ω′ = 0 (24)

C. Reductions for f = u
8

3

Besides the previous reductions we get

7 Reduction with λ2
1v1 + λ2v2 + v5

z =
1

λ1
atan

x

λ1
−

t

λ2
,

u = (x2 + λ2
1)

3

2ω,

(25)

and the ODE

λ2ω
8

3ω′′′′ + 10λ2
1λ2ω

8

3ω′′ + ω′ + 9λ4
1λ2ω

11

3 = 0 (26)

8 Reduction with λ2
1v1 + λ2v3 + v5

z =
1

λ1
atan

x

λ1
+

3

8λ2
ln|t|,

u = (x2 + λ2
1)

3

2 e
λ2

λ1 atan
x

λ1
ω,

(27)

and the ODE

8kω
8

3

(

ω′′′′ + 4kω′′′ + 2(5λ2
1 + 3k2)ω′′+

4k(5λ2
1 + k2)ω′) − 3e−

8k

3 zω′+

8k(k4 + 10λ2
1k

2 + 9λ4
1

)

ω
11

3 = 0

(28)

9 Reduction with λv2 + v5

z =
1

x
+
t

λ
,

u = x3ω,

(29)

and the ODE

λω
8

3ω′′′′ − ω′ = 0 (30)

10 Reduction with λv3 + v5

z =
1

x
+

3

8λ
ln|t|,

u = x3e−
λ

xω,

(31)

and the ODE

8kω
8

3 (−ω′′′′ + 4kω′′′ − 6k2ω′′ + 4k3ω′)−

3e−
8k

3
zω′ − 8k5ω

11

3 = 0
(32)

11 Reduction with λ2
v1 + v5

z = t, (x2 + λ2)
3

2ω, (33)

and the ODE

ω′ − 9λ4ω
11

3 = 0 (34)
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D. Reductions for f = e−u

Besides the previous reductions for f arbitrary we get

12 Reduction with v3 + λv4

z = xt
−

1

λ1 ,

u =
λ− 4

λ
ln|t| + ω,

(35)

and the ODE

λe−ωω′′′′ + zω′ − λ+ 4 = 0 (36)

13 Reduction with λv2 + v3

z = e−
t

λx,

u = ω −
4t

λ
,

(37)

and the ODE

λe−ωω′′′′ + zω′ + 4 = 0 (38)

14 Reduction with v3

z = t,

u = −4ln|x| + ω,
(39)

and the ODE

ω′ − 24e−ω = 0 (40)

15 Reduction with µv1 + v4

z = x− µln|t|,

u = ω + ln|t|,
(41)

and the ODE

e−ωω′′′′ + µω′ − 1 = 0 (42)

16 Reduction with µv1 + v4

z = x− µt,

u = ω,
(43)

and the ODE

e−ωω′′′′ + µω′ = 0 (44)

17 Reduction with v1

z = t,

u = ω,
(45)

and the ODE
ω′ = 0 (46)

In [13] we have discussed some interpretation of the simi-
larity variables in the reductions of the lubrication equation as

well as in the reductions of the modified lubrication equation
and we have provided some particular solutions.

• For f(u) = ua, Eq. (18) is a first order equation that can
be easily solved, in this way we have obtained a family
of waiting-time solutions (if a 6= 2 or 4) given by

u(x, t) =

{

x
4

a [A(t0 − t)]
−

1

a x ≥ 0
0 x < 0

A = 4(
4

a
+ 1)(

4

a
− 1)(

4

a
− 2)(

4

a
− 3)

• For f(u) = e−u Eq. (40) is a first order equation, solving
it we get that the corresponding similarity solution

u(x, t) = −ln
(x− x0)

4

24(t+ t0)

describes a localized blow-up at x = x0.
• For f(u) = u

8

3 , using reduction (33) we get a new
solution with blow-up at t = t0, given by

u(x, t) =

[

3(x2 + λ2)4

8λ4(t0 − t)

]

.

III. ADJOINT AND SELF-ADJOINT NONLINEAR EQUATIONS

The following definitions of adjoint equations and self-
adjoint equations are applicable to any system of linear and
non-linear differential equations, where the number of equa-
tions is equal to the number of dependent variables (see [20]),
and contain the usual definitions for linear equations as a
particular case. Since we will deal in our paper with scalar
equations, we will formulate these definitions in the case of
one dependent variable only.

Consider an sth-order partial differential equation

F (x, u, u(1), . . . , u(s)) = 0 (47)

with independent variables x = (x1, . . . , xn) and a dependent
variable u, where u(1) = {ui}, u(2) = {uij}, . . . denote the
sets of the partial derivatives of the first, second, etc. orders,
ui = ∂u/∂xi, uij = ∂2u/∂xi∂xj . The adjoint equation to
(47) is

F ∗(x, u, v, u(1), v(1), . . . , u(s), v(s)) = 0, (48)

with

F ∗(x, u, v, u(1), v(1), . . . , u(s), v(s)) =
δ(v F )

δu
, (49)

where

δ

δu
=

∂

∂u
+

∞
∑

s=1

(−1)sDi1 · · ·Dis

∂

∂ui1···is

(50)

denotes the variational derivatives (the Euler-Lagrange opera-
tor), and v is a new dependent variable. Here

Di =
∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj
+ · · ·

are the total differentiations.
Eq. (47) is said to be self-adjoint if the equation obtained

from the adjoint equation (48) by the substitution v = u :

F ∗(x, u, u, u(1), u(1), . . . , u(s), u(s)) = 0,
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is identical with the original equation (47). In other words, if

F ∗(x, u, u(1), u(1), . . . , u(s), u(s)) =
φ(x, u, u(1), . . .)F (x, u, u(1), . . . , u(s)).

(51)

A. General theorem on conservation laws

We use the following theorem on conservation laws proved
in [21].
Theorem Any Lie point, Lie-Bäcklund or non-local symmetry

X = ξi(x, u, u(1), . . .)
∂

∂xi
+ η(x, u, u(1), . . .)

∂

∂u
(52)

of Eqs.(47) provides a conservation law Di(C
i) = 0 for the

simultaneous system (47), (48). The conserved vector is given
by

Ci = ξiL +W

[

∂L

∂ui
−Dj

(

∂L

∂uij

)

+ DjDk

(

∂L

∂uijk

)

− · · ·

]

+Dj(W )

[

∂L

∂uij
−Dk

(

∂L

∂uijk

)

+ · · ·

]

+DjDk(W )

[

∂L

∂uijk
− · · ·

]

+ · · · ,

(53)

where W and L are defined as follows:

W = η − ξjuj , L = v F
(

x, u, u(1), . . . , u(s)

)

. (54)

B. The class of self-adjoint equations

Let us single out quasi-self-adjoint equations from the
equations of the form (4),

ut = f(u)uxxxx

The result was given in [8] by the following statement.
Theorem

Eq. (4) is self-adjoint if and only

f(u) =
a

u
.

Proof. Eq. (49) yields

F ∗ =
δ

δu
[v(ut − fuxxxx)]

= −Dtv −D4
x(fv) − f ′vuxxxx,

(55)

where
D4

x (fv) = fvxxxx + 4f ′uxvxxx

+6f ′uxxvxx + 6f ′′(ux)2vxx

+4f ′uxxxvx + 12f ′′uxuxxvx

+4f ′′′(ux)3vx + f ′uxxxxv
+4f ′′uxuxxxv + 3f ′′(uxx)2v
+6f ′′′(ux)2uxxv + f ′′′′(ux)4v.

(56)

By substituting (56) into (55) it follows that the class of adjoint
equations to class of equations (4) is

−vt − fvxxxx − 4f ′uxvxxx − 6f ′uxxvxx

−6f ′′(ux)2vxx − 4f ′uxxxvx

−12f ′′uxuxxvx − 4f ′′′(ux)3vx − f ′uxxxxv
−4f ′′uxuxxxv − 3f ′′(uxx)2v
−6f ′′′(ux)2uxxv − f ′′′′(ux)4v − f ′vuxxxx = 0.

(57)

After setting v = u in (57) we obtain that F ∗ = −(ut −
fuxxxx) if and only if f(u) satisfies

f + uf ′ = 0,

whose solution is

f =
a

u
.

Many equations having remarkable symmetry properties and
physical significance are not self-adjoint. Therefore one cannot
eliminate the nonlocal variables from conservation laws of
these equations by setting v = u. In [21] the concept of
self-adjoint equation has been generalized by introducing the
definition of quasi-self-adjoint equations.

Equation (47) is said to be quasi-self-adjoint if the the
adjoint equation (48) is equivalent to the original equation (47)
upon the substitution v = h(u) with a certain function h(u)
such that h′(u) 6= 0. We consider again (4) and we substitute

v = h(u)
vt = h′ut

vx = h′ux

vxx = h′uxx + h′′u2
x

vxxx = h′ux x x + 3h′′ ux ux x + h′′′ (ux)
3

vxxxx = h′uxxxx + 4h′′uxuxxx + 3huu (uxx)
2

+6huuu (ux)
2
uxx + h′′′′ (ux)

4

in the adjoint equation (57) and we get

−f h′ ux x x x − 2 f ′ hux x x x − 4 f h′′ ux ux x x

−8 f ′′ h′ ux ux x x − 4 f ′′ hux ux x x

−3 f h′′ (ux x)
2
− 6 f ′ h′ (ux x)

2

−3 f ′′ h (ux x)
2
− 6 f h′′′ (ux)

2
ux x

−18 f ′ h′′ (ux)2 ux x − 18 f ′′ h′ (ux)2 ux x

−6 f ′′′ h (ux)2 ux x − f h′′′′ (ux)4

−4 f ′ h′′′ (ux)4 − 6 f ′′ h′′ (ux)4

−4 f ′′′ h′ (ux)
4
− f ′′′′ h (ux)

4
− h′ ut = 0.

Hence the condition of quasi-self-adjointness is written as
follows

−f h′ ux x x x − 2 f ′ hux x x x − 4 f h′′ ux ux x x

−8 f ′′ h′ ux ux x x − 4 f ′′ hux ux x x

−3 f h′′ (ux x)
2
− 6 f ′ h′ (ux x)

2

−3 f ′′ h (ux x)
2
− 6 f h′′′ (ux)

2
ux x

−18 f ′ h′′ (ux)
2
ux x − 18 f ′′ h′ (ux)

2
ux x

−6 f ′′′ h (ux)
2
ux x − f h′′′′ (ux)

4

−4 f ′ h′′′ (ux)
4
− 6 f ′′ h′′ (ux)

4

−4 f ′′′ h′ (ux)
4
− f ′′′′ h (ux)

4
− h′ ut = 0

−λ[ut − f(u)uxxxx] = 0

where λ is an undetermined coefficient.

Hence the following conditions must be satisfied
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λ+ h′ = 0

f λ− f h′ − 2 f ′ h = 0

f h′′ + 2 f ′ h′ + f ′′ h = 0

f h′′′ + 3 f ′ h′′ + 3 f ′′ h′ + f ′′′ h = 0

3 f h′′ + 6 f ′ h′ + 3 f ′′ h = 0

f h′′′′ + 4 f ′ h′′′ + 6 f ′′ h′′ +

4 f ′′′ h′ + f ′′′′ h = 0

Hence λ = −h′ and h = k
f(u) , namely the adjoint

equation becomes equivalent to the original equation upon the
substitution v = k

f(u) .

C. Conservation laws for a subclass of quasi-self-adjoint
lubrication equations

1 Let us apply the Theorem in conservation-laws to the quasi-
self-adjoint equation (4) with f(u) arbitrary: in this case we
have

L =
(

ut − f(u)uxxxx)
)

v. (58)

We will write generators of point transformation group admit-
ted by Eq. (4) in the form

X = ξ1
∂

∂t
+ ξ2

∂

∂x
+ η

∂

∂u

by setting t = x1, x = x2. The conservation law will be
written

Dt(C
1) +Dx(C2) = 0. (59)

Since we will deal with fourth-order equations, we will use
Eqs. (53) in the following form:

Ci = ξiL +W

[

∂L

∂ui
−Dj

(

∂L

∂uij

)

+ DjDk

(

∂L

∂uijk

)

−DjDkDl

(

∂L

∂uijkl

)]

+Dj(W )

[

∂L

∂uij
−Dk

(

∂L

∂uijk

)

+DkDl

(

∂L

∂uijkl

)]

+DjDk(W )

[

∂L

∂uijk
−Dl

(

∂L

∂uijkl

)]

+DjDkDl(W )

(

∂L

∂uijkl

)

.

(60)

Let us find the conservation law provided by the following
obvious scaling symmetry of Eq. (4):

X = 4t
∂

∂t
+ x

∂

∂x
. (61)

In this case we have W = −4tut − xux and Eqs. (53) yield
the conservation law (59) with

C1 = −
k ux x

f
−Dx (4 k ux x x x) ,

C2 =
k ut x

f
− k ux x x −Dt (4 k ux x x x) .

We simplify the conserved vector by transferring the terms of
the form Dx(. . .) from C1 to C2 and obtain

C1 = −
k ux x

f
,

C2 =
k ut x

f
− k ux x x.

2 Let us find the conservation law for f(u) = ua provided by
the following obvious symmetry of Eq. (4):

X = −at
∂

∂t
+ u

∂

∂u
. (62)

In this case we have W = atut + u and Eqs. (53) yield the
conservation law (59) with

C1 = −ku1−a +Dx(aktuxxx),

C2 = k(1 − a)uxxx −Dt(aktuxxx).

We simplify the conserved vector by transferring the terms of
the form Dx(. . .) from C1 to C2 and obtain

C1 = −ku1−a,

C2 = k(1 − a)uxxx.

3 Let us find the conservation law for f(u) = ua provided by
the following symmetry of Eq. (4):

X = x∂x + (4 −
3

2
a)t∂t +

3

2
u∂u. (63)

In this case we have

W =
3

2
u− xux − (4 −

3

2
a)tut

and Eqs. (53) yield the conservation law (59) with

C1 = −

(

kxux

ua
−

3ku1−a

2

)

+

Dx

(

kt(4 −
3a

2
)uxxx

)

,

C2 =
kxut

ua
+
k

2
(5 − 3a)uxxx−

Dt

(

kt(4 −
3a

2
)uxxx

)

.

We simplify the conserved vector by transferring the terms of
the form Dx(. . .) from C1 to C2 and obtain

C1 = −

(

kxux

ua
−

3ku1−a

2

)

,

C2 =
kxut

ua
+
k

2
(5 − 3a)uxxx.

4 Let us find the conservation law for f(u) = u
8

3 provided by
the following symmetry of Eq. (4):

X = x∂x + (4 −
3

2
a)t∂t +

3

2
u∂u. (64)
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In this case we have

W = 3xu− x2ux

and Eqs. (53) yield the conservation law (59) with

C1 =
3 k ux x

2

2u
8

3

+Dx

(

3 k x2

2u
5

3

)

,

C2 = −
3 k ut x

2

2u
8

3

− 3 k ux x x x+ 3 k ux x

−Dt

(

3 k x2

2u
5

3

)

.

We simplify the conserved vector by transferring the terms of
the form Dx(. . .) from C1 to C2 and obtain

C1 =
3 k ux x

2

2u
8

3

,

C2 = −
3 k ut x

2

2u
8

3

− 3 k ux x x x+ 3 k ux x.

5 Let us find the conservation law for f(u) = e−u provided
by the following symmetry of Eq. (4):

X = x∂x − 4∂u. (65)

In this case we have

W = −4 − xux

and Eqs. (53) yield the conservation law (59) with

C1 = 3 k eu ux x+Dx (−4 k eu x) ,

C2 = −3 k eu ut x− 3 k ux x x

−Dt (−4 k eu x) .

We simplify the conserved vector by transferring the terms of
the form Dx(. . .) from C1 to C2 and obtain

C1 = 3 k eu ux x,

C2 = −3 k eu ut x− 3 k ux x x.

IV. CONCLUSIONS

In this work we have considered the class of modified
nonlinear diffusion equations. By using free software Maxima,
we have derived the Lie classical symmetries. If f(u) = ua

or f(u) = e−u the equation admits additional classical sym-
metries. We have determined the subclasses of this equations
which are self-adjoint and quasi-self adjoint. By using a
general theorem on conservation laws proved by Nail Ibrag-
imov we found conservation laws for some of these partial
differential equations without classical Lagrangians
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APPENDIX A
APPENDIX

(eta1[u1]) ∗ f, (eta1[u1u1]) ∗ f, (eta1[u1u1u1]) ∗ f,

(eta1[u1u1u1u1]) ∗ f, (eta2[u1]) ∗ f 2, (eta2[x1]) ∗ f2,

(eta2[x1x1]) ∗ f2, (eta2[x1x1x1]) ∗ f2,
f ∗ (2 ∗ (eta2[u1]) ∗ (f [u1]) + (eta2[u1u1]) ∗ f),
f ∗ ((eta2[x1]) ∗ (f [u1]) + (eta2[u1x1]) ∗ f),
f ∗ ((eta2[x1x1]) ∗ (f [u1]) + (eta2[u1x1x1]) ∗ f),
f ∗ ((eta2[x1x1x1]) ∗ (f [u1]) + (eta2[u1x1x1x1]) ∗ f−
eta1[u1]), f ∗ (3 ∗ (eta2[u1]) ∗ (f [u1u1])+
3 ∗ (eta2[u1u1]) ∗ (f [u1])+
(eta2[u1u1u1]) ∗ f),
f ∗ ((eta2[x1]) ∗ (f [u1u1]) + 2 ∗ (eta2[u1x1]) ∗ (f [u1])+
(eta2[u1u1x1]) ∗ f), f ∗ ((eta2[x1x1]) ∗ (f [u1u1])+
2 ∗ (eta2[u1x1x1]) ∗ (f [u1]) + (eta2[u1u1x1x1]) ∗ f),
f ∗ (4 ∗ (eta2[u1]) ∗ (f [u1u1u1]) + 6 ∗ (eta2[u1u1]) ∗ (f [u1u1])+
4 ∗ (eta2[u1u1u1]) ∗ (f [u1]) + (eta2[u1u1u1u1]) ∗ f),
f ∗ ((eta2[x1]) ∗ (f [u1u1u1]) + 3 ∗ (eta2[u1x1]) ∗ (f [u1u1])+
3 ∗ (eta2[u1u1x1]) ∗ (f [u1]) + (eta2[u1u1u1x1]) ∗ f),
(f [u1]) ∗ phi1 + (eta2[x1x1x1x1]) ∗ f 2 + (eta2[x2]) ∗ f−
4 ∗ (eta1[x1]) ∗ f, f ∗ (2 ∗ (phi1[u1x1]) − 3 ∗ (eta1[x1x1])),
f ∗ (3 ∗ (phi1[u1x1x1]) − 2 ∗ (eta1[x1x1x1])),
4 ∗ f ∗ (phi1[u1x1x1x1]) − (eta1[x1x1x1x1]) ∗ f − eta1[x2],
f ∗ (phi1[u1u1] − 4 ∗ (eta1[u1x1])),
f ∗ (2 ∗ (phi1[u1u1x1])−
3 ∗ (eta1[u1x1x1])), f ∗ (3 ∗ (phi1[u1u1x1x1])−
2 ∗ (eta1[u1x1x1x1])), f ∗ (phi1[u1u1u1] − 4 ∗ (eta1[u1u1x1])),
f ∗ (2 ∗ (phi1[u1u1u1x1]) − 3 ∗ (eta1[u1u1x1x1])),
f ∗ (phi1[u1u1u1u1] − 4 ∗ (eta1[u1u1u1x1])),
phi1[x2] + f ∗ (phi1[x1x1x1x1])

TABLE I
COMMUTATOR TABLE FOR THE LIE ALGEBRA vi .

v1 v2 v3 v4

v1 0 0 0 v1

v2 0 0 −av2 0

v3 0 av2 0 0

v4 −v1 ( 3a

2
− 4)v2 0 0

TABLE II
ADJOINT TABLE FOR THE LIE ALGEBRA vi .

v1 v2 v3 v4

v1 v1 v2 v3 v4 − εv1

v2 v1 v2 v3 + aεv2 v4

v3 0 eaε
v2 0 0

v4 eε
v1 e( 3a

2
−4)ε

v2 eε
v3 eε

v4

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 5, 2011 812

user
Rectangle




