Drug Resistant and Wild-type Strains Interaction: Investigating Effects of Conversion Delays for Possible Control Strategies

Korsuk Sirinukunwattana, Yongwimon Lenbury, and Nardtida Tumrasvin

Abstract—Drug resistance arises when a drug such as an antimicrobial or an antineoplastic loses its effectiveness in curing a disease or health condition. The increasing threat of drug resistance is compromising medical care worldwide. To provide deeper understanding of possible measures to avoid the endemia of drug resistant strains, many models have been proposed and analyzed on the dynamics of co-circulating wild-type and drug resistant viruses. We aim to add to these works by considering a model which incorporates the effects of delay in the evolution of resistant strain, as well as the role of the immune response and the target cells availability on the suppression of the peak load of resistant virus. The model is analyzed to discover possible impacts of delays on the system’s dynamic behaviour, persistence of the two strains, and the global stability. Oscillatory behaviour and the role of delays as possible control parameters are also investigated.

Keywords—Drug resistance, Cost of resistance, maturation delays effects, global stability, uniform persistence.

I. INTRODUCTION

One of the most outstanding advances in the history of human health is the discovery of antimicrobial agents which are medicines used to treat infections caused by bacteria, fungi, parasites, and viruses. Capable of decreasing suffering from illnesses and even save lives, antimicrobial agents have been hailed as "miracle drugs" that are our leading weapons in the treatment of infectious diseases. When penicillin was discovered and applied, survival rate of patients suffering from illnesses and even save lives, antimicrobial agents have been hailed as "miracle drugs" that are our leading weapons in the treatment of infectious diseases. When penicillin was discovered and applied, survival rate of patients was increased. But antibiotic resistance rapidly arose at a faster rate than that of human’s ability to develop new drugs. Antimicrobial resistance refers to the ability of certain microorganisms to withstand attack by drugs. Rapid and relentless rise in resistant pathogens creates serious concerns by threatening lives and wasting limited healthcare resources.

Many drugs and antibiotics that were formally effective in fighting infections are no longer effective because of the development of resistant strains which poses a serious threat to public health. Many intervention measures have been devised in order to limit the emergence and spread of antimicrobial-resistant bacteria such as methicillin-resistant Staphylococcus aureus, vancomysin-resistant Enterococci, and multidrug-resistant Gram-negative bacilli [1]. However, these pathogens still recover and continue to spread at dangerous pace. Viral infections like HIV-1 are able to rapidly produce resistant strains, causing life-long infection, and resistance to Influenza-A drugs is rising. Understanding drug resistant infections is therefore at the forefront of concentrated research [1].

Many mass-action models [1-6] have been used to study the activity of a virus or bacterial species within a host, describing the interaction between strains, the cells they infect and the attempts of the body’s immune response to remove the infection. Of particular interest is the impact of drug administration on the dynamics of co-circulating wild-type and drug resistant viruses. In 2007, Puttasontiphot et al. [6] investigated bacteria-antibiotic dynamics in a chemostat exposed to antimicrobial selection pressure. To support the model derivation, experimental data were collected, first from a culture of Enterococcus faecalis ATCC 29212 and Serratia marcescens ATCC 43861 growing in 1% Mueller-Hinton Broth II in the absence of antibiotics, and then from a culture of Bacteroides Fragilis with BMS-284756 for the antibiotic. Their full model involves the density of a sensitive strain S, that of a resistant strain R, the concentration of the limiting resource, or substrate, and the effective antibiotic level.

We, on the other hand, consider a situation in which the resource is abundant so that we may take the interactions of the two strains to be independent of the substrate concentration. We further incorporate the delay τ in the evolution of the resistant strain as well as the time it takes before the resistant members become mature enough to reproduce or transmit the chromosomal elements known as plasmids to affect the conversion of sensitive to resistant strain. Our referenced model is thus written as follows.
\[
\frac{dS}{dt} = \psi_S S(t) \cdot H(S(t)) S(t) R(t - \tau) - k S(t) + I \tag{1}
\]
\[
\frac{dR}{dt} = \psi_R (R - R(t)) R(t - \tau) + H(S(t)) S(t) R(t - \tau) - d_R R(t - \tau) \tag{2}
\]

where the first term on the right of (1) is the growth rate of the sensitive strain, the second term accounts for the conversion of sensitive members to resistant ones.

The function \(H(S)\) in this second term is the response function of the sensitive population to the conversion attempts of the resistant population. In [6], the response was assumed to take the form of a Holling type function:

\[
H(S) = \frac{e_r}{K_r + S} \tag{3}
\]

In this paper, we shall let \(H(S)\) be a general continuous function and investigate the effect different formulations of \(H(S)\) have on the dynamic behaviour of the model.

The third term on the right of (1) is the death rate, while the fourth term is the killing rate of \(S\) by administered drugs. We also assume that the host is being infected by the sensitive strain at the constant rate \(I\).

The first term on the right of equation (2) is the growth rate of the resistant strain. Here, we have taken into account the “cost of resistance” which corresponds to the phenomena that the resistant strain is less fit in the absence of treatment due to being out competed by the wild type strain [7]. According to this concept, naturally we expect the wild type strain to be stable with a higher transmission rate than the drug resistant strain. Furthermore, it was suggested in [7] and [8] that a decrease in the peak load of resistant virus could be attributed to the cytotoxic lymphocytes’ response or a lack of target cells that limits the resistant virus from replicating. We incorporate this effect by using the logistic growth term for the resistant strain, so that its growth rate decreases as the current density rises to its carrying capacity \(r\).

The second term on the right of (2) corresponds to the increase in the resistant population from conversion of the sensitive members. The last term is the death rate of the resistant population. The evolution of this strain has an intrinsic delay of \(\tau\) in time which accounts for the delay in the responses of the host and the immune system to the resistant strain.

We shall first give a result on uniform persistence, then study the global stability in the case that the cost of resistance parameter \(\gamma = \frac{1}{r}\) is relatively low. Finally, we investigate the effect of delay \(\tau\) on the oscillatory behaviour of the solution when \(\gamma\) is rather high (low capacity \(r\)).

II. Uniform Persistence

Frequently, the strictly positive solutions of biological model eventually approach the boundary of non-zero zone. Such a situation is interpreted as extinction of populations. Thus, the question that arises is of specifying the condition that each initially strictly positive solution is at some positive distance away from the boundary as time evolves [9]. In this part, we provide the restrictions to guarantee that each strictly positive solution is uniformly bounded away from the boundary, in other words, uniformly persistence.

Letting

\[
f(S) = \psi_S r - \omega_S + H(S) S, \tag{4}
\]

\[
\omega_S = d_S + k > 0, \tag{5}
\]

\[
\omega_R = d_R > 0, \tag{6}
\]

and

\[
\psi_S r \geq \omega_S, \tag{7}
\]

we investigate some properties of the solutions of (1) and (2), and the equilibrium point \((S_0, R_0)\) which, by definition, satisfies the following system:

\[
I = (H(S_0) R_0 + \omega_R - \psi_S) S_0, \tag{8}
\]

\[
R_0 = \frac{1}{\psi_S} f(S_0). \tag{9}
\]

In what follows, \(\mathbb{R}\) denotes the set of real numbers. We now state and prove our first result.

Theorem 1 Let \(H(\cdot)\) be a non-decreasing function, \(\omega_S \geq \psi_S\), and \((S, R)\) be a bounded positive solution of (1) and (2). Define

\[
R_n = \lim inf_{t \rightarrow +\infty} R(t), \quad R_\mu = \lim sup_{t \rightarrow +\infty} R(t), \tag{10}
\]

\[
S_n = \lim inf_{t \rightarrow +\infty} S(t), \quad S_\mu = \lim sup_{t \rightarrow +\infty} S(t). \tag{11}
\]

Then,

\[
R_n \leq R_0 \leq R_\mu, \tag{10}
\]

and

\[
S_n \leq S_0 \leq S_\mu. \tag{11}
\]

Proof \(f(\cdot)\) is monotonically increasing from the hypothesis that \(H(\cdot)\) is non-decreasing. For any bounded positive solution \((S, R)\) of (1) and (2), we can construct a full time solution \((S, R)\) by using an \(\omega\)-limit set of \((S, R)\) such that

\[
R_\omega = \mathcal{R}(0) = \max_{r \in h} \mathcal{R}(t),
\]

\[
R_n = \min_{r \in h} \mathcal{R}(t),
\]

\[
S_n \leq S(t) \leq S_\mu, \quad \forall t \in \mathbb{R}.
\]

(Please see [10-12] for details on full time solutions and their applications.)
Accordingly, from (2), we have
\[0 = R(0) = \varphi_{\tau}^i (r - R_\omega) R(-\tau) + H(S(0)) S(0) R(-\tau) - \omega_3 R(-\tau), \]
and
\[R_\omega = R(0) = \frac{1}{\varphi_{\tau}^i} f(S(0)). \]

First, we will show that \(R_\omega \geq R_\omega \), that is
\[\frac{1}{\varphi_{\tau}^i} f(S(0)) \geq \frac{1}{\varphi_{\tau}^i} f(S_\omega). \]
Since \(f(\cdot) \) is monotonically increasing, we need to prove that \(S(0) \geq S_\omega \).

For the sake of contradiction, we assume that \(S(0) < S_\omega \).

Consequently, \(R_\omega < R_\omega \). Since \(S_\omega \leq S(0) \), it follows that \(S_\omega < S_\omega \).

We construct another full time solution \((S, R)\) by using \(\omega\)-limit set of \((S, R)\) such that
\[S_\omega = \{S(0) \} = \min_{n \in R} \{S(t)\}, \]
\[S_\omega \geq \max_{n \in R} \{S(t)\}, \]
\[R \leq \omega(t) \leq R_\omega, \quad \forall t \in R. \]

Again, it follows that \(\omega(0) = 0 \).

From (1), we have
\[I = (\omega - \varphi_{\tau}^i) + (H(S(0)) \omega(-\tau)) S_\omega, \]

Since we already have \(S_\omega \leq S(0) < S_\omega \), and \(R_\omega < R_\omega \), (16) becomes
\[I = (\omega - \varphi_{\tau}^i) + (H(S(0)) \omega(-\tau)) S_\omega \leq (\omega - \varphi_{\tau}^i) + (H(S_\omega) \omega(-\tau)) S_\omega = I. \]

This contradiction implies that \(S(0) \geq S_\omega \), and thus \(R_\omega \geq R_\omega \).

In addition, it follows that
\[S_\omega \geq S(0) \geq S_\omega. \]

The other half of the proof is similar, but we need to construct a full time solution in an appropriate way to yield \(R_\omega \leq R_\omega \) and \(S_\omega \leq S_\omega \).

Remark 2 It is physically meaningful that the equilibrium is bounded in the range of all bounded positive solutions, and the numbers of both microbial strains in the body should adjust to some levels and remain steady when we are healthy.

Corollary 3 Theorem 1 yields the following inequalities
\[\frac{1}{\varphi_{\tau}^i} f(S_\omega) \leq R_\omega \leq R_\omega \leq \frac{1}{\varphi_{\tau}^i} f(S_\omega), \]
\[(\omega - \varphi_{\tau}^i + H(S_\omega) R_\omega) S_\omega \leq I \leq (\omega - \varphi_{\tau}^i + H(S_\omega) R_\omega) S_\omega. \]

Proof We initially verify (16) by constructing a full time solution \((S, R)\) such that
\[R_\omega = R(0) = \min_{n \in R} R(t), \quad R_\omega \geq \max_{n \in R} R(t), \]
\[S_\omega \leq S(t) \leq S_\omega, \quad \forall t \in R. \]

Hence, \(S_\omega \leq S(0) \), and, from (2), we arrive at
\[\frac{1}{\varphi_{\tau}^i} f(S_\omega) \leq R_\omega. \]

From the proof of Theorem 1, \(S(0) \leq S_\omega \), which implies
\[R_\omega \leq \frac{1}{\varphi_{\tau}^i} f(S_\omega), \]
in (13). Then, it is clear that
\[\frac{1}{\varphi_{\tau}^i} f(S_\omega) \leq R_\omega \leq R_\omega \leq \frac{1}{\varphi_{\tau}^i} f(S_\omega). \]

In order to verify (17), we again construct a full time solution \((S, R)\) such that
\[S_\omega = \{\omega(0) \} = \max_{n \in R} \{S(t)\}, \]
\[S_\omega \geq \min_{n \in R} \{S(t)\}, \]
\[R_\omega \leq \omega(t) \leq R_\omega, \quad \forall t \in R. \]

Since \(R_\omega \leq \omega(-\tau) \), we obtain
\[(\omega - \varphi_{\tau}^i + H(S_\omega) R_\omega) S_\omega \leq (\omega - \varphi_{\tau}^i + H(S_\omega) \omega(-\tau)) S_\omega = I. \]

By the definition of \(\omega(t) \), \(\omega(-\tau) \leq R_\omega \), and from (14), we have
\[I = (\omega - \varphi_{\tau}^i + H(S_\omega) \omega(-\tau)) S_\omega \leq (\omega - \varphi_{\tau}^i + H(S_\omega) R_\omega) S_\omega. \]

According to (20) and (21), we therefore obtain
\[(\omega - \varphi_{\tau}^i + H(S_\omega) S_\omega) \leq I \leq (\omega - \varphi_{\tau}^i + H(S_\omega) R_\omega) S_\omega. \]

Remark 4 Under the assumptions of Theorem 1, uniform persistence of the system (1)-(2) physically represents the fact that our body will not be free of infection. It is reported that the bacterial populations colonize the mammalian digestive tract since birth, assisting in that life form’s efficient digestion and nutrients’ absorption [13].

Lemma 5 By the assumptions in Theorem 1, the following conditions are equivalent:
\[i) \quad R_M = R_b \quad ii) \quad S_n = S_b \quad iii) \quad R_n = R_b \quad iv) \quad S_n = S_b \]

Proof To prove that i) implies ii), assume that \(R_n = R_b \).

Then from the second inequality in (16),
\[S_n = \min_{n \in R} S(t), \]
We then every bounded positive solution of (1) and (2) must oscillate around the basal level \(S_0 \). By Lemma 5, the solution \((S, R(t))\) is bounded. By constructing a full time solution \((S, R(t))\) such that

\[
R_\infty = \mathcal{R}(0) = \max_{t \in \mathbb{R}} \mathcal{R}(t),
\]

\[
R_\infty = \min_{t \in \mathbb{R}} \mathcal{R}(t),
\]

\[
S_\infty \leq S(t) \leq S_\infty, \forall t \in \mathbb{R},
\]

we again have \(R_\infty = \mathcal{R}(0) = \frac{1}{\psi S} f(S(0)), \) and \(S(0) \geq S_\infty \).

The mean value theorem implies that

\[
\frac{f(S(0)) - f(S_\infty)}{S(0) - S_\infty} \leq \sup_{S(0) = S_\infty} f'(S).
\]

As a result,

\[
R_\infty - R_\infty = \frac{1}{\psi S} \left(f(S(0)) - f(S_\infty) \right) \leq L_1 (S(0) - S_\infty) \leq L_1 (S_0 - S_\infty).
\]

We now construct a full time solution \((S, R(t))\) such that

\[
S_\infty = \mathcal{S}(0) = \min_{t \in \mathbb{R}} \mathcal{S}(t),
\]

\[
S_\infty \geq \mathcal{S}(t), \forall t \in \mathbb{R},
\]

\[
R_\infty \leq \mathcal{R}(t) \leq R_\infty, \forall t \in \mathbb{R}.
\]

With (8) and (14), we have

\[
S_\infty - S_\infty = \frac{1}{\psi S} \left(H(S_\infty) \mathcal{S}(0) - H(S_\infty) \mathcal{R}(t) \right) \leq \frac{H(S_\infty) S_\infty}{\psi S} (R_\infty - R_\infty) = L_1 (R_\infty - R_\infty).
\]

In the same way, (30) and (32) can be proven. Hence, by (29)-(32),

\[
R_\infty - R_\infty \leq L_1 L_1^* (R_\infty - R_\infty).
\]

If \(L_1 L_1^* < 1 \), then \(R_\infty - R_\infty = 0 \). By Lemma 5, the solution \((R, S)\) converges to \((S_\infty, R_\infty)\).

\[
L_1 = \frac{1}{\psi S} \sup_{S(0) = S_\infty} f'(S),
\]

\[
L_1 = \frac{H(S_\infty) S_\infty}{\psi S}.
\]

Note that although \(f(\cdot) \) is monotonically increasing, (26) is well-defined because \(S(t) \) is bounded. By constructing a full time solution \((S, R(t))\) such that

\[
R_\infty = \mathcal{R}(0) = \max_{t \in \mathbb{R}} \mathcal{R}(t),
\]

\[
R_\infty = \min_{t \in \mathbb{R}} \mathcal{R}(t),
\]

\[
S_\infty \leq S(t) \leq S_\infty, \forall t \in \mathbb{R},
\]

we again have \(R_\infty = \mathcal{R}(0) = \frac{1}{\psi S} f(S(0)), \) and \(S(0) \geq S_\infty \).

The mean value theorem implies that

\[
\frac{f(S(0)) - f(S_\infty)}{S(0) - S_\infty} \leq \sup_{S(0) = S_\infty} f'(S).
\]

As a result,

\[
R_\infty - R_\infty = \frac{1}{\psi S} \left(f(S(0)) - f(S_\infty) \right) \leq L_1 (S(0) - S_\infty) \leq L_1 (S_0 - S_\infty).
\]
IV. GLOBAL STABILITY WHEN $\alpha_x = \psi_S$

In this case, the system (1)–(2) becomes

$$\dot{S} = -H(S(t))S(R(t) - \tau) + I,$$ \hspace{1cm} (34)

$$\dot{R} = \psi_S (r - R(t)) R(t - \tau) + H(S(t))S(R(t) - \tau) - \alpha_x R(t).$$ \hspace{1cm} (35)

The positive equilibrium of the system is given by

$$I = H(S_0)S_0R_0,$$

$$R_0 = \frac{1}{\psi_S} f(S_0),$$

(36)

(37)

Lemma 8 Let $\psi_S - \alpha_x > 0$, and (S, R) be a bounded positive solution of (34) and (35). Also, let H be bounded such that

$$H = g.l.b. H(S),$$

$$\overline{H} = l.u.b. H(S).$$

The evolution $S(t)$ is bounded by the recursive sequences, namely $\{m_i\}$ and $\{M_i\}$, such that

$$m_i = S_i \leq M_i,$$

$$m_i = \overline{h}(M_i), \quad M_{i+1} = \overline{h}(m_i),$$

for which

$$M_0 = S_0 f(S_0) H(S_0) R_0,$$

$$\overline{h}(x) = \frac{S_0 f(S_0) H(S_0) R_0}{\overline{H} f(x)} R_0,$$

(40)

(41)

(42)

(43)

Proof We shall use mathematical induction. M_i is generated by minoring the resistant population time derivative in (35) as follows:

$$\dot{R} \geq -\psi_S R(t) + \psi_S (r - \alpha_x) R(t - \tau_x)$$

$$\geq -\psi_S R(t) + (\psi_S r - \alpha_x) R_0.$$

Hence, for any arbitrary t such that $t_0 \leq t$,

$$R(t) \geq e^{-\psi_S R_0(t - t_0)} R(t_0)$$

$$+ \frac{(\psi_S r - \alpha_x) R_0}{\psi_S R_0} (1 - e^{-\psi_S R_0(t - t_0)}).$$

Since $R(t)$ is a bounded evolution, we can take the limit as $t_0 \to -\infty$. Then,

$$R(t) \geq \frac{(\psi_S r - \alpha_x) R_0}{\psi_S R_0}.$$ \hspace{1cm} (44)

Referring to (42), the sensitive population time derivative in (34) is majored as follows:

$$\dot{S} \leq -\frac{H(\psi_S r - \alpha_x) R_0 S(t)}{\psi_S R_0} + I.$$

Therefore, for any arbitrary $t_0 \leq t$,

$$S(t) \leq e^{-\frac{\psi_S R_0}{H(\psi_S r - \alpha_x)}} S(t_0)$$

$$+ \frac{l_{\psi_S R_0}}{\overline{H} f(M_0) R_0} \left[\frac{-\psi_S R_0 S(t)}{\psi_S R_0} \right].$$

(45)

(46)

We can take the limit as $t_0 \to -\infty$ since $S(t)$ is a bounded evolution. Hence,

$$S(t) \leq \frac{l_{\psi_S R_0}}{\overline{H} f(M_0) R_0} S(t_0) \leq M_0$$

Next, we suppose that there exists a $k \in \mathbb{N}$ such that $S(t) \leq M_k$ for all t. Then, the resistant population time derivative in (35) is majored as follows:

$$\dot{R} \leq \frac{-\psi_S R(t) + f(M_k) R(t - \tau_x)}{\psi_S R_0}$$

$$\leq -\psi_S R_0 R(t) + f(M_k) R_M.$$

For any arbitrary $t_0 \leq t$,

$$R(t) \leq e^{-\psi_S R_0(t - t_0)} R(t_0) + \frac{f(M_k) R_M}{\psi_S R_0} (1 - e^{-\psi_S R_0(t - t_0)}).$$

Taking the limit as $t_0 \to -\infty$, we obtain

$$R(t) \leq \frac{f(M_k) R_M}{\psi_S R_0}.$$

(47)

Considering (4.1), it follows from (45) that

$$\dot{S} \geq -\frac{\overline{H} f(M_k) R_0}{\psi_S R_0} S(t) + I.$$

Hence, for any arbitrary $t_0 \leq t$,

$$S(t) \geq e^{-\frac{\psi_S R_0}{\overline{H} f(M_k) R_0}} S(t_0)$$

$$+ \frac{l_{\psi_S R_0}}{\overline{H} f(M_k) R_0} \left[\frac{-\psi_S R_0 S(t)}{\psi_S R_0} \right].$$

Taking the limit as $t_0 \to -\infty$, we find

$$S(t) \geq \frac{l_{\psi_S R_0}}{\overline{H} f(M_k) R_0} S(t_0) + \frac{f(M_k) R_M}{\psi_S R_0} (1 - e^{-\psi_S R_0(t - t_0)}).$$

From (46), the resistant population time derivative in (35) is minoried as follows:

$$\dot{R} \geq -\psi_S R_0 R(t) + f(m_k) R_0.$$

Therefore, for any arbitrary $t_0 \leq t$,

$$R(t) \geq e^{-\psi_S R_0(t - t_0)} R(t_0)$$

$$+ \frac{f(m_k) R_0}{\psi_S R_0} (1 - e^{-\psi_S R_0(t - t_0)}).$$

Taking the limit as $t_0 \to -\infty$, it follows that
Referring to (47), the susceptible population time derivative in (34) is majorized as follows:

\[\frac{d}{dt} S(t) \leq \frac{Hf(m_i)R_m}{\psi_f R_m} S(t) + I. \]

Therefore, for any arbitrary \(t_i \leq t \),

\[S(t) \leq e^{-\frac{Hf(m_i)R_m}{\psi_f R_m} (t-t_i)} S(t_i) + \frac{I}{\psi_f R_m} \left(1 - e^{-\frac{Hf(m_i)R_m}{\psi_f R_m} (t-t_i)} \right). \]

Taking \(t_i \to -\infty \), then

\[S(t) \leq e^{-\frac{Hf(m_i)R_m}{\psi_f R_m} t} S(t_i) \leq S(t_i) e^{-\frac{Hf(m_i)R_m}{\psi_f R_m} t} \leq S(t_i) e^{-\frac{Hf(m_i)R_m}{\psi_f R_m} \infty} = S(t_i). \]

\[\therefore S(t) \leq M_{i+1}. \]

Lemma 9 Under the assumptions of Lemma 8, \(\{m_i\} \) is a bounded monotone increasing sequence, and \(\{M_i\} \) is a bounded monotone decreasing sequence.

Proof Considering (40), we can write

\[m_{i+1} = \bar{h}(\bar{h}(m_i)), \]

and

\[M_{i+1} = \bar{h}(\bar{h}(M_i)). \]

where \(\bar{h}(x) \) and \(\bar{h}(x) \) are both monotone decreasing functions. Therefore, \(\bar{h}(\bar{h}(x)) \) and \(\bar{h}(\bar{h}(x)) \) are monotone increasing functions. We prove the hypothesis by induction. In the initial step,

\[M_0 = \frac{S_f(S_h)H(S_h)R_m}{H(\psi_f + \omega_h) R_m} S_f(S_h)H(S_h)R_m \]

\[\geq \frac{S_f(S_h)H(S_h)R_m}{H(\psi_f + \omega_h) R_m} S_f(S_h)H(S_h)R_m \]

\[= \frac{S_f(S_h)H(S_h)R_m}{H(\psi_f + \omega_h) R_m} S_f(S_h)H(S_h)R_m = h(m_i) = M_{i+1}. \]

Next, assume there exists an integer \(k \in \mathbb{N} \) such that \(M_k \leq M_{k+1} \). Then,

\[M_{k+1} = \bar{h}(\bar{h}(M_k)) \leq \bar{h}(\bar{h}(M_{k+1})) = M_{k+1}. \]

Moreover,

\[m_k = \frac{h(M_k)}{\bar{h}(h(M_k))} \geq \frac{h(M_{k+1})}{\bar{h}(h(M_{k+1}))} = m_{k+1} \]

Thus, \(M_k \geq M_{k+1} \) and \(m_k \leq m_{k+1} \) for all \(k \geq 0 \).

Lemma 10 Under the assumptions of Lemmas 8-9,

\[\sqrt{\frac{R_S R_m}{M_s}} \leq R_n \leq R_0 \leq R_m \leq \sqrt{\frac{R_S R_m}{m_s}}. \]

Proof According to Lemmas 8-9, we now have that \(m_s \leq S_n \leq S_0 \leq S_m \leq M_s \).

Again, we construct a full-time solution \((S,R)\) such that

\[R_n = R(0) = \min_{t \in \mathbb{R}} R(t), \]

\[R_m \geq \max_{t \in \mathbb{R}} R(t), \]

\[S_n \leq S(t) \leq S_m, \forall t \in \mathbb{R}. \]

Subsequently,

\[R_n = \frac{1}{\psi_f} f(S(0)) = R_n \frac{R_m}{R_m} f(S(0)). \]

(48)

Since \(\bar{f}(m) = M_s \), and

\[S_n f(S_b) = M_s f(m) \frac{R_n}{R_m} H(S_b) \]

\[\leq M_s f(m) \frac{R_n}{R_m} \leq M_s f(S(0)) \frac{R_n}{R_m}. \]

(49)

As a result of (48) and (49),

\[\frac{R_S R_m}{M_s} \leq \frac{R_n}{R_m} \]

Therefore,

\[\sqrt{\frac{R_S R_m}{M_s}} \leq R_n. \]

Similarly, \(R_m \leq \sqrt{\frac{R_S R_m}{m_s}} \) is proven.

Theorem 11 Define

\[L_s = \frac{S_s}{R_s}, \]

(50)

and

\[L_m = \frac{M_s}{R_s}. \]

(51)

Then,

\[S_s - S_m \leq L_s (R_m - R_s), \]

(52)

and

\[S_m - S_s \leq L_s (R_m - R_s). \]

(53)

Under the assumptions of Lemmas 8-9, every bounded positive solution of (34) and (35) converges to the positive equilibrium if \(L_1 L_2 L_3 L_4 < 1 \), where \(L_1 \) and \(L_2 \) are defined as (26) and (27), respectively.

Proof In order to prove (52), a full-time solution \((\varphi, \hat{\varphi})\) is constructed such that

\[S_n = \varphi(0) = \min_{t \in \mathbb{R}} \varphi(t), \]

\[S_m \geq \max_{t \in \mathbb{R}} \varphi(t), \]

\[R_n \leq \hat{\varphi}(t) \leq R_m, \forall t \in \mathbb{R}. \]
Consequently,

\[S_n = \frac{I}{H(S_n)} \circ \mathcal{R}(-\tau) . \]

Recall that \(S_n \leq S_* \), so that \(R_s \leq \mathcal{R}(-\tau) \). Therefore,

\[
S_n - S_* = \frac{I(H(S_n)) \circ \mathcal{R}(-\tau) - H(S_n)R_s}{H(S_n) R_s \circ \mathcal{R}(-\tau)}
\leq \frac{I(\mathcal{R}(-\tau) - R_s)}{H(S_n) R_s \circ \mathcal{R}(-\tau)}
= \frac{S_*}{R_s} \circ \mathcal{R}(-\tau) - \frac{S_n}{R_s} \leq \frac{S_*}{R_s}(R_{\tau} - R_s).
\]

The inequality (53) can be proven in the same way by constructing a full time solution \((\mathcal{G}^\tau, \mathcal{R})\) such that

\[S_n = \mathcal{G}^\tau(0) = \max_{\tau \leq t \leq n} \mathcal{G}^\tau(t), \quad S_n \leq \max_{\tau \leq t \leq n} \mathcal{G}^\tau(t), \quad R_n \leq \mathcal{R}(t) \leq R_{\tau}, \forall t \in \mathbb{R} . \]

We conclude from (37), (38), (52), and (53) that

\[R_{\tau} - R_s \leq L_i(t_i) (R_{\tau} - R_s). \]

When \(L_i(t_i) < 1 \), \(R_s = R_s \). Thus, by Lemma 5, bounded solutions of (34)-(35) converge to \((S_n, R_n)\).

V. OSCILLATION AND DELAY EFFECT

Linearizing the system (1)-(2) about the basal levels \((S_0, R_0)\), we are led to the following associated characteristic equation,

\[\lambda^2 + a\lambda + b e^{-\lambda \tau} + c = 0 , \quad \lambda = \psi_S R_0 + R_0 \left[H'(S_0) S_0 + H(S_0) \right] + \left(\phi_0 - \psi_S \right), \]

\[b = H(S_0) S_0 R_0 \left[H'(S_0) S_0 + H(S_0) \right], \]

\[c = \psi_S R_0 \left[H'(S_0) S_0 + H(S_0) \right] + \left(\phi_0 - \psi_S \right) \]

Considering (54) with (55)-(57), Martin et al. [14] provided certain sufficient conditions,

\[\psi_S R_0 + R_0 \left[H'(S_0) S_0 + H(S_0) \right] + \left(\phi_0 - \psi_S \right) > 0 , \]

\[(\psi_S - \phi_0) \left[H'(S_0) S_0 + H(S_0) \right] + \psi_S \left(\phi_0 - \psi_S \right) < 0 , \]

so that the system (1)-(2) will have asymptotically stable solution if

\[\tau < \tau_0 , \]

where

\[\tau_0 = \frac{1}{\omega} \arctan \left(\frac{a \omega}{c - a \omega^2} \right) , \]

It will have oscillating solution if \(\tau > \tau_0 \) and

\[\omega = \sqrt{a^2 + 2c + \sqrt{(a^2 + 2c)^2 - 4(c^2 - b^2)}} \]

In order to investigate the effect of delays, let \(t_0 \) and \(t_1 \), such that \(t_0 < t_1 \), be two (large enough) consecutive zeros of \(R - R_s \) with \(R(t) > R_s \) for all \(t \in (t_0, t_1) \). Then, there is a point \(t_i \in (t_0, t_1) \) such that \(R(t_i) = \max R(t) > R_s \). It follows that \(\dot{R}(t_i) = 0 \), and

\[R(t) = \frac{R_s}{f(S(t))} \]

Definition 12 Let \(t_0 \) and \(t_1 \), such that \(t_0 < t_1 \), be two (large enough) consecutive zeros of \(R - R_s \) with \(R(t) > R_s \) for all \(t \in (t_0, t_1) \). Then, there is a point \(t_i \in (t_0, t_1) \) such that \(R(t_i) = \max R(t) > R_s \). If \(t_i \geq t_i \), \(s \) we say that \(R \) is oscillating rapidly in the interval \((t_0, t_1)\). In the case \(R(t) < R_s \) for all \(t \in (t_0, t_1) \), we let \(t_i \in (t_0, t_1) \) be the point such that \(R(t_i) = \min R(t) < R_s \) and define the rapid oscillation in the same way.

An oscillating solution \((S, R)\) of (34) and (35) is called eventually rapidly oscillating around the basal levels if \(R \) is oscillating rapidly in every (but finite number of) intervals constructed by two consecutive zeros of \(R - R_s \).

If \(R \) is not oscillating rapidly, we say \(R \) is slowly oscillating.

Lemma 13 Suppose \(F(S) = H(S)S \) is continuously differentiable and \(\phi_0 > \psi_S \). If \((S, R)\) is an eventually rapidly oscillating solution of (1)-(2), then

\[R_{\tau} - R_s \leq L_i \left(1 - e^{-2\tau \phi_0} \right) (S_{\tau} - S_s) , \]

\[R_{\tau} - R_s \leq L_i \left(1 - e^{-2\tau \phi_0} \right) (S_{\tau} - S_s) , \]

where
\[
L_u = \frac{R_u}{\psi_s\psi_r R_u} \sup_{\xi \in \{S, R\}} F'(S), \\
L_s = \frac{R_u}{\psi_s\psi_r R_u} \sup_{\xi \in \{S, R\}} F'(S),
\]

Proof We construct a full time solution \((S(t), R(t))\) such that
\[
R_u = \mathcal{R}(0) = \max_{t \in \mathbb{R}} \mathcal{R}(t), \\
R_s = \min_{t \in \mathbb{R}} \mathcal{R}(t), \\
S_u \leq \mathcal{S}(t) \leq S_u, \quad \forall t \in \mathbb{R}.
\]

As before, we have \(R_u = \mathcal{R}(0) = \frac{1}{\psi_s} f(S(0))\), and
\(S(0) \geq S_u\). From (2), we have
\[
e^{\psi_r \omega_r R(t)} \leq e^{\psi_r \omega_r \mathcal{R}(t)} R(t),
\]
\[+ \int_0^t e^{\psi_r \omega_r \mathcal{S}(s)} H(S(s)) \mathcal{S}(s) ds \]

Let \(t = 0\) and \(t_0(\leq 0)\) be the first time in negative axis that \(R(t_0) = R_u\). It follows that
\[
R_u - R_s \leq L_1 \left(1 - e^{\psi_r \omega_r t} \right) (S_u - S_s).
\]

By the definition of the fast oscillation, we have \(t_0 > -2\tau\).
Hence, we obtain (60) and the proof of (61) is similar. ■

Theorem 12 If
\[
\frac{S_s^2}{(\omega_s - \psi_s)} L_2 L_3 L_4 (1 - e^{-2\psi_s \omega_s \tau}) \leq 1, \quad (62)
\]
\[\omega_s - \psi_s > 0,
\]
and
\[\omega_s - \psi_s \tau > 0,
\]
then, every rapidly oscillating solution of (1), (2) converges to the positive equilibrium.

Proof From (31) and (32), we have
\[
S_u - S_s \leq L_2 \frac{S_s}{\omega_s - \psi_s} (R_u - R_s), \quad (63)
\]
\[S_s - S_u \leq L_2 \frac{S_s}{\omega_s - \psi_s} (R_u - R_s).
\]

Hence, from (60)-(61) and (63)-(64),
\[
R_u - R_s \leq L_1 \left(1 - e^{-2\psi_s \omega_s \tau} \right) (S_u - S_s)
\]
\[\leq L_1 \left(1 - e^{-2\psi_s \omega_s \tau} \right) L_2 \frac{S_s}{\omega_s - \psi_s} (R_u - R_s).
\]

VI. CONCLUSION

We have shown that the system is uniformly persistent when the response function \(H(\cdot)\) is a non-decreasing function of \(S\). Further, the equilibrium state \((S_e, R_e)\) is globally stable in the case that the removal rate \(\omega_s = d_s + k\) of the sensitive strain is greater than its specific growth rate.

One crucial underlying assumption that ensures persistence and stability is that the “cost of resistance” \(\gamma\) is low enough so that its inverse, the carrying capacity \(R_e\), is high enough for \(\psi_s r\) to exceed the death rate \(\omega_s\) of the resistant strain. If the cost of resistance is sufficiently high then the persistence or stability of the system could be lost, leading to extinction of one strain or both, unless certain conditions on the delay \(\tau\) are satisfied.

The main advantage of modelling and analysis is that we may quantitatively investigate the possible strategies for therapy and control in terms of the complex dynamics of competing bacterial or viral strains. Clinically, it is difficult to assess pharmaco-dynamic effects of therapy regimens due to the complexity in repeatedly determining the viral load at the site of infection and antibiotic concentrations during the dosing interval [15]. Using dynamic models of sensitive-resistant strains interactions can overcome these difficulties. Through the above model development and analysis, we gain insightful information that could prove useful in designing empiric therapy and monitoring strategies.

ACKNOWLEDGMENT

This research work is partially supported by the National Center for Genetic Engineering and Biotechnology, the Centre of Excellence in Mathematics, CHE, Thailand, and Mahidol University.

REFERENCES

