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Abstract—Mathematical modeling has played a significant role 

in modern biology and pharmacology and has become a powerful 
tool for examining GPCR pathways. Modeling can be used to 
validate hypothesized mechanisms, and identify relevant data. More 
importantly, it can suggest new drug targets, designs of experiments, 
and new explanations for observed phenomena. G protein coupled 
receptors (GPCRs) constitute the largest family of cell membrane 
receptors which are subject to being targeted by an estimated 50% of 
current pharmaceuticals. Thus, better understanding of GPCRs and 
the signal transduction pathways they mediate will lead to new drug 
targets. Signal transduction is the process by which a cell recognizes 
and extracellular signal and converts that signal into an intracellular 
response. Subjected to transient stimuli, biological systems can 
exhibit early responses and/or late responses. In this study, we use 
mathematical modelling and analysis to study dynamical 
mechanisms of biological memory and delayed response to external 
stimuli. A delay model of signaling pathways involving G-proteins is 
analyzed to show that the model admits positive solutions and is 
uniformly persistent. Global stability of the system is shown to be 
attainable under certain conditions on the system’s parametric values. 
It is found that the delays 

I
  in response to inhibition and 

R
  in G 

protein mediated response to external stimuli of the receptors do not 
appear to impact on the persistent and stability characteristics of this 
system. 
 

Keywords—Delay differential equations; omega limit set; 
persistence; signal transduction; stability. 

I. INTRODUCTION 

ATHEMATICAL and computer modeling can help 
incorporate complicated hypothesized mechanisms and 
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parameters, such as rates and concentrations, allowing both 
qualitative and quantitative insights. Models can vary 
significantly in the level of detail used to describe molecular 
interactions. For example, models of GPCR signaling may 
include vast detail in the G-protein activation/deactivation 
cycle, such as in the work of Bornheimer et al. [1] or may 
have no explicit inclusion of G-proteins at all but rather lump 
their effect into what happens to a downstream component, as 
in Linderman’s work [2]. We have to choose how fine- or 
coarse-grained we make our model. The appropriate choice 
depends on the question we are asking and also on the data we 
are able to obtain for model validation and testing. According 
to Linderman [2], “Modeling is meant to be an iterative 
process with experimentation, each one driving the other.” 

First, a “minimal model” is constructed and then grows in 
complexity by incorporating new hypotheses and new data. 
According to Linderman [2], “Simple is good. There is no 
glory to be had by constructing a complicated model when a 
simple one can elucidate the key features of the biology; in 
fact, a complicated model may obscure a simple result.” 
Although models typically involve parameter values which are 
often difficult to ascertain, often the parametric values 
themselves are less important than the qualitative insight [2], 
for example how the receptor trafficking or dimerization 
effects the dose response curves. 

As evidence that modeling is becoming an increasingly 
useful tool for understanding GPCR pathways, the United 
States Food and Drug Administration Critical Path Initiative 
has recently identified model-based drug development, 
including drug and disease modeling, as an important goal 
(www.fda.gov/oc/initiatives/criticalpath). New discoveries 
and theories generated by model construction have been 
appearing in many prominent biology related journals. The 
hypotheses on which the models are based have been the 
impetus for the development of new experimental techniques, 
such as RNA silencing of pathway molecules and novel 
fluorescent probes that allow for single cell kinetic data, in 
order to both generate data for model building and allow 
testing of key model findings [2]. 

It is well recognized that G-protein-coupled receptors 
(GPCRs) are the largest family of cell membrane receptors 
[2]. The fact that an estimated 50% of current pharmaceuticals 
target GPCRs [3] indicates that further increases in our 
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understanding of GPCRs and the signaling pathways they 
mediate will without doubt lead to new drug targets. Use of 
mathematical and computational models has played an 
increasingly important role in modern biology and 
pharmacology [2, 4, 5] and offers a powerful tool for 
examining GPCR pathways. Apart from allowing us to better 
understand hypothesized mechanisms, they can be used to 
execute virtual (in silico) experiments, interpret data, suggest 
new drug targets, suggest designs of experiments to validate 
the model, and offer insightful explanations for observed 
phenomena [2]. 

Abnormalities of signal transduction pathways have been 
linked to the development of many serious disorders, such as 
cancer which derives from a cell that has lost the ability to 
respond normally to controls from outside, or inside, the cell. 
Signal transduction is the process by which information from 
an extracellular signal is transmitted from the plasma 
membrane into the cell and along an intracellular chain of 
signaling molecules to stimulate a cellular response [6]. 

The signal transduction pathway is a three step process; 
reception, transduction, and the response step. Reception is 
the target cell's detection of a signal transmitted from cell's 
surrounding environment. A chemical signal is detected when 
it binds to a receptor protein located at the cell's surface or 
inside the cell. Signal transduction converts the external 
stimuli into a form that can bring about a specific cellular 
response. In the third stage of cell signaling, the transduction 
process brings about a cellular response. This can be any of 
many different cellular activities, such as activation of a 
certain enzyme, rearrangement of the cytoskeleton, or 
activation of specific genes [7]. After a signal transduction 
pathway has been initiated and the information has been 
transduced to affect other cellular processes, the signaling 
processes must be terminated. Without such termination, cells 
lose their responsiveness to new signals. Signal processes that 
fail to properly terminate can lead to uncontrolled cell growth 
and the possibility of cancer [8]. In addition, we know of 
many situations where altered signaling pathways produce 
dramatic changes in cell survival, cell proliferation, 
morphology, angiogenesis, longevity, or other properties that 
characterize cancer cells [9]. For this reason, better 
understanding of the signal transduction process has been a 
subject of intense investigation. 

In the work of Rattanakul et al. [10], a model was proposed 
for the signal transduction pathway which involves G protein 
coupled receptors (GCPRs) consisting of a system of two 
differential equations governing the interaction between the 
inhibitor protein and the ligand-receptor complexes. Signal 
transduction across the plasma membrane is mediated by 
membrane receptor bound proteins which connect the 
genetically controlled biochemical reactions in the cytosol to 
the production of the second messenger, leading to desired 
intracellular responses. 

In order for a life form to be able to function properly, its 
cellular constituents need to have the ability to efficiently 
communicate with each other. This requires that cells have a 

mechanism to detect and respond specifically to external 
signals [11]. In [12], Lodish et al. described one of the more 
complex strategies for cell communications which involves a 
three-stage G protein coupled enzyme cascade. 

In the first stage, the reception stage, a specialized 
membrane receptor protein interacts with a particular ligand, 
or absorbs a photon of light of a particular wavelength, and 
thus becomes activated. In the second stage, the transduction 
stage, the activated receptor, the density of which will be 
denoted R, triggers a heterotrimeric G protein to exchange 
GDP (guanosine diphosphate) for the nucleotide guanosine 
triphosphate (GTP). The -subunit and the - complex of the 
G protein then dissociate, after which the GTP-bound -
subunit then diffuses along the membrane and binds to an 
effector, activating it and leading to an appearance of GTPase 
activity resulting in the conversion of active -GTP to 
inactive -GDP and thereby inhibiting the activation of AC by 
G proteins. 

In this mechanism we consider the GTP and GDP ligands to 
play the roles of activating agent (A) and inhibiting agent (I), 
respectively. We let G be the amount of -subunits of G 
proteins in the resting state, and G* be that in the active state. 

Then, as in [10] we will be able to write the following 
governing equations for A, I, and G*. 

dA
k A k Ra adt

  


  (1) 

dI
k I k Ri idt

  


  (2) 

*
*- -

dG
k IG k AGr rdt

    (3) 

Letting C be the concentration of the second messenger, 
such as cAMP, which represents the output signal of the 
transduction process, then the cAMP in turns acts as a second 
messenger and amplifies the initial signal [13]. Thus, 
following previous works by Levchenko and Iglesias [14] and 
Iglesias [15] the rate equation for the ligand-receptor complex 
density on the cellular membrane surface at time t should read 
as follows. 

1
3

2

b RdR
a R k CRdt b R

   



   (4) 

where the first term on the right is the removal rate, the second 
accounts for its transport through the cell membrane which 
saturates as R increases, the third accounts for the signal 
amplification arising from the synthesis of cAMP. 

As in [14-15], we now assume that the activated regulators 
G*, A, and C equilibrate relatively quickly so that we shall be 
able to arrive at the following: 

      

 

2
4

2
3

b R
C KC

b R I
 






  (5) 

at equilibrium. 
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Substituting (5) into (4), one arrives at the following 
system: 

 

2
1 4

3 2
2

3

b R k b RdR Ra R k KR Cdt b R
b R I

    




 
 


 (6) 

dI
k I k Ri idt

  


   (7) 
 

We refer the readers to [10, 14-15] for further details, while 
we have assumed here that homogeneous distribution of the 
ligand-receptor complexes and the inhibitor protein on the cell 
membrane has been attained. 

According to Han et al. [16], “memory is a ubiquitous 
phenomenon in biological systems, yet its impacts, and how to 
manipulate it at the sub-cellular level, remain poorly 
understood. Subjected to transient stimuli, biological systems 
can exhibit short early responses and/or prolonged late 
responses”. Although experimental evidence has provided 
some intuitive explanation at the basic molecular level, it does 
little to clarify the important dynamics that could lead us to 
discover possible therapeutic strategies in the setting of human 
diseases. In such attempts, mathematical modelling can go a 
long way in illuminating the underlying dynamic intricacies 
which may not be attained in experimental executions alone. 

In this work, two significant time delays have been 
incorporated in the system. One is the delay I  in the 
response of the ligand-receptor complexes ( )R  to the action 
of the inhibitor protein, while the other is the delay R  in the 
response of the inhibitor protein ( )I  to the changes in the 
density of R . 

Based on earlier investigations and modeling efforts of 
Giang et al. [17], and Palumbo et al. [18], we study a 
mathematical model for the signal transduction process 
consisting of delay-differential equations modified from the 
model studied by Rattanakul et al. [10] discussed above. The 
model is then analyzed by using the  –limit set of a positive 
solution and constructing a full time solution. We first show 
that the model is persistent under certain conditions, in which 
case the levels of the inhibitors and ligand-receptor complex 
are bounded above and below by positive constants. 
Moreover, under certain conditions, oscillation about the 
respective basal levels, which is of clinical interest for control 
purposes, may be observed or else the system converges to a 
positive steady state. 

Finally, the global stability of the model system will be 
investigated. Conditions on the system parameters are given 
which ensure the global stability of the steady state of the 
system at its basal levels. 

II. THE REFERENCE MODEL 
To incorporate delay mechanism, based on the model 

discussed in the previous section, we consider the system of 
two delay differential equations which governs the interaction 
between the ligand-receptor complexes ( )R t  and the inhibitor 
protein ( )I t  as follows: 

 
2

31
1 42( ( ))2 4 I

b Rb RdR
a R a

dt b R b R I t 
    

  
 (8) 

 2 3 ( )
R

dI
a I a R t

dt
     (9) 

where the first term on the right of (8) and (9) are the removal 
rates of the corresponding state variables, the second term on 
the right of (8) is the rate that R  is internalized through the 
cell membrane, the third term accounts for the amplification 
effect on the production of R  due to the secretion of the 
secondary hormone or signal with a delay I , and 

4
a is the 

zero order production rate of R . The second term on the right 
of (9), on the other hand, is the production rate of inhibiting 
protein I  in response of the increase in R  at the time R  sec 
earlier. We first show that the model system (8)–(9) has a 
positive solution. 
 
Theorem 1 System (8)–(9) admits positive solution 
provided that ( ) 0R t   on the initial interval  ,0R  and 

( ) 0I t   on the initial interval  ,0I . 

Proof Let ( ) 0R t   over an initial interval  , 0R . 
According to the continuity of the solution of a differential 
equation, ( )R t  would become non-positive if there existed a 

0 0t   such that 

0
( ) 0R t   

and ( ) 0R t   for any t, 00 t t  . 

Then, necessarily, 

0

0
dR
dt t t




, which is a contradiction 

because 

1 0
1 0

2 00

( )
( )

( )

b R tdR
a R t

dt b R tt t
  


 

          
2

3 0
4 42

4 0

( )
0.

( ( ))I

b R t
a a

b R I t 
   

 
 (10) 

This proves that, if ( ) 0R t   over  ,0R  then ( )R t  never 

vanishes and is positive for all Rt   . Similarly, it can be 
proven that, if ( ) 0I t   over an initial interval  ,0I , also 

( )I t  never vanishes and is positive for all later time. If there 
existed a 

0 0t   such that  

( ) 00I t   

and ( ) 0I t   for any t,
0

0 t t  . 

Then, necessarily, 

0

0
dI
dt t t




, which is a contradiction 

because 
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2 0 3 0
0

( ) ( )R
dI

a I t a R t
dt t t

   


 (11) 

            
3 0

( ) 0.
R

a R t                               ■ 

III. THE UNIFORM PERSISTENCE 
This section investigates some properties involving the 

solution of (8)–(9) and the equilibrium point ( , )b bR I  which, 

by definition, satisfies the following system: 

1 3
1 42

2 4
( )

b b
b

b b b

b R b R
a R a

b R b R I
  

 
 (12) 

3

2
b b

a
I R

a
  (13) 

In what follows, we let 
 

inf ( ), supl ( ),im limm MR R t R R t
t t

 
   

 

lim   inf ( ), sul p ( ).im
m M

I I t I I t
t t

 
   

 

 
Theorem 2 Under the assumptions of Theorem 1, system 
(8)–(9) is persistent. 
Proof Recall that a model is persistent if there exists a pair 
of positive real numbers ( , )m M  such that there exists a t  
such that 

0 ( ) , for all im X t M t t       

for each component 
i

X  of the state vector. 

The proof is achieved by proving the following four 
statements: 

1) ,    2) ,    3) 0,    4) 0.
M M m m

R I R I       

Step 1. In order to show the boundedness of the evolution of 
the ligand-receptor complex, assume that 

MR   , which 

means, due to continuity, that there is a time sequence 
{ } [0, )

n
t    such that 

lim ,ntn
 

 
 

lim ( )nR t
n

 
 

, 

with 

0.

n

dR
dt t t




 

However, 

1
1

2

( )
( )

( )
n

n
nn

b R tdR
a R t

dt b R tt t
  


 

 
2

3
42

4

( )
,

( ( ) ( ))
n

n n I

b R t
a

b R t I t 
   

 
 (18) 

which is a contradiction, and therefore MR   . 

 
Step 2. In order to show the boundedness of the evolution of 
the inhibitor, assume that 

M
I   , which means, due to 

continuity, that there is a time sequence { } [0, )nt    such 

that 
lim ,ntn

 
 

 

lim ( )nI t
n

 
 

, 

with 

0.

n

dI
dt t t




 

However, 

2 3( ) ( ) ,n n R
n

dI
a I t a R t

dt t t
     


 (14) 

which is a contradiction, so that MI   . 

 
Step 3. Suppose 

m
R    (otherwise 0

m
R   is trivially 

verified). Due to continuity, there exists a time sequence 
{ } [0, )

n
t    such that 

lim ,ntn
 

 
 

lim ( )n mR t R
n


 

, 

with 

0.

n

dR
dt t t




 

This means that: 

1
1

2

( )
0 lim ( )

( )
n

n
n

b R t
a R t

b R tn
  

 






 

2
3

42
4

( )

( ( ) ( ))
I

n

n n

b R t
a

b R t I t 


 






 

  
2

1 3
1 42

2 4( ( ))
I

m m
m

m m n

b R b R
a R a

b R b R I t 
    

  
 

  
2

1 3
1 42

2 4
( )

.m m
m

m m M

b R b R
a R a

b R b R I
    

 
 (15) 

Therefore, we have 
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2
1 3

4 1 2
2 4

0 .
( )

m m
m

m m M

b R b R
a a R

b R b R I
   

 
 (16) 

According to this inequality, we must have 0mR  , or 

otherwise we would have 
4

0a  . 

 
Step 4. From Step 2, it follows that 

m MI I   . Due to 

continuity, there exists a time sequence { } [0, )
n

t    such 

that 
lim ,ntn

 
 

 

lim ( )n mI t I
n


 

, 

with 

0.

n

dI
dt t t




 

This means that: 

 2 30 lim ( ) ( )n n Ra I t a R t
n

   
 

 

2 3 ( )m n Ra I a R t      

2 3 .m ma I a R    (17) 

Then, we have 
3 2m ma R a I . 

Therefore, 0
m

I  , or otherwise we would have 
3

0a  . ■ 

 
Remark 3 As a consequence of Theorems 1 and 2, system 
(8)–(9) admits positive bounded solutions for any positive 
initial condition. 
 
Remark 4 Under the assumptions of Theorem 2, uniform 
persistence of the system (8)–(9) physically represents the fact 
that perpetual response to external stimuli, such as drug 
treatments, and inhibiting agents will be at work in a healthy 
subject. 
Theorem 5 Under the assumptions of Theorem 1, let ( , )R I  
be a bounded positive solution of (8)–(9). Then, 
 ,

m b M
I I I   (19) 

 .m b MR R R   (20) 

provided 1

3

1
b
b
 . 

Proof By using the  –limit set of the persistent solution 
( , )R I , we can construct a full time solution ( , )R I  such that 

(0) max ( ),

min ( ),
M t

m t

I I t

I t




 






I

I
 

( ) , for all .m MR t R t  R  

The readers are referred to the works of Giang et al. [15], 
and Palumbo et al. [16], for more detail on full time solutions 

and their applications. It follows that (0) 0I , and 
consequently, 

 3

2
(0) ( )R

a
IM a

  I R . (21) 

First we will show that 
M bI I . This means that we need 

to prove that ( )R bR R  by showing that the assumption 

of ( )R bR R  leads to a contradiction. Assuming that 

( )R bR R , by (13) we have .M bI I  Since 
( )

RmR  R , it follows that bmR R . 

Again by using the  -limit set of the persistent solution 
( , )R I , we can construct a full time solution ( , )R I  such that 

 
(0) min ( ),

max ( )

( ) , for all 

m t

M t

m M

R t

R t

I t I t





 



  

R R

R

I






 

It follows that (0) 0R , and consequently, 
2

1 3
1 42

2 4( ( ))
m m

m
m m I

b R b R
a R a

b R b R 
  

  I
 (22) 

Since we already have M bI I  and m bR R , with 1

3

b
b

 

sufficiently bigger than 1 we have 

1 3
4 1 2

2 4( ( ))
I

m m
m

m m

b R b R
a a R

b R b R 
  

  I

 
 1 3

1 2
2 4

( ( ))
I

b b
b

b b

b R b R
a R

b R b R 
  

  I
 

 1 3
1 42

2 4
( )

b b
b

b b b

b R b R
a R a

b R b R I
   

 
 (23) 

which is a contradiction, so that ( )
R bR R . We obtain 

3 3

2 2
( ) .M R b b

a a
I R I

a a
   R  (24) 

In addition, it follows that ( ) .M R bR R  R  Similarly, 

we may prove that m bR R  and m bI I . ■ 

 
Remark 6 It is physically meaningful that the equilibrium 
is bounded in the range of all bounded positive solutions, and 
the densities of ligand-receptor complexes and the inhibiting 
protein in the transduction process should eventually adjust to 
some levels and remain steady when we are healthy. 
 
Corollary 6 Theorem 5 yields the following inequalities: 

 3 2 2 3
,

m m M M
a R a I a I a R    (25) 
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2
31

1 2
2 4( )

MM
M

M M m

b Rb R
a R

b R b R I
 

 
 

2
1 3

4 1 2
2 4( )

m m
m

m m M

b R b R
a a R

b R b R I
   

   (26) 

 
Proof We initially verify (25) by constructing a full time 
solution ( , )   by using the  -limit set of the persistent 
solution ( , )R I  such that 

(0) min ( ),

max ( )
m t

M t

I t

I t




 






 

  
( ) , for all .m MR t R t  

 It follows that (0) 0 , and consequently, 

 2 3
0 ( )

m R
a I a     . (27) 

By the definition of ( )t ,  
 ( )m RR   ,  

we have 

 2 3 2 3( )m R m ma I a a I a R       (28) 

Therefore, 

 3 2m ma R a I  (29) 

From the proof of Theorem 5,  
      ( )R MR  ,  

which implies that 

2 3 3
( )M R Ma I a a R   . (30) 

Then, it is clear that 

3 2 2 3m m M Ma R a I a I a R   . 

 
In order to verify (26), we again construct a full time 

solution ( , )R I  by using the  -limit set of the persistent 
solution ( , )R I  such that 

 
(0) max ( ),

min ( )
M t

m t

R t

R t




 






R R

R  
 ( ) , for all m MI t I t  I  

By the definition of ( )tI , ( )
ImI  I  and from (8), we 

obtain that 
2

31
4 1 2

2 4( ( ))
MM

M
M M I

b Rb R
a a R

b R b R 
  

  I  
2

31
1 2

2 4( )
MM

M
M M m

b Rb R
a R

b R b R I
  

 
 (31) 

Since ( )I MI I  and from (22), we have 

1 3
4 1 2

2 4
( ( ))

I

m m
m

m m

b R b R
a a R

b R b R 
  

  I

  

1 3
1 2

2 4( )
m m

m
m m M

b R b R
a R

b R b R I
  

 
 (32) 

According to (31), we therefore obtain 
2

1
1 2

2 4

3
( )

MM
M

M M m

b Rb R
a R

b R b R I
 

 
 

 
2

1 3
4 1 2

2 4( )
m m

m
m m M

b R b R
a a R

b R b R I
   

 
.  

 
Lemma 7 By the assumption in Theorem 5, the following 
conditions are equivalent: 
 
)  ), ,  ) ,  )

M b m b m b M b
i I I ii R R iii I I iv R R     

 
Proof We first prove that )i  implies )ii by supposing that 

b
I IM  .Then, from the second inequality in (26), 

 1 3
4 1 2

2 4( )

m m
m

m m b

b R b R
a a R

b R b R I
  

 
. (33)

 
Since the function  

2
31

1 2
2 4( )

b Rb R
a R

b R b R I
 

 
  

is increasing in R  when 1

3

b
b

 is sufficiently large, we have 

from (33) that 

 

1 3
1 2

2 4

4

( )

1 3
1 2

2 4( )

m m
m

m m b

b R b R
a R

b R b R I

b b ab
b b

b R b R
a R

b R b R Ib

 
 

   
 

Consequently, by (33), 
m b

R R . 

 
To show that )ii  implies )iii , assume that 

m b
R R . We 

construct a full time solution ( , )   by using the  -limit set 
of the persistent solution ( , )R I  such that 

(0) min ( ),

max ( )
m t

M t

I t

I t




 






 

  
( ) , for all .m MR t R t  
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It follows from (9) and (29) that 

3 3

2 2
b b m m

a a
I R R I

a a
   . (34) 

 
However, we have 

m bI I . Hence, we must have 

m b
I I . 

 
To show that )iii  implies )iv , we suppose 

m b
I I . We 

consider the first inequality in (26), 
2

31
4 1 2

2 4( )
MM

M
M M b

b Rb R
a R

b R b R I
a  

 
  (35) 

Since the function 
2

31
1 2

2 4( )

b Rb R
a R

b R b R I
 

 
 is 

increasing in R , it follows that 
2

31
1 2

2 4( )
MM

M
M M b

b Rb R
a R

b R b R I
 

   

 

1 3
1 42

2 4( )

b b
b

b b b

b R b R
a R a

b R b R I
   

   
(36) 

Hence, we have 
M b

R R . 

 
Now, to show that )iv  implies )i , assume that 

m b
R R . 

From (9) and (25), we have 

3 3

2 2
b b M M

a a
I R R I

a a
  

 
(37) 

 
Again, since 

b MI I , we have M b
I I .          ■ 

From Lemma 7, we have that if bR R , or bR R , or 

bI I , or bI I for all t, then we will have lim ( ) bI t I
t


 

 

and lim ( ) bR t R
t


 

. This means that if the system solution 

does not oscillate about the equilibrium point ( , )b bR I  then it 

must tend eventually toward the steady state. In other words, 
all solutions must oscillate about the steady state levels or else 
they converge to ( , )b bR I  as time passes. 

 
Remark 8 Every non-constant periodic solution of (8) and 
(9) must oscillate around the basal level ( , )b bR I ; otherwise, 

the inequality (25) or (26) forces all strictly bounded positive 
solutions to converge to ( , )b bR I . 

IV. GLOBAL STABILITY OF THE BASAL LEVEL 
We next give conditions which ensure the global stability of 

the model system. 
 

Theorem 9 Suppose 

 
1 1 2max( , )b ba M I M I , (38) 

 3
1

2

a
L

a
 , (39) 

 1
2

1 1

b

b

M R
L

a M R



, (40) 

 2
3

1 2

b

b

M R
L

a M R



, (41) 

where 

3
1

4 4 4 4( )( )
b m

b b m M b b m M

b R R
M

b R I b R I b R I b R I
 

   

 
 
 

, 

3
2

4 4 4 4
.

( )( )
b M

b b M M b b M m

b R R
M

b R I b R I b R I b R I
 

   

 
 
 

 

Then, 
  1 ,M b M bI I L R R    (42) 

  1 ,b mm bI I L R R    (43) 

  2b m M bR R L I I   , (44) 

  3M b b MR R L I I   . (45) 

If 2
1 2 3

1L L L  , then every positive solution of the system (8)–

(9) converges to the positive equilibrium, or equivalently, the 
basal levels are globally attractive. 
 
Proof Let ( , )R I  be a solution of system (8)–(9). We now 
construct a full time solution ( , )R I  such that 

(0) max ( ),

min ( )
M t

m t

I t

I t




 






I I

I  
( ) , for all .m MR t R t  R

 As before, from (13) and (21), we have 

   3
1

2
( ) ,

M b R b M b

a
I I R L R R

a
     R  

with 
1L  as in (39). In the same way, we again construct a full 

time solution ( , )   such that 
(0) min ( ),

max ( )
m t

M t

I t

I t




 






 

  

( ) , for all .m MR t R t    
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It follows from (13) and (25) that 

   3
1

2
( ) ,

b m b R b m

a
I I R L R R

a
       

with 
1L  as in (39). 

On the other hand, as before, we can construct a full time 
solution ( , )R I  such that 

(0) min ( ),

max ( )
m t

M t

R t

R t




 



R R

R


  
( ) , for all m MI t I t  I   

Then (0) 0R  and (12) holds, and consequently, 
2

1 3
1 42

2 4( )
b b

b
b b b

b R b R
a R a

b R b R I
  

   

 
2

1 3
1 2

2 4
( ( ))

I

m m
m

m m

b R b R
a R

b R b R 


  
 

I
. 

 

By the definition of ( )tI , ( )
I M

I I , we have 

2
1 3

1 2
2 4( )

b b
b

b b b

b R b R
a R

b R b R I
 

   

 

2
1 3

1 2
2 4

.
( )

m m
m

m m M

b R b R
a R

b R b R I
  

   
Then, 

  1 1
1

2 2

b m
b m

b m

b R b R
a R R

b R b R
   

 

 
 
 
   

2 2
3 3

2 2
4 4( ) ( )

b m

b b m M

b R b R

b R I b R I
 

 

 
 
 
   

2 2
3 3

2 2
4

1
4( ) ( )

( )b m
b M m b

b b m M

b R b R
R I R I

b R I b
M

R I
  

 


 
That is, 

  11 ( )b m b M m ba R R R I R IM    

                     1( )b M b b b b m bR I R I R I IM R    

                     1 )( )( )(
b M b b b m

R I I I RM R   , 

or 

   11 1 )(b b m b M ba R R M R IM II    . 

 
Therefore, 

  2b m M bR R L I I    

provided (38) holds. 
We again construct a full time solution ( , )R I  such that 

(0) max ( ),

min ( )
M t

m t

R t

R t




 






R R

R  
( ) , for all m MI t I t  I  

Then (0) 0R  and (12) holds, and consequently, 
2

31
4

2 4
2( ( ))1

MM

M M I

b Rb R
a

b R b R t
a RM 

 
  


I  

   

2
1 3

1 2
2 4( )

b b
b

b b b

b R b R
a R

b R b R I
  

 
 

 
By the definition of ( )tI , ( )m II  I  and thus, 

2 2
3 1 31

1 12 2
2 4 2 4( ( )) ( )

M b bM
M b

M M I b b b

b R bR b RbR
a R a R

b R b R b R b R I
    

    I  
Then, 

  11

2 2
1

M b

b
M b

M

b Rb R
a R R

b R b R
   

 

 
 
 
   

2 2
3 3

2 2
4 4( ) ( )

b

b

M

M bm

b R b R

b R I b R I
 

 

 
 
 
   

2 2
3 3

2 2
4

2
4( ) ( )

( )b

b

M
M b b M

bM m

b R b R
R I R I

b R I b
M

R I
  

 


 
That is, 

  21 ( )M b M b b Ma R R R I R IM  
 

                  2 ( )M b b b b b b MR I R I R I IM R                           

                  2 )( )( )(b M b b b mM RI R R I I   , 
or 

   11 2 )(b M b b b Ma R R M R IM II    . 

Therefore, 
  2M b b MR R L I I    

provided (39) holds.  
 We can conclude that 

  2
1 2 3 ,M b M bI I L L L I I    

and therefore, if 2
1 2 3

1L L L  , it happens that 
M bI I  from 

which the theorem is proven.           ■ 
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V. CONCLUSION 
It has been shown that the model of the signal transduction 

pathway consisting of two delay differential equations (8)–(9) 
is uniformly persistent. 

Moreover, it appears that the delays I  and R  do not 
appear to explicitly impact on the persistent characteristics of 
this system. At least, no restrictions on the delays are needed 
for persistence or stability of the system. However, if we 
consider the proofs of our results, we see that the values of R 
and I, the densities of activated GPCR and inhibitor 
protein, ( )

I
R  , ( )

I
I  , ( )

R
R  , and ( ) 

R
I  , are related to 

the quantities , , ,
m M m

R R I  and 
M

I . These in turns bound 

the values of the basal levels ,  and 
b b

R I , while ,  and 
b b

R I  

appear in the expressions of the quantities 
1 3

to L L  in 

Theorem 9 that delineates the parametric regions where the 
equilibrium of the system is globally stable. Thus, the delays 

I  and R  in fact implicitly effect the stability behaviour of 
the signaling pathway. 

Our model analysis therefore indicates that the process 
outcome can be potentially engineered by controlling the 
levels of the densities of activated G-protein coupled receptors 
and inhibitors during the initial time intervals ( ,0)I  and 

( ,0)R so that the global stability may be preserved or 
possibly destroyed, whatever is the desired outcome. In fact, 
we found that a solution of the model system must oscillate 
about the steady state level ( , )

b b
R I  unless it converges to the 

equilibrium point as time passes. When such oscillatory 
behavior may occurs and how the delays I  and R  effect the 
behavior of these oscillating solutions are subjects for future 
investigations. 

The conclusions reached in this study are expected to bear 
important implications for experimental investigations to 
identify the mechanisms for biological memory and for the 
development of therapeutic strategies to modulate signaling 
network responses in the setting of human diseases. 
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