
 

 

  
Abstract—The paper deals with comparison of two principal 

approaches to uncertainty modelling and related robust stability 
analyses for a system with uncertain time-delay. A paper bleaching 
process, used as a testing plant, is described first as a system with 
parametric uncertainty and then in the form of unstructured 
multiplicative uncertainty model. The robust stability or instability of 
closed control loop with appropriate uncertain model of the 
controlled system and selected controller is verified and obtained 
results are compared. Moreover, the issue of conservatism in 
uncertainty description and in subsequent robust stability analysis is 
also discussed. 
 

Keywords—Uncertainty modelling, time-delay systems, 
parametric uncertainty, unstructured uncertainty, robust stability 
analysis.  

I. INTRODUCTION 
HE whole classical control theory as well as many 
contemporary methods use some form of mathematical 

model of a controlled system for a controller design. The 
crucial problem, however, is that assumed ideal mathematical 
model, due to many reasons, practically never exactly matches 
the real behaviour of the plant. One of possible approaches 
how to overcome this discrepancy grounds in utilization of an 
uncertain model and subsequent robust controller design. 

Robust control, time-delay systems, and related issues 
belong among very deeply studied and attractive disciplines 
[1]–[5]. There are two principal ways of uncertainty 
modelling in the literature – parametric or unstructured 
approach [6]–[10]. Both of them have their advantages and 
drawbacks. Consequently, each of approaches is more suitable 
for different situations. 

This paper presents the comparison of uncertainty 
modelling and subsequent closed-loop robust stability 
analyses for a fist order system with uncertain time-delay 
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term. The tests are performed by means of the simulation 
examples with a paper bleaching process [11]. The initial 
robust stability investigations and control results for two PI 
controllers are subsequently enriched by outline of a 
conservatism issue. The paper is the extended version of the 
contribution [12]. 

The work is organized as follows. In Section II, the various 
approaches to uncertainty modelling and description are 
described. The Section III then presents analysis of robust 
stability under parametric uncertainty. The following Section 
IV has the same purpose, but for systems with unstructured 
uncertainty. Further, the comparative example with control of 
the paper bleaching process can be found in the extensive 
Section V. The next Section VI deals with the problem of 
conservatism in uncertainty description and in robust stability 
analysis. And finally, Section VII offers some conclusion 
remarks. 

II. UNCERTAINTY MODELLING 
The introductory part has already foreshadowed that 

difference between real process and its mathematical model is 
the fundamental and omnipresent control problem. For 
example, the parameters of controlled plant need not to be 
known exactly or they can be even time-variant (however, 
only “slowly” from the robust control point of view). Then, 
nonlinearity in controlled system can be neglected and 
consequently discrepancy could originate in linear 
approximation in given operational point. Or a simplified 
model can be intentionally used instead of originally very 
complex system (e.g. caused by neglecting the fast dynamic 
effects due to system order reduction, assumption of a 
distributed-parameter system as a lumped-parameter one, or 
time-delay neglect) because of easier calculations [11]. 

In robust control, respecting these factors in mathematical 
description leads to the use of uncertain model. In other 
words, not only one nominal model, but the whole family of 
models given by some neighborhood of the nominal one is 
defined. The “size” of this neighborhood can be described in 
two main ways – as a parametric or unstructured uncertainty. 
The combination of both main methods is also possible. Then 
one speaks about mixed uncertainty. 

The real parametric uncertainty is utilized if the structure of 
system is known but its actual physical parameters are not. On 
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the contrary, unstructured uncertainty does not require even 
knowledge of structure (order) of model. Parametric 
uncertainty is defined through intervals which the imprecisely 
known parameters lie within. The unstructured uncertainty 
description is based on restriction of the area of possible 
appearance of frequency characteristics [11]. 

However, the terminology used in this paper is not the one 
and only possible. The scientific literature presents also 
different nomenclatures, e.g. structured (=parametric) vs. 
nonparametric (=unstructured) or possibly parametric vs. 
dynamic, which are subsequently divided into unstructured 
and structured (with different meaning than in the previous 
case). Thus one has to be careful about the terminology of 
each author. This paper adopts probably the most frequent 
version, i.e. parametric vs. unstructured uncertainty [13]. 

It is known that robustness means preservation of a selected 
property of control loop not only for one nominal system but 
also for the whole family of systems given by the uncertain 
model and appropriate boundary. Generally, the most 
important control problem consists in ensuring the stability 
and so, quite naturally, one of the typical robust control 
problems is robust stability analysis. It investigates if the 
closed-loop stability is assured for all possible systems from 
the family. If this is fulfilled, then the system is called as 
robustly stable. Furthermore, the aim of robust synthesis is to 
find a controller which guarantee robustness (robust stability, 
robust performance, etc.) of the closed control loop. This 
paper is focused on analysis of robust stability. 

III. ROBUST STABILITY ANALYSIS UNDER PARAMETRIC 
UNCERTAINTY 

The systems with parametric uncertainty [7] are frequently 
described by means of a vector of real uncertain parameters q: 

 
[ ]1 2, , , ; m

mq q q q q= ∈… \  (1) 
 

implemented into the transfer function: 
 

( , )( , )
( , )

b s qG s q
a s q

=  (2) 

 
Many tests of robust stability under parametric uncertainty 

are based on direct analysis of uncertain characteristic closed-
loop polynomial which can be assumed as: 

 

0

( , ) ( )
n

i
i

i

p s q q sρ
=

= ∑  (3) 

 
where iρ  are coefficient functions. 

The vector of uncertain parameters (1) is usually defined by 
some uncertainty bounding set Q. The mostly common 
scenario takes advantage of the application of L∞ norm which 
leads to Q in the shape of box set by components. 
Combination of the uncertain system structure with its 
uncertainty bounding set constitutes a family of systems. 

Generally, the family of polynomials: 
 

{ }( , ) :P p q q Q= ⋅ ∈  (4) 
 

is robustly stable, if and only if ( , )p q⋅  is stable for all q Q∈ , 
i.e. all roots of continuous-time ( , )p s q  must be located in the 
left half of the complex plane for all q Q∈ . However, 
straightforward computation of all roots suffers from 
momentous disadvantage. It brings the extremely long 
computational time for a higher number of uncertain 
parameters, which makes it very unpractical [14]. 
Consequently, the more convenient techniques had to be 
investigated. 

The way of entering the coefficient functions iρ  into the 
polynomial (3) is very important for decision on the potential 
tool for robust stability analysis. Thus, one can distinguish 
among several basic structures of uncertainty with increasing 
generality: 

• Independent (interval) uncertainty structure 
• Affine linear uncertainty structure 
• Multilinear uncertainty structure 
• Nonlinear uncertainty structure (polynomial, general) 

On top of that, single parameter uncertainty can be considered 
as a special case. 

The higher degree of dependence among coefficients makes 
the analysis more complicated. For that reason, many 
uncertainty structures have their own specific tools for 
investigation of robust stability. A very important method 
consists in combination of the value set concept with the zero 
exclusion condition [7], [15]. This very universal technique 
can be relatively needlessly complicated one for the simplest 
structures, but on the other hand it represents the convenient 
approach for the more complex structures. 

The value set [7], [15] for the family of polynomials (4) at 
frequency ω ∈\  is defined as: 

 
{ }( , ) ( , ) :p j Q p j q q Qω ω= ∈  (5) 

 
that is, ( , )p j Qω  is the image of Q under ( , )p jω ⋅ . For the 
continuous-time case, one must substitute s for jω  in a 
family: 

 
{ }( , ) :P p s q q Q= ∈  (6) 

 
fix ω  and let the vector of uncertain parameters q range over 
the set Q. 

The zero exclusion condition [7], [15] for Hurwitz stability 
of family of continuous-time polynomials (6) says: Suppose 
invariant degree of polynomials in the family, pathwise 
connected uncertainty bounding set Q, continuous coefficient 
functions ( )i qρ  for 0, 1, 2, ,i n= …  and at least one stable 

member 0( , )p s q . Then the family P is robustly stable if and 
only if the complex plane origin is excluded from the value set 
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( , )p j Qω  at all frequencies 0ω ≥ , that is P is robustly stable 
if and only if: 

 
0 ( , ) 0p j Qω ω∉ ∀ ≥  (7) 

 
The applicability of this graphical method is very universal 

and so it can be used also for testing the robust stability of 
quasipolynomials which appear during analysis of closed 
control loop containing time-delay plant. This will be shown 
in the Section V. 

An interested reader can find a lot of additional information 
about robustness of systems with parametric uncertainty and 
related topics e.g. in [6]–[10], [15]–[17]. 

IV. ROBUST STABILITY ANALYSIS UNDER UNSTRUCTURED 
UNCERTAINTY 

As it has been already outlined, the unstructured uncertainty 
is useful especially when the structure of model is not known, 
so it is related for example to the unmodelled dynamics, 
truncation of high frequency modes or nonlinearities. Its 
description grounds in restriction of frequency characteristics. 

There are several types of unstructured uncertainty models 
in literature [10], [13], [16], [17], i.e.: 

• Multiplicative model: 
 

[ ] 0( ) 1 ( ) ( ) ( )M MG s W s s G s= + Δ  (8) 
 
• Additive model: 
 

0( ) ( ) ( ) ( )A AG s G s W s s= + Δ  (9) 
 
• Inverse multiplicative model: 
 

[ ] 1
0( ) 1 ( ) ( ) ( )IM IMG s W s s G s−= − Δ  (10) 

 
• Inverse additive model: 
 

[ ] 1
0 0( ) ( ) 1 ( ) ( ) ( )IA IAG s G s W s s G s −= − Δ  (11) 

 
where ( )G s  represents a perturbed model, 0 ( )G s  stands for a 
nominal model, ( )MW s  is a (stable) weight function 
representing uncertainty dynamics, i.e. the distribution of the 
maximum amplitude of the uncertainty over the frequency, 
and ( )M sΔ  means the uncertainty (uncertain information 
about actual magnitude and phase of perturbation), which can 
be an arbitrary stable function fulfilling the inequality: 

 
( ) 1 ( ) 1M Ms jω ω

∞
Δ ≤ ⇒ Δ ≤ ∀  (12) 

 
Furthermore, in multiplicative model, it can be formally 

distinguished between the uncertainty in the input or output of 
the system for multi-input multi-output (MIMO) systems. 
However, it is not important for single-input single-output 

(SISO) case. The inverse versions of the models allow 
describing also the unstable dynamics. Graphical 
interpretations of these uncertainties can be found in figs. 1 – 
4. 
 

G

G0

ΔM WM 

 
Fig. 1 multiplicative model of uncertainty (8) 

 

G
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ΔA WA 

 
Fig. 2 additive model of uncertainty (9) 

 

G

G0

WIM ΔIM 

 
Fig. 3 inverse multiplicative model of uncertainty (10) 

 

G
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WIA ΔIA 

 
Fig. 4 inverse additive model of uncertainty (11) 

 
For multiplicative uncertainty, it holds true: 
 

0

( ) 1 ( )
( ) M

G j W j
G j

ω ω ω
ω

− ≤ ∀  (13) 

 
Moreover, many theoretical tools for analysis and synthesis 
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require that ( )G s  and 0 ( )G s  have to have the same amount of 
poles for all ( )M sΔ . 

Under assumption of multiplicative uncertainty, the closed-
loop system is robustly stable if and only if: 

 
0( ) ( ) 1MW s T s

∞
<  (14) 

 
where 0 ( )T s  is a complementary sensitivity function: 

 
0

0
0

( )( )
1 ( )

L sT s
L s

=
+

 (15) 

 
and where the term 0 ( )L s  represents open-loop frequency 
transfer function: 

 
0 0( ) ( ) ( )L s C s G s=  (16) 
 

The inequality (14) can be adjusted into: 
 

( )

0

0

0 0

( ) ( ) 1
1 ( )

( ) ( ) ( ) 1

M

M

W j L j
L j

W j L j L j

ω ω ω
ω

ω ω ω ω

< ∀ ⇒
+

⇒ < − − ∀

 (17) 

 
which practically says that the envelope of Nyquist diagrams 
with radius 0( ) ( )MW j L jω ω  and centre 0 ( )L jω  must not 
include the critical point [-1, 0 ]j . The graphical interpretation 
of this condition is shown in fig. 5. 

 
 

0( ) ( )MW j L jω ω  

0 ( )L jω  

-1 0 Re 

Im 

 

Fig. 5 graphical interpretation of the robust stability condition for 
multiplicative uncertainty 

 
Alternatively, the robust stability condition (14) can take 

also the form: 
 

0
1( )
( )M

T j
W j

ω ω
ω

< ∀  (18) 

 
 

The other than multiplicative uncertainties have different 
versions of such conditions [10], [13], [16], [17]. 

V. COMPARATIVE EXAMPLE – ROBUST STABILITY ANALYSIS 
FOR A PAPER BLEACHING PROCESS 

A bleaching process in a paper-making machine is adopted 
from paper [11] where it is modelled as a first order plant with 
uncertain time-delay. More specifically, it describes the 
dependency of lignin amount on chlorine flow-rate. The 
known part of time-delay results from sensor placement while 
the unknown one originates in neglect of fast dynamics of the 
chemical process. Thus, the nominal model of the controlled 
process is defined as: 

 
0.1

0
1( )

2 1
sG s e

s
−=

+
 (19) 

 
and the class of uncertain models can be described by: 

 
( )0.11( ) : 0 0.9

2 1
sG s e

s
− +Θ⎧ ⎫= ≤ Θ ≤⎨ ⎬+⎩ ⎭

 (20) 

 
The task is to verify if this system is robustly stabilized by 

the following PI controllers: 
 

1
3 2.5( ) sC s

s
+=  (21) 

 

2
1.5 0.5( ) sC s

s
+=  (22) 

 
by means of parametric and unstructured uncertainty 
modelling approach, respectively. 

A. Parametric Uncertainty Approach 
First, the controlled plant is assumed as a transfer function 

with single uncertain parameter (time-delay term): 
 

[ ]0.1, 11 1( , )
2 1 2 1

ssG s e e
s s

−− ΘΘ = =
+ +

��  (23) 

 
The closed-loop characteristic quasipolynomial of the 

circuit with plant (23) and the controller (21) can be simply 
expressed as: 

 
( ) ( )1 ( , ) 2 1 3 2.5 ;

0.1, 1

s
CLp s s s e s− ΘΘ = + + +

Θ ∈

��

�
 (24) 

 
In accordance with theory from Section III, the value set for 
one fixed frequency ω  can be obtained, roughly speaking, by 
substitution of s for jω  in the family (24) and letting the 

time-delay term Θ�  range over the prescribed set. The fig. 6 
shows such value sets plotted in complex plane for several 
non-negative frequencies starting from 0 to 2.4 with step 0.05. 
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Fig. 6 the value sets of uncertain quasipolynomial (24) – robustly 
unstable case 

 
As can be seen, the origin of the complex plane is included 

in the value sets which means that quasipolynomial (24) and 
consequently also the whole control system with controller 
(21) and time-delay plant (23) is not robustly stable. 

The second controller (22) and the same controlled system 
(23) lead to the uncertain closed-loop characteristic 
quasipolynomial: 

 
( ) ( )2 ( , ) 2 1 1.5 0.5 ;

0.1, 1

s
CLp s s s e s− ΘΘ = + + +

Θ ∈

��

�
 (25) 

 
The corresponding value sets for the identical range of 
frequencies is depicted in fig. 7. 
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Fig. 7 the value sets of uncertain quasipolynomial (25) – robustly 
stable case 

 
Due to the fact that the family has a stable member and the 

origin of the complex plane is excluded from the value sets, 
one can conclude that the quasipolynomial (25) and thus also 
the control system is robustly stable for this controller 
parameters. 

B. Unstructured Uncertainty Approach 
In the second case, the system (20) is considered to be 

described as an unstructured multiplicative uncertainty model 
(8). The normalized perturbation of the plant (20) can be 
obtained using (13): 

 
1 ( )j

Me W jω ω ω− Θ − ≤ ∀  (26) 

 
The object of interest is just the amplitude of perturbation. 
The phase is not restricted. So, the suitable weight function, 
considered as the envelope of the uncertainty, is chosen in 
[11] as: 

 
2.1( )

1M
sW s

s
=

+
 (27) 

 
The fig. 8 shows the comparison of Bode plots of the weight 
(27) and normalized perturbations for three values of time-
delay ( 0.9Θ = , 0.1Θ = , and 0.01Θ = ). It can be seen how 

( )MW jω  approximates even the worst case of 0.9Θ =  from 
the upper side. 
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Fig. 8 Bode plots – envelope of the uncertainty 

 
Thus, remember that the aim is to analyze the robust 

stability of closed-loop with the family of systems: 
 

[ ] 0

0.1
0

( ) 1 ( ) ( ) ( )

( ) 1

1( )
2 1
2.1( )

1

M M

s

M

G s W s s G s

s

G s e
s

sW s
s

∞

−

= + Δ

Δ ≤

=
+

=
+

 (28) 

 
and with the controllers (21) and (22). 

For the first controller (21), the envelope of Nyquist 
diagrams given by circles with radius 0( ) ( )MW j L jω ω  around 

the Nyquist diagram of 0 ( )L jω  (red curve) is plotted in fig. 9 
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(with frequency step 0.1). It shows that the critical point [-1, 
0j] is included in the envelope. Consequently, the closed loop 
with controller (21) and family of systems (28) is robustly 
unstable. 
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Fig. 9 graphical interpretation of stability condition (14) for 
controller (21) – robustly unstable case 

 
Analogically, but now under assumption of the second 

controller (22), the envelope of Nyquist diagrams is shown in 
fig. 10 (again with frequency step 0.1). For this case, the point 
[-1, 0j] is excluded from the envelope which means robust 
stabilization of the closed-loop with controller (22) and family 
of systems (28). 
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Fig. 10 graphical interpretation of stability condition (14) for 
controller (22) – robustly stable case 

 

C. Control Simulations 
For the purpose of simulations, the time-delay term in 

controlled plant (20) has been sampled into 91 fixed values 
from 0.1 to 1 with step 0.01. Thus, it has resulted in 91 
“representative” systems for simulations. 

First, the robustly unstable case with the controller (21) has 
been verified. The fig. 11 presents the output signals of this 

“representative” set of systems while the fig. 12 depicts the 
corresponding control (actuating) signals. Next, the analogical 
graphs can be seen in figs. 13 and 14 but here for the robustly 
stable scenario with the controller (22). 
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Fig. 11 output signals of 91 “representative” systems for the 
controller (21) – robustly unstable case 
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Fig. 12 control signals going from the controller (21) to 91 
“representative” systems – robustly unstable case 
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Fig. 13 output signals of 91 “representative” systems for the 
controller (22) – robustly stable case 
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Fig. 14 control signals going from the controller (22) to 91 
“representative” systems – robustly stable case 

 

VI. CONSERVATISM IN ROBUST STABILITY ANALYSIS 
As expected, the obtained results of robust stability analysis 

from parts A and B of the previous Section mutually concur 
and, moreover, they are confirmed by simulations from part C. 
However, it needs not to be true under all circumstances. One 
has to be careful about the conservatism during investigation 
of robust stability under unstructured uncertainty as it is going 
to be explained bellow. 

The unstructured uncertainty has a substantial advantage in 
the fact that not only changes in parameters can be taken into 
consideration by such description. Actually, this approach is 
very useful under various unmodelled dynamics. On the 
contrary, this merit can turn into a drawback in our case of 
only parametrically uncertain plant assumed as a system with 
unstructured uncertainty because of conservatism in 
description and consequent robust stability analysis. In other 
words, e.g. multiplicative model (28) “overbounds” the “real” 
plant (20) – see envelope of the uncertainty in fig. 8. It means 
that even if the robust stability test is not positive for the 
model (28), the actual control behaviour can be still robustly 
stable as will be demonstrated in the following example. 

Assume a controller: 
 

3
2 1( ) sC s

s
+=  (29) 

 
and the multiplicative uncertain model (28). Even though the 
envelope of Nyquist diagrams visualized in fig. 15 includes 
the critical point which indicates the robust instability for 
model (28), the true closed control loop with the controller 
(29) and plant (20) is robustly stable. This is confirmed e.g. by 
fig. 16 where the output responses for 91 “representative” 
systems are plotted. Besides, the related control signals can be 
seen in fig. 17. 
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Fig. 15 graphical interpretation of stability condition (14) for 
controller (29) – robustly ?unstable? case 
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Fig. 16 output signals of 91 “representative” systems for the 
controller (29) – robustly ?unstable? case 
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Fig. 17 control signals going from the controller (29) to 91 
“representative” systems – robustly ?unstable? case 
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VII. CONCLUSION 
The paper has dealt with comparison of parametric and 

unstructured approaches to uncertainty modelling and robust 
stability analysis. The parametric way of description seems to 
be more natural and comprehensive and robust stability 
analysis is also relatively straightforward under parametric 
uncertainty scenario. On the other hand, application of 
unstructured uncertainty model is very convenient especially 
for systems with various unmodelled dynamics and 
nonlinearities and, furthermore, this approach allows taking 
advantage of wider range of more sophisticated controller 
design methods. 
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