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Abstract—We consider a strongly regular graph, G, with
adjacency matrix A, and associate a three dimensional Eu-
clidean Jordan algebra to A. Then, by considering convergent
series of Hadamard powers of the idempotents of the unique
complete system of orthogonal idempotents of the Euclidean
Jordan algebra associated to A, we establish new admissibility
conditions for the existence of strongly regular graphs. Finally,
we extract some asymptotic conclusions about the spectrum of
G.
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I. INTRODUCTION

Strongly regular graphs are a relatively new class of
graphs firstly introduced in a 1963 paper form R. C. Bose,
entitled Strongly regular graphs, partial geometries and
partially balanced designs, [1]. One of the main problems
on the study of these graphs is to find suitable feasibility
conditions over their parameters. The most used and not
trivial feasibility conditions are the Krein conditions and the
absolute bounds (see [2]). In this paper we explore the close
and interesting relationship of a three dimensional Euclidean
Jordan algebra to the adjacency matrix of a strongly regular
graph, in order to obtain some new inequalities for the
existence of strongly regular graphs

Euclidean Jordan algebras were born back in 1934, when
Pascual Jordan, John von Neumann and Eugene Wigner
published their entitled paper On an algebraic generalization
of the quantum mechanical formalism [3]. In this paper, the
authors tried to deduce the Hermitian matrices properties,
in a quantum mechanics context. It is remarkable that since
then, Euclidean Jordan algebras have had such a wide range
of applications. For instance there are applications to the
theory of statistics (see [4]), to interior point methods (see
[5] or [6]) and to combinatorics (see [7]). Detailed literature
on Euclidean Jordan algebras can be found in Koecher’s
lecture notes, [8], and in the monograph by Faraut and
Korányi, [9].

This paper is organized as follows. In Section II and III we
present some basic concepts concerning Euclidean Jordan
algebras and strongly regular graphs, respectively. In Section
IV, we associate a three dimensional Euclidean Jordan
algebra to the the adjacency matrix of a strongly regular
graph. Then, in Section V we deduce new admissibility

conditions over the parameters of a strongly regular graph.
We finish this paper with some experimental results and
some asymptotic conclusions, in Section VI.

II. A BRIEF INTRODUCTION ON EUCLIDEAN JORDAN
ALGEBRAS

In this section we present relevant concepts for our work
which can be seen, for instance, in [9].

Let V be a real vector space with finite dimension and a
bilinear mapping (u, v) 7→ u • v. If V contains an element,
e, such that for all u in V we have e • u = u • e = u, then
e is called the unit element of V . We define the powers of
all elements u of V recursively as follows:

u0 = e; un := u • un−1,∀n ∈ N.

If for all u in V and any nonnegative integers p, q we have

up • uq = up+q,

then V is a power associative algebra.
For each u in V let k be the minimal positive integer such

that the set
{e, u, u2, . . . , uk}

is linear dependent. Then k is called the rank of u and we
write rank(u) = k. Since V is a finite dimensional algebra,
we define the rank of V as the number r such that

r = rank(V) = max{rank(u) : u ∈ V}.

If for all u and v in V we have
(J1) u • v = v • u and
(J2) u • (u2 • v) = u2 • (u • v),
with u2 = u • u, then V is called a Jordan algebra.

In general a Jordan algebra with unit element is non
associative but is always a power associative algebra. On
another hand, given an associative algebra, one can define a
Jordan algebra like in Example 1.

Example 1: Let V be an associative algebra and define
the new product

u • v =
1

2
(uv + vu), (1)

for all u, v in V . Then, (V, •) is a Jordan algebra. The new
product (1) is called the Jordan product.
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Given a Jordan algebra V with unit element, if there is an
inner product < ·, · > that verifies the equality

< u • v, w >=< v, u • w >,

for any u, v, w in V , then V is called an Euclidean Jordan
algebra.

Example 2: Let V = Sym(n,R) be the space of real
symmetric matrices of order n equipped with the Jordan
product. By Example 1, since V is associative, V is a Jordan
algebra.

Now we consider the inner product

< B,C >= tr(BC)

for all B, C in V , where BC is the usual matrix product.
Then, since

< B • C,D > = tr((B • C)D)

= tr
(
BC + CB

2
D

)
= tr

(
BCD + CBD

2

)
= tr

(
BCD

2

)
+ tr

(
CBD

2

)
= tr

(
CBD

2

)
+ tr

(
CBD

2

)
= tr

(
CBD + CBD

2

)
= tr

(
C
BD +BD

2

)
= tr(C(B •D))

= < C,B •D >,

for all matrices B, C and D in V , we conclude, that V is
an Euclidean Jordan algebra.

From now on V is an Euclidean Jordan algebra with unit
element e. If there is c in V such that c2 = c, then c is called
an idempotent. Two idempotents c and d are orthogonal if
c • d = 0. If two idempotents c and d of V are orthogonal,
then they are orthogonal with respect to the inner product.
In fact, we have

< c, d >=< c2, d >=< c, c • d > .

Then, if c • d = 0 we conclude that < c, d >= 0.
A set {c1, c2, . . . , ck} is called a complete system of

orthogonal idempotents if
1) c2i = ci,∀i ∈ {1, . . . , k},
2) ci • cj = 0,∀i 6= j,
3) c1 + c2 + · · ·+ ck = e.
An idempotent is called primitive if it is nonzero and

cannot be written as the sum of two orthogonal nonzero
idempotents.

Example 3: The matrix 1 0 0
0 1 0
0 0 0


is an idempotent of Sym(3,R) that is not primitive, because
it can be written as the following sum of primitive idempo-
tents of Sym(3,R): 1 0 0

0 1 0
0 0 0

 =

 1 0 0
0 0 0
0 0 0

+

 0 0 0
0 1 0
0 0 0

 .

A Jordan frame is a complete system of orthogonal
idempotents {c1, c2, . . . , ck}, such that each ci, for all i in
{1, . . . , k}, is primitive. We observe that if S is a complete
system of orthogonal idempotents of an Euclidean Jordan
algebra V , that is a basis of V , then S is also a Jordan
frame.

Now we present an example of a complete system of
orthogonal idempotents that is also a Jordan frame.

Example 4: Let V = Sym(2,R). Now consider

c =

(
1 0
0 0

)
and d =

(
0 0
0 1

)
of V . The matrices c and d are idempotents, since c2 = c
and d2 = d, and are orthogonal, because c • d = 0. Now,
since

c+ d =

(
1 0
0 1

)
= I2,

then {c, d} is a complete system of orthogonal idempotents.
Finally, c and d are primitive and therefore {c, d} is a Jordan
frame.

For all u in V , there exist unique distinct real numbers
λ1, λ2, . . . , λk, and a unique complete system of orthogonal
idempotents {c1, c2, . . . , ck} such that

u = λ1c1 + λ2c2 + · · ·+ λkck, (2)

with cj , j = 1, . . . , k, real numbers (see [9], Theorem
III.1.1). The λj’s are the eigenvalues of u and (2) is the
spectral decomposition of u. If u =

∑k
i=1 λici is the spectral

decomposition of u, then the minimal polynomial of u is
given by

p(U, u) =

k∏
i=1

(U − λi). (3)

III. GENERAL CONCEPTS ON STRONGLY REGULAR
GRAPHS

Along this paper we only consider non empty, simple
graphs (graphs with no loops nor parallel edges) and not
complete graphs (graphs that have some non-adjacent pair
of vertices), herein called graphs.

Considering a graph G, we denote its vertex set by V (G)
and its edge set by E(G). An edge of G with endpoints x
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and y is denoted by xy. In this case the vertices are called
adjacent or neighbors. The number of vertices of G, |V (G)|,
is called the order of G. If all vertices of G have k neighbors,
then G is a k-regular graph. The complement of a graph G
is a graph, denoted by G, such that V (G) = V (G) and two
vertices are adjacent in G if and only if they are not adjacent
in G.

Let G be a graph of order n. Then G is a (n, k, a, c)-
strongly regular graph if it is k-regular, any pair of adjacent
vertices have a common neighbors and any pair of non-
adjacent vertices have c common neighbors.

If G is a strongly regular graph, then G is also strongly
regular with parameters (n, k, a, c), such that

k = n− k − 1,

a = n− 2− 2k + c,

c = n− 2k + a.

The parameters of a (n, k, a, c)-strongly regular graph are
not independent and are related by the equality

k(k − a− 1) = (n− k − 1)c. (4)

We associate to G a n by n matrix A = [aij ], where
each aij = 1, if vivj ∈ E(G), otherwise aij = 0, called the
adjacency matrix of G. The eigenvalues of A are simply
called the eigenvalues of G.

It is well known (see, for instance, [2]) that the eigenval-
ues of the (n, k, a, c)-strongly regular graph G are k, θ and
τ , where θ and τ are given by

θ =
a− c+

√
(a− c)2 + 4(k − c)

2
(5)

and

τ =
a− c−

√
(a− c)2 + 4(k − c)

2
. (6)

Equation (4) is an example of a feasibility condition
that must be satisfied by the parameters of any strongly
regular graph. The Krein conditions, obtained in 1973 by
Scott, Jr., [10], are among the most important feasibility
conditions for strongly regular graphs. However, there are
still many parameter sets for which we do not know if they
correspond to a strongly regular graph. In this work we
obtain some new conditions to establish the unfeasibility
of certain parameter sets of strongly regular graphs. We
deduce them by associating an Euclidean Jordan algebra to
the adjacency matrix of a strongly regular graph.

IV. ASSOCIATING AN EUCLIDEAN JORDAN ALGEBRA TO
A STRONGLY REGULAR GRAPH

From now on, we consider the Euclidean Jordan algebra
V = Sym(n,R) equipped with the Jordan product and with
the inner product

< B,C >= tr(BC)

for all B and C in V .
Let G be a (n, k, a, c)-strongly regular graph such that

0 < c < k < n − 1 and let A be the adjacency matrix of
G with three distinct eigenvalues, namely k, θ, and τ , given
by the formulae (5) and (6) in Section III. Let k and θ be
the positive eigenvalues and τ be the negative eigenvalue of
A.

Now we consider the Euclidean Jordan subalgebra of V ,
V ′, spanned by In, and the natural powers of A. Since A
has three distinct eigenvalues, then V ′ is a three dimensional
Euclidean Jordan algebra with rank(V ′) = 3.

Let S = {E1, E2, E3} be the unique complete system of
orthogonal idempotents of V associated to A, with

E1 =
1

(k − θ)(k − τ)
A2 − θ + τ

(k − θ)(k − τ)
A+

+
θτ

(k − θ)(k − τ)
In,

E2 =
1

(θ − τ)(θ − k)
A2 − k + τ

(θ − τ)(θ − k)
A+

+
kτ

(θ − τ)(θ − k)
In,

E3 =
1

(τ − θ)(τ − k)
A2 − k + θ

(τ − θ)(τ − k)
A+

+
kθ

(τ − θ)(τ − k)
In,

where Jn is the matrix whose entries are all equal to 1. We
rewrite the idempotents under the basis {In, A, Jn−A−In}
of V ′ obtaining

E1 =
1

n
In +

1

n
A+

1

n
(Jn −A− In) ,

E2 =
−τn+ τ − k
n(θ − τ)

In +
n+ τ − k
n(θ − τ)

A

+
τ − k

n(θ − τ)
(Jn −A− In) ,

E3 =
θn+ k − θ
n(θ − τ)

In +
−n+ k − θ
n(θ − τ)

A

+
k − θ

n(θ − τ)
(Jn −A− In) .

Let p be a natural number such that p ≥ 1 and denote
by Mn(R) the set of square matrices of order n with real
entries. For B in Mn(R), we denote by B◦p and B⊗p the
Hadamard power of order p of B and the Kronecker power
of order p of B, respectively, with B◦1 = B and B⊗1 = B.

V. NEW ADMISSIBILITY CONDITIONS FOR STRONGLY
REGULAR GRAPHS

Consider the following spectral decomposition of A,

A = kE1 + θE2 + τE3.
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For l ∈ N, let:

S⊗2l−1 = E3 ⊗ J⊗(2l−2)n + E⊗33 ⊗ J⊗(2l−4)n +

+ · · ·+ E
⊗(2l−1)
3 , (7)

where each summand is a Kronecker product with 2l − 1
factors. The sum S⊗2l−1 has a principal submatrix given by:

S◦2l−1 = E3 ◦ J◦(2l−2)n + E◦33 ◦ J◦(2l−4)n +

+ · · ·+ E
◦(2l−1)
3 . (8)

Observe that, since Jn is the identity for the Hadamard
product of matrices which is associative, it follows that
S◦2l−1 =

∑l
i=1E

◦(2i−1)
3 . Let q12l−1, q

2
2l−1 and q32l−1 be the

real numbers such that S◦2l−1 =
∑3
i=1 q

i
2l−1Ei. Since the set

B = {Ei1⊗Ei2⊗· · ·⊗Ei2l−1
: i1, i2, · · · , i2l−1 ∈ {1, 2, 3}}

is a complete system of orthogonal idempotents that is
a basis of the real Euclidean Jordan algebra (V ′)⊗(2l−1)
spanned by I⊗(2l−1) and the natural powers of A⊗(2l−1),
then the minimal polynomial of S⊗2l−1 is

p(λ, S⊗2l−1) = (λ− 0)
l∏
i=1

(λ− n2(l−i)). (9)

Note that, to obtain (9) we use formula (3), applying the
system of orthogonal idempotents in each summand of (7),
see [9, p. 44].

The interlacing Theorem (see [11], Theorem 4.3.15),
states that given a real symmetric matrix, B, of order n,
whose eigenvalues are λ1 ≥ λ2 ≥ · · · ≥ λn, and a
principal submatrix of B, C of order m, with eigenvalues
µ1 ≥ µ2 ≥ · · · ≥ µm, then, the eigenvalues of C relate with
those of B in the following manner:

λi ≥ µi ≥ λn−m+i,

for i = 1, 2, . . . ,m.
The matrix (8) is a principal submatrix of S⊗2l−1 and

p is the minimal polynomial of S⊗2l−1. By the interlacing
Theorem, the eigenvalues of S◦2l−1 are all nonnegative.
Regarding that

S◦2l−1 =
l∑

j=1

(
θn+ k − θ
n(θ − τ)

)2j−1

In +

+
l∑

j=1

(
−n+ k − θ
n(θ − τ)

)2j−1

A+

+
l∑

j=1

(
k − θ

n(θ − τ)

)2j−1

(Jn −A− In) (10)

and since |τ | > 1, then

∣∣∣∣θn+ k − θ
n(θ − τ)

∣∣∣∣ < 1,∣∣∣∣−n+ k − θ
n(θ − τ)

∣∣∣∣ < 1,∣∣∣∣ k − θ
n(θ − τ)

∣∣∣∣ < 1,

and therefore the series
∑+∞
i=1 E

◦(2i−1)
3 is convergent with

sum s. Consider the real numbers q1∞, q2∞, q3∞ such that

s = lim
l→+∞

S◦2l−1 = q1∞E1 + q2∞E2 + q3∞E3. (11)

As
S◦2l−1 = q12l−1E1 + q22l−1E2 + q32l−1E3, (12)

applying limits to (12) and comparing expressions (11) and
(12) we obtain

q1∞ = lim
l→∞

q12l−1,

q2∞ = lim
l→∞

q22l−1

q3∞ = lim
l→∞

q32l−1.

As the eigenvalues of S◦2l−1 are nonnegative, it follows that
q1∞ ≥ 0, q2∞ ≥ 0 and q3∞ ≥ 0. Then from identity (10) and
doing some algebraic manipulations we obtain:

q1∞ =
n(θ − τ)(nθ − θ + k)

n2(θ − τ)2 − (nθ − θ + k)2
+

+
n(θ − τ)(−n+ k − θ)

n2(θ − τ)2 − (−n+ k − θ)2
k +

+
n(θ − τ)(k − θ)

n2(θ − τ)2 − (k − θ)2
(n− k − 1);

q2∞ =
n(θ − τ)(nθ − θ + k)

n2(θ − τ)2 − (nθ − θ + k)2
+

+
n(θ − τ)(−n+ k − θ)

n2(θ − τ)2 − (−n+ k − θ)2
θ +

+
n(θ − τ)(k − θ)

n2(θ − τ)2 − (k − θ)2
(−θ − 1);

q3∞ =
n(θ − τ)(nθ − θ + k)

n2(θ − τ)2 − (nθ − θ + k)2
+

+
n(θ − τ)(−n+ k − θ)

n2(θ − τ)2 − (−n+ k − θ)2
τ +

+
n(θ − τ)(k − θ)

n2(θ − τ)2 − (k − θ)2
(−τ − 1).

Now, since

λmin(A ◦B) ≥ λmin(A)λmin(B), (13)

for any matrices A, B in Mn(R), (see [12], p. 312),
and the parameters q1∞, q

2
∞ and q3∞ are nonnegative then

the eigenvalues of s◦x are also nonnegative, for x ∈ N.
Let qixs, for i ∈ {1, 2, 3}, be the real numbers such that
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s◦x =
∑3
i=1 q

i
xsEi. Analyzing the parameters q1xs and q3xs

and after some algebraic manipulation we establish the
following theorem that contains new feasibility conditions
for the existence of strongly regular graphs.

Theorem 1: Let G be a (n, k, a, c)-strongly regular graph,
such that 0 < c < k < n − 1, whose adjacency matrix has
the eigenvalues k, θ and τ . Let x ∈ N, then

0 ≤
(

n(θ − τ)(nθ − θ + k)

n2(θ − τ)2 − (nθ − θ + k)2

)2x−1

+

+

(
n(θ − τ)(−n+ k − θ)

n2(θ − τ)2 − (−n+ k − θ)2

)2x−1

k +

+

(
n(θ − τ)(k − θ)

n2(θ − τ)2 − (k − θ)2

)2x−1

(n− k − 1),(14)

0 ≤
(

n(θ − τ)(nθ − θ + k)

n2(θ − τ)2 − (nθ − θ + k)2

)2x

+

+

(
n(θ − τ)(−n+ k − θ)

n2(θ − τ)2 − (−n+ k − θ)2

)2x

τ +

+

(
n(θ − τ)(k − θ)

n2(θ − τ)2 − (k − θ)2

)2x

(−τ − 1). (15)

Proof: The proof follows from the statements made
above. We use induction over x to prove that qixs ≥ 0, for
i ∈ {1, 2, 3}. By definition s◦1 = q11sE1 + q21sE2 + q31sE3,
with qi1s ≥ 0. Suppose that the eingenvalues of s◦x are
all nonnegative. Then s◦(x+1) = s◦x ◦ s◦1. Since the
eingenvalues of s◦x and s◦1 are nonnegative, then by prop-
erty (13), we conclude that the eingenvalues of s◦(x+1)

are all nonnegative. Therefore, for all x ∈ N, qixs ≥ 0,
for i ∈ {1, 2, 3}. In particular, inequalities (14) and (15)
correspond precisely to q1xs ≥ 0 and q3xs ≥ 0, respectively.

Regard that we have used the idempotent E3 and proceed-
ing in a similar manner with the other idempotents of S we
would obtain other necessary conditions for the existence
of a (n, k, a, c)-strongly regular graph. The reason for this
choice is that this idempotent makes algebraic manipulation
simpler and we obtain better results in our computation
experiments.

The following results are obtained from the inequalities
of Theorem 1.

Theorem 2: Let G be a (n, k, a, c)-strongly regular graph,
such that 0 < c < k < n − 1, whose adjacency matrix has
the eigenvalues k, θ and τ . Then

(θ − 1)n+ 2(k − θ) ≥ 0. (16)

Proof: Considering x = 1, we can rewrite inequality

(14) as:

θn+ k − θ
n(θ − τ)

· 1

1−
(
θn+ k − θ
n(θ − τ)

)2 +

+
−n+ k − θ
n(θ − τ)

· 1

1−
(
−n+ k − θ
n(θ − τ)

)2 k +

+
k − θ

n(θ − τ)
· 1

1−
(

k − θ
n(θ − τ)

)2 (n− k − 1) ≥ 0.

Then, since θn+ k − θ ≥ k − θ, we can conclude that

θn+ k − θ
n(θ − τ)

· 1

1−
(
θn+ k − θ
n(θ − τ)

)2 +

+
−n+ k − θ
n(θ − τ)

· 1

1−
(
−n+ k − θ
n(θ − τ)

)2 k +

+
k − θ

n(θ − τ)
· 1

1−
(
θn+ k − θ
n(θ − τ)

)2 (n− k − 1) ≥ 0.

Associating the first and third summands of the left hand
side of the above inequality we obtain:

(n− k + θ)k

n(θ − τ)
· 1

1−
(
θn+ k − θ
n(θ − τ)

)2 −

− (n− k + θ)k

n(θ − τ)
· 1

1−
(
−n+ k − θ
n(θ − τ)

)2 ≥ 0. (17)

After some straightforward calculations and simplifications,
we conclude that (17) is equivalent to:

k(n− k + θ)

n(θ − τ)
×

×

(θ − 1)n+ 2(k − θ)
n(θ − τ) · θ

θ − τ[
1−

(
θn+ k − θ
n(θ − τ)

)2
][

1−
(
−n+ k − θ
n(θ − τ)

)2
] ≥ 0.

Analyzing the above inequality we conclude that

(θ − 1)n+ 2(k − θ) ≥ 0.

This result is only relevant if θ < 1, otherwise it represents
a trivial inequality. Note that, if θ is near 0, then k has to
be larger than n/2. Next, we present an inequality over the
parameters of a strongly regular graph that satisfy k < n/2.
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Theorem 3: Let G be a (n, k, a, c)-strongly regular graph,
such that 0 < c < k < n − 1, whose adjacency matrix has
the eigenvalues k, θ and τ . If k < n/2, then

(−2τ − 1)(4θ − 2τ + 1) <
8nθ(2θ + 1)(θ + 1)(θ − τ)

n− 2(k − θ)
.

(18)

Proof: Considering x = 1, we rewrite inequality (14)
as:

θn+ k − θ
n(θ − τ)

· 1

1−
(
θn+ k − θ
n(θ − τ)

)2 +

+
−n+ k − θ
n(θ − τ)

· 1

1−
(
−n+ k − θ
n(θ − τ)

)2 k +

+
k − θ

n(θ − τ)
· 1

1−
(

k − θ
n(θ − τ)

)2 (n− k − 1) ≥ 0.

Since

(k − θ)(n− k − 1) = −(θn+ k − θ) + (n− k + θ)k

and after some straightforward calculations we obtain:

θn+ k − θ
n(θ − τ)

×

×

 1

1−
(
θn+ k − θ
n(θ − τ)

)2 −
1

1−
(

k − θ
n(θ − τ)

)2

−
− k

n− k + θ

n(θ − τ)
×

×

 1

1−
(
−n+ k − θ
n(θ − τ)

)2 −
1

1−
(

k − θ
n(θ − τ)

)2

 ≥ 0.

Developing both expressions between brackets in the left
hand side of the above expression and multiplying by

1−
(

k − θ
n(θ − τ)

)2

,

we deduce:

θn+ k − θ
n(θ − τ)


(
θn+ k − θ
n(θ − τ)

)2

−
(

k − θ
n(θ − τ)

)2

1−
(
θn+ k − θ
n(θ − τ)

)2

−

− k
n− k + θ

n(θ − τ)


(
n− k + θ
n(θ − τ)

)2

−
(

k − θ
n(θ − τ)

)2

1−
(
n− k + θ
n(θ − τ)

)2

 ≥ 0.

Noting that
1

1−
(
n− k + θ
n(θ − τ)

)2 > 1,

we conclude that

θn+ k − θ
n(θ − τ)


(
θn+ k − θ
n(θ − τ)

)2

−
(

k − θ
n(θ − τ)

)2

1−
(
θn+ k − θ
n(θ − τ)

)2

−
− k

n− k + θ

n(θ − τ)

[(
n− k + θ

n(θ − τ)

)2

−
(

k − θ
n(θ − τ)

)2
]
> 0,

and therefore

θn+ k − θ
n(θ − τ)

·

(θn+ 2(k − θ))θ
n(θ − τ)2

1−
(
θn+ k − θ
n(θ − τ)

)2 −

− k
n− k + θ

n(θ − τ)
· n− 2(k − θ)
n(θ − τ)2

> 0.

Because k < n/2 we obtain

2θ + 1

2(θ − τ)


(θ + 1)θ
(θ − τ)2

1−
(

2θ + 1
2(θ − τ)

)2

−
− k

1

2(θ − τ)

(
n− 2(k − θ)
n(θ − τ)2

)
> 0. (19)

Now since θ−τ < 2k and after some algebraic manipulation
of inequality (19), we conclude that

(−2τ − 1)(4θ − 2τ + 1) <
8nθ(2θ + 1)(θ + 1)(θ − τ)

n− 2(k − θ)
.

Analyzing inequality (18) we observe that considering n,
k and θ fixed, the left hand side is a polynomial in τ of
degree 2, with positive coefficients, and the right hand side
is a polynomial in τ of degree 1, with positive coefficients.
Therefore we may conclude that if θ is smaller than |τ |, then
|τ | cannot be too large relatively to θ.

VI. CONCLUSION

In this section we present a few examples of parameter
sets (n, k, a, c) that don’t verify inequalities (14), (15) and
(18). In Table I, II and III we consider the parameter sets:

1) P1 = (201, 100, 2, 97),
2) P2 = (1585, 784, 33, 735),
3) P3 = (23989, 11988, 987, 10989),
4) P4 = (19999001, 9999000, 8999, 9989001),
5) P5 = (1024, 385, 36, 210),
6) P6 = (1225, 456, 39, 247) and
7) P7 = (1296, 481, 40, 260).
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For each set we present the respective eigenvalues θ and τ ,
and the parameters q1(2x+1)s and q3(2x)s for x = 1. We also
consider

qθτkn =
8nθ(2θ + 1)(θ + 1)(θ − τ)

n− 2(k − θ)
+(2τ+1)(4θ−2τ+1),

from the inequality of Theorem 3.

Param. P1 P2

θ 0.032 0.07
τ −95 −702
q13s −2.9× 10−7 −1.2× 10−8

q32s −5.2× 10−5 −1.5× 10−5

q15s −1.6× 10−11 −1.2× 10−14

q36s −1.2× 10−13 −1.2× 10−17

qθτkn −3.1× 104 −1.9× 106

Table I
NUMERICAL RESULTS FOR P1 = (201, 100, 2, 97) AND

P2 = (1585, 784, 33, 735).

Param. P3 P4

θ 0, 1 0.001
τ −10002 −1.0× 107

q13s −3.2× 10−12 −2.5× 10−19

q32s −5.4× 10−8 −5.0× 10−12

q15s −1.6× 10−20 −1.3× 10−33

q36s −1.0× 10−24 −9.5× 10−41

qθτkn −3.8× 108 −4.0× 1014

Table II
NUMERICAL RESULTS FOR P3 = (23989, 11988, 987, 10989) AND

P4 = (19999001, 9999000, 8999, 9989001).

Observing the results obtained in Table I and II we note
that all the parameter sets analyzed fail our inequalities
because they satisfy the condition k < n/2 and they present
sufficiently small values of θ, confirming our analysis of
Theorem 2.

Param. P5 P6 P7

θ 1 1 1
τ −175 −209 −221
q13s −1.1× 10−5 −7.7× 10−6 −7.0× 10−6

q32s −1.4× 10−3 −1.2× 10−3 −1.1× 10−3

q15s −1.6× 10−10 −8.4× 10−11 −6.9× 10−11

q34s −2.1× 10−8 −1.3× 10−8 −1.1× 10−8

qθτkn −9.0× 104 −1.4× 105 −1.6× 105

Table III
NUMERICAL RESULTS FOR P5 = (1024, 385, 36, 210),

P6 = (1225, 456, 39, 247) AND P7 = (1296, 481, 40, 260).

As for the results obtained in Table III we observe that
all the parameters fail our inequalities because they satisfy
k < n/2 and they present values for θ and τ such that
θ << |τ |, which confirms our conclusions from Theorem 3.

Regarding our results we can show that our parameters
q1(2x+1)s and q3(2x)s, display an interesting asymptotic be-
havior when k < n/2 and θ → 0. In fact, with x = 1 we
have:

lim
θ→0

q1(2x+1)s = −nτ
[
k(n− k)
n2τ2 − k2

+
(−n+ k)k

n2τ2 − (−n+ k)2

]
.

Then, in order for (14) to fail, in these circumstances, we
must have

k(n− k)
n2τ2 − k2

<
(n− k)k

n2τ2 − (−n+ k)2

⇔ n2τ2 − (−n+ k)2 < n2τ2 − k2

⇔ −n2 + 2nk < 0

⇔ n(2k − n) < 0.

Therefore we must have 2k − n < 0, and so k < n/2.
As for the parameter q3(2x)s, for x = 1, we can proceed

in a similar manner

lim
θ→0

q3(2x)s = n2τ2
[

−τk2

(n2τ2 − k2)2

+
τ(−n+ k)2

(n2τ2 − (−n+ k)2)2

]
,

to conclude that, in order for (15) to fail, we must have

−τk2

(n2τ2 − k2)2
<

−τ(−n+ k)2

(n2τ2 − (−n+ k)2)2
.

However, this inequality is trivially verified if k < n/2.
This proves an interesting asymptotic behavior: we can

conclude that for a (n, k, a, c)-strongly regular graph such
that k < n/2 and θ sufficiently small, inequalities (14) and
(15) will fail. The parameter sets that we used in Table I,
Table II and Table III match these requirements and the
corresponding results are precisely as expected.
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