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Abstract—Physical polluting agents are a relevant problem in 

urban areas. The need for monitoring and prediction of their time 

evolution is very useful to assess the impact to human health and 

activities. Considering their effects on health, the most hazardous 

agents to be considered are air pollution, acoustical noise and 

electromagnetic fields. Regarding acoustical noise, the complexity of 

predicting its slope is strongly correlated to its intrinsic randomness, 

related to the great variability of the sources. Sometimes, in some 

special areas, the predominant sources are stationary or have a 

periodic behaviour. In these cases, a time series analysis approach 

can be adopted, considering that a general trend and a local 

periodicity can be highlighted and used to build a predictive model. 

In particular, in this paper, the model is built composing three parts: 

the trend, that is the long term behaviour, the seasonality, that is the 

periodic component, and the irregularity, that includes the random 

variations. Applying such a model to a traffic noise levels dataset, 

obtained from a site in the city of Messina, Italy, a multiple 

seasonality is evidenced, resulting in two seasonal coefficients 

introduction (low frequency and high frequency). The validation of 

the presented model will be performed on a 44 days dataset, not used 

in the calibration. Results will be encouraging and will show a very 

good prediction performances of the model, especially in terms of 

difference between observed and simulated values (error). The error 

distributions will be analyzed and discussed by means of statistical 

indexes, plots and tests. 

 

Keywords—Time Series, Acoustics, Noise Control, Predictive 

Model.  

I. INTRODUCTION 

OPULATION of large urban areas have their health often 

affected by several adverse effects caused by various 

forms of pollution [1-3]. The constant monitoring of these 

pollutants is generally expensive and not always easy to be 

implemented [4]. In addition, mitigation actions on the sources 

are usually consequential to periods in which the level of 

pollution has been particularly high and therefore has already 

affected the citizens’ health. These considerations point out 
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the need to implement predictive models that can provide a 

reliable assessment of pollution levels (see for instance [5-

28]). These models can induce possible mitigation measures, 

acting also on the sources, before the pollution begins to affect 

the population.  

In this work, the focus is on the prediction of acoustical 

noise level in urban areas. That is mainly generated by 

anthropogenic activities, in particular vehicular traffic and 

other transport infrastructures. 

Most of the existing forecasting models used to estimate 

pollution levels are based on the study of correlations or 

causal effects derived from the sources. However, because of 

the nature of the physical phenomenon in the case of 

acoustical noise, it is very difficult to predict the effects in a 

limited area by studying only the sources. That can be heavily 

influenced either by the architecture of the area where 

measurements are taken or by other environmental 

interferences highly variable over time. 

The forecasting model considered here is based on time 

series analysis (TSA) [29-32], applied to sound level 

measurements. The model can predict the evolution of noise 

levels for a certain time interval, in a specific area of interest, 

i.e. the area in which the data used for the estimation of the 

parameters (tuning) of the forecasting function have been 

collected. This function is known in its general form, but it can 

be adapted to the specific data to get more accurate forecasted 

values. In particular, the simplest functional forms of the 

model can be used with success when there are few 

measurements available to estimate the parameters. Moreover, 

if  a large tuning data set is available, it is possible to 

implement more complex models to reduce the forecast error.  

In particular, in this study a set of noise measurements 

recorded at night in the city of Messina, in South Italy, is used. 

These data consist of equivalent sound pressure levels (LA,eq), 

averaged on the eight night hours (from 10pm to 6am), and 

they are defined as follows: 

 

𝐿𝐴𝑒𝑞,𝑇𝑒 = 10 log [
1

∑ 𝑡𝑖
 ∑ (10

𝐿𝐴𝑒𝑞,𝑖

10  𝑡𝑖)𝑛
𝑖=1 ] ,   (1) 

 

where Te is the exposition time (from 10pm to 6am), ti is the 

single period of the series, i.e. the single day, LA,eq,i is the 

equivalent level measured in the i-th period. The “A” index 

means that the A-weighting curve has been applied to the data, 
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as required by European regulations [33]. 

The first step consists in constructing a simple but useful 

model working on the first 321 measurements available. Then, 

with this model, a 26 missing measurements are filled with 

forecasted values. That is made in order to have a time series 

without missing values. This series of 500 data may be used to 

produce a more sophisticated model. Finally, in order to 

validate the model, a comparison between actual and 

forecasted data is performed on the last 44 available 

measurements. Let us call attention to the fact that the 

measurements used in the validation have not been used to 

estimate the parameters. A detailed description on this kind of 

approach and on the sensibility of the model to the tuning data 

set, is reported in [34]. 

II.  METHODS  

The procedure adopted to build the model is based on the 

general TSA approach. This procedure is used in several 

research areas such as Economics, Physics, Engineering, 

Mathematics, among others (see for instance [35-37]). 

TSA models reproduce the slope, as a function of time, of a 

given data series and may be used to predict its values on a 

certain future time interval. The width of the prediction 

interval depends on the reliability of the model and on the 

variability of the series. 

The basic assumption of these models is that a time series 

may be decomposed into three parts: a trend and a seasonality 

(that are predictable) and an irregular component (not 

foreseeable) which generates the prediction error. Therefore, 

for  𝐴𝑡, t ≥ 0 the series studied, we may write  

 

𝐴𝑡 =  𝐹𝑡 +  𝑒𝑡  ,            (2) 

 

where Ft represents the forecasted value at a certain time t, and 

et is the irregular random component. 

The ways these parts are composed, for instance by 

multiplying or adding the components, represent the different 

types of models. In this work, the multiplicative approach has 

been pursued, according to the following formula: 

 

𝐹𝑡 = 𝑇𝑡  𝑆𝑖̅   ,         (3) 

 

where Ft represents the point forecast, Tt the trend (with t 

varying over the total number of periods) and 𝑆𝑖̅ the seasonal 

effect (with i varying from 1 to k) at a given time t, averaged 

on the i-th periods. In particular, for a given t, if t<k, the value 

i is the remainder of the ratio between t+k and k; if t=k, then 

i=k; if t>k, the value i is the remainder of the ratio between t 

and k.   

The trend component can be evaluated by means of 

regression techniques, for instance, linear regression on the 

actual data, or after having removed the seasonality by moving 

average method. In this work, a linear regression on actual 

data has been used to calculate the trend. The width of the 

interval on which the centred moving average is evaluated, 

depends on the periodicity of the data, also known as lag. This 

lag is strongly related to the phenomenon under study and its 

features. In some cases, a multiple periodicity can be 

highlighted.  

In the following sections, it is shown how a TSA model 

performance improves when a multiple lag is detected and 

implemented to calculate the forecasted values. 

The seasonality is evaluated as the mean, calculated on all 

the homologous periods, of the ratio between the actual value 

and the centred moving average in a given time t.  

If more than one periodicity is detected, the forecast is 

affected by another component of seasonality, that is : 

 

𝐹𝑡  =  𝑇𝑡 𝑆1̅,𝑖 𝑆2̅,𝑗   ,              (4) 

 

where  𝑆1̅,𝑖 and  𝑆2̅,𝑗 are two different seasonal coefficients. 

In order to remove the effects of short period seasonality 

from the data, a centred moving average with width k1 (first 

lag detected) can be used. Then, it is possible to evaluate the 

recurring effect on the single day by the ratio between the 

actual data at time t and the centred moving average at the 

same t. Finally, evaluating the mean of these effects S1,t on m1,i 

homologous periods, the seasonal coefficient 𝑆1̅,𝑖 is obtained, 

i.e., for 

 

𝑆1,𝑡 =  
𝐴𝑡

𝑀(𝑘1)𝑡
    ,          (5) 

 

we have 

 

𝑆1̅,𝑖 =  
∑ 𝑆1,𝑖+𝑙𝑘1

𝑚1,𝑖−1

𝑙=0

𝑚1,𝑖
 ,         (6) 

 

where 𝑀(𝑘1)𝑡 is the centred moving average with width k1 , at 

the period t. 

At this point, it is possible to clean up the values of the first 

moving average from the effect of the second seasonality with 

lag k2. That is done using a second centred moving average 

process, with width k2 (second lag detected). As in the 

previous step, the effect of the second seasonality for each 

period (S2,t) can be calculated, and a second seasonal 

coefficient can be evaluated with a mean on m2,,j homologous 

periods: 

 

𝑆2,𝑡 =  
𝑀(𝑘1)𝑡

𝑀(𝑘2)𝑡
   ,          (7) 

 

𝑆2̅,𝑗 =  
∑ 𝑆2,𝑗+𝑙𝑘2

𝑚2,𝑗−1

𝑙=0

𝑚2,𝑗
 ,         (8) 

 

where 𝑀(𝑘2)𝑡 is the centred moving average with width k2 , at 

the period t. 

Having assumed the presence of an irregular component, 

indicated by et , its evaluation is given by the difference 

between actual data and point forecast, i.e. :  
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𝑒𝑡 =  𝐴𝑡 − 𝐹𝑡  .          (9) 

 

The error is caused by a non-deterministic component of the 

physical phenomenon under study which the model might fails 

to predict. This procedure is possible when the actual data are 

available. Thus it may be performed in the calibration phase. 

Once the “error” distribution is obtained, its mean (me) can be 

used in the final forecast of the model and the standard 

deviation can be related to the width of a prediction interval 

([32], [34]). Thus the point forecast can be evaluated 

improving formula (4) as follows: 

 

               𝐹𝑡 = 𝑇𝑡  𝑆1̅,𝑖 𝑆2̅,𝑗  + 𝑚𝑒  .                 (10) 

 

A validation process may be performed, comparing actual 

data with model forecasted values, in a data range not used in 

the calibration phase. 

To evaluate the effectiveness of the model, it is useful to 

implement a statistical analysis of the errors. This test is 

performed both in the calibration phase described above and in 

the validation process. A relevant goal, in order to optimise 

the model, is to minimise both the absolute value of the mean 

and the standard deviation of the error distribution.  

A.  Detection of the presence of a lag 

In order to detect the presence of a periodicity in the series, 

the Ljung-Box (LB) or the Box-Pierce (BP) test can be 

adopted ([38], [39]). These tests verify if the data have an 

autocorrelation and they may exclude the presence of fully 

random data fluctuations. Both tests adopt the autocorrelation 

coefficient that may be evaluated according to the following 

formula: 

 

𝑟(𝑘) =  
∑ (𝑥𝑡−𝑥̅)(𝑥𝑡+𝑘−𝑥̅)𝑛−𝑘

𝑡=1

∑ (𝑥𝑡−𝑛
𝑡=1 𝑥̅)2   ,            (11) 

 
where xt is the data in each period t, 𝑥̅ is the mean of all the 

data, n is the total number of periods, k is the lag hypothesis 

under test. Using this coefficient, the LB test can be performed 

according to the following formula: 

 

𝜒𝐿𝐵
2 (ℎ) = 𝑛(𝑛 + 2) ∑

𝑟2(𝑘)

𝑛−𝑘
ℎ
𝑘=1     ,          (12) 

 
where h is a chosen integer related to the number of 

autocorrelation coefficients under test, and it varies according 

to the assumed lag.  

If the null hypothesis is true (absence of autocorrelation), 

the LB statistics is distributed according to a random variable 

χ
2
, with h degree of freedom. 

The BP test is based on the following formula: 

 

𝜒𝐵𝑃
2 (ℎ) = 𝑛 ∑ 𝑟2(𝑘)ℎ

𝑘=1   ,                  (13) 

 
where, again, n is the total number of periods, k is the assumed 

lag and h is a chosen integer, related to the number of 

autocorrelation coefficients under test. The two tests differ 

only in the different weighting systems adopted, but 

asymptotically converge to the same distribution. 

B.  Selection of the lag coefficient  

Once the presence of a periodicity is detected, the choice 

of the lag may be performed according to the maximum data 

autocorrelation coefficient.  

A very useful tool to detect the periodicity and to evaluate 

the autocorrelation as a function of the lag, is the 

autocorrelation plot, also called correlogram. This plot reports 

the k value on the horizontal axis and the correspondent 

autocorrelation coefficient on the vertical axis. In this work, 

since the correlogram has been plotted in the “R” software 

framework, the autocorrelation coefficients are evaluated 

according to formula (11). 

Let us remind that formula (11) adopts an unique mean 

calculated on the whole range of data. It may be useful, 

however, when the time series does not have a constant mean, 

to adopt the following formula: 

 

𝜌(𝑘) =  
∑ (𝑥𝑡−𝑥̅𝑠1)(𝑥𝑡+𝑘−𝑥̅𝑠2)𝑛−𝑘

𝑡=1

√∑ (𝑥𝑡−𝑥̅𝑠1)2𝑛−𝑘
𝑡=1  √∑ (𝑥𝑡+𝑘−𝑥̅𝑠2)2𝑛−𝑘

𝑡=1

    ,     (14) 

 
where xt is the measurement value at time t, n is the number of 

periods, k is the lag and: 

 

𝑥̅𝑠1 =  
∑ 𝑥𝑡

𝑛−𝑘
1

𝑛−𝑘
     ;     𝑥̅𝑠2 =  

∑ 𝑥𝑡+𝑘
𝑛−𝑘
1

𝑛−𝑘
  .     (15) 

 
These two means are calculated excluding respectively the 

first and the last k periods. 

In addition, when the lag is particularly high, another 

possible approach is to evaluate the correlation coefficient 

between a subset of data and the same data shifted by k 

periods: 

 

𝑟𝑥𝑦 =  
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

(∑ (𝑥𝑖
𝑛
𝑖=1 −𝑥̅)2)

1
2(∑ (𝑦𝑖−𝑦̅)2)

1
2𝑛

𝑖=1

   ,       (16) 

 
where yi is equal to xi + k . 

C.  Error metrics  

A measurement of model performance can be obtained by  

“mean percentage error” (MPE) and “coefficient of variation 

of the error” (CVE). The first quantitative metric gives a 

measurement of the error distortion, i.e. MPE is able to 

describe if the model overestimates or underestimates actual 

data. CVE considers the variation from the reality in absolute 

value. In other words, it provides the error dispersion. Those 

metrics are evaluated according to the following formulas: 

 

𝑀𝑃𝐸 =
∑ (

𝐴𝑡−𝐹𝑡
𝐴𝑡

)100𝑛
𝑡=1

𝑛
       (17) 

and 

𝐶𝑉𝐸 =
√

∑ (𝑒𝑡)2𝑛
𝑡=1

𝑛−1

𝐴̅
  ,           (18) 
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where A̅ is the mean value of the actual data in the considered 

time range. 

D. Error distribution analysis tools 

It is necessary to verify that the mean of the errors 

(residuals) is not different from zero, in statistical sense. In 

this paper the authors use the t-test: 

 

𝑡 =
𝑒̅

𝑠/√𝑛
    ,        (19) 

 
where 𝑒̅ is the mean of the error, s is the standard deviation 

and n is the amount of data. 

The null hypothesis H0 is "mean equal to zero". Thus in the 

numerator of equation (19) there is only the empirical mean 

(since usually the empirical mean minus the hypothesized one 

is adopted). In this type of test it is possible to have two type 

of errors. The first is to reject H0 when it is true (it can happen 

with probability α, i.e. the significance level). The second one 

is to accept H0 when it is false (this can happen with 

probability β, and 1 – β is the power of the test). 

It is important to check if the random errors obtained by 

the model application can be drawn from a normal 

distribution. To assess the normality of the distribution of 

errors, the authors proposed both qualitative techniques based 

on the analysis of graphs such as histogram, QQ normality 

plot and quantitative indices, namely skewness and kurtosis. 

In particular, the normal density plot [40] is a graphical 

technique for assessing whether or not a data set is 

approximately normally distributed. The data are plotted 

against a theoretical normal distribution in such a way that the 

points should form an approximate straight line. Deviations 

from this straight line indicate deviations from normality. 

In addition, the authors adopted the statistical tests of 

normality from Shapiro-Wilk [41] and Jarque-Bera [42]. 

The Shapiro-Wilk test (SW) is able to check the normality 

of a set of data, leading to good results even with a small 

number of observations. The formula used is: 

 

𝑆𝑊 =  
(𝑎′𝑥)2

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

=
(∑ 𝑎𝑖𝑥𝑖

𝑛
𝑖=1 )

2

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

  ,    (20) 

with:  

𝑎′ = (𝑎1, … , 𝑎𝑛) =
𝑚′𝑉−1

(𝑚′𝑉−1𝑉−1𝑚)1/2  ,    (21) 

 
where m’ = (m1,m2,…,mn)  denotes the vector of expected 

values of standard normal order statistics, and V = (vij) is the 

corresponding n x n variance-covariance matrix and x’ = 

(x1,x2,…,xn) denotes a vector of ordered random observations. 

The Jarque-Bera test (JB) is often used to verify the 

hypothesis of normality in the econometric area. It is based on 

the measurements of the asymmetry and kurtosis of a 

distribution. The null hypothesis of the test includes two 

conditions: the skewness and the excess kurtosis should be 

zero (which means that the kurtosis is 3). If this hypothesis is 

verified, the data can be considered as derived from a normal 

distribution, and the JB statistic tends to a chi-squared 

distribution with two degrees of freedom. The JB test is in 

general less robust in the application to small samples, leading 

to often wrongly reject the null hypothesis. The test is based 

on the following expression: 

 

𝐽𝐵 =  
𝑛

6
 (

𝑚3

𝑚2

3
2

)

2

+  
𝑛

24
 ((

𝑚4

𝑚2
2) − 3)

2

  ,     (22) 

 

where 𝑚𝑘 =
1

𝑛
∑ (𝑥𝑖 − 𝑥̅)𝑘𝑛

𝑖=1  ,  with k = 2, 3, 4. 

III.  DATA ANALYSIS AND RESULTS  

The basic data set used in this work is related to the 

Messina’s long term field measurements used in [34] and in 

[43]. The local government of Messina, a city in the South of 

Italy of about 240000 inhabitants, adopted a continuous 

monitoring of noise in certain critical areas, particularly in 

proximity of the commercial dock, where a very high traffic 

flow and several industrial settlements occur. These data have 

been made available on a web platform [44] . 

In [34] the measurements taken during day time in "Viale 

Boccetta" street, were used. In this work, the authors adopt the 

night measurements taken in the same site and, partially, in the 

same months. In particular, four data sets have been chosen. 

The first one correspond to the 11
th

 of May 2007 to the 26
th

 of 

March 2008 (321 days). The second one correspond to the 27
th

 

of March 2008 to the 21
st
 of April 2008 (26 days and these 

data are missing in the data set). The third data set correspond 

to the 22
nd

 of April 2008 to the 21
st
 of September 2008 (153 

days). Finally, the fourth data set, used in the validation phase, 

correspond to the 22
nd

 of September to the 4
th

 of November 

2008 (44 days). 

The night level is the equivalent level, with A weighting 

[33], evaluated in the time range T , that goes from 10pm to 

6am (8 hours), defined as follows: 

 

𝐿𝐴𝑒𝑞,𝑇 = 10 log [
1

𝑇
∫

𝑝𝐴
2 (𝑡)

𝑝0
2 𝑑𝑡

𝑇

0
]  .    (23) 

 
The first aim of the analysis is to use a forecasting model, 

tuned on the first series of 321 measurements, to calculate the 

26 missing data of the second data set defined above. Then, 

once the “data hole” has been filled, the same model is tuned 

on a data set of size 500, composed by the first 321 

measurements, plus the 26 reconstructed ones, plus the next 

153 measurements. In this way, the last 44 data (from the 501
st
 

observed measurement to the 544
th

) have been left for the 

validation of the model. The choice of this data set allows the 

implementation of a multiplicative model with a double 

seasonal component, which will exploit, in addition to the 

weekly seasonality (k1 = 7), a second “long term” periodicity 

(k2 = 125).  

The summary statistics of the entire data set are given in 

Tab. 1. 

Table 1: Summary of statistic main parameters of the first 321 days 

of the data set. 

Mean 

[dBA] 

Std.dev 

[dBA] 

Median 

[dBA] 

Min 

[dBA] 

Max 

[dBA] 

68.77 1.19 69.0 66.0 72.0 
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A. Seasonality detection and data set filling 

In order to evaluate the presence and the value of the 

periodicity, the first step was the application of Ljung-Box 

(LB) and Box-Pierce (BP) tests, defined in (12) and (13). 

These tests highlight the presence of autocorrelation in the 

data. The tests have been implemented in the “R” software 

framework and the results are given in Table 2. 

 
Table 2: Ljung-Box and Box-Pierce tests performed on the first 321 

measurements of the dataset. 

Type of test 𝜒2 h p-value 

Ljung-Box 584.749 10 < 2.2e-16 

Box-Pierce 1514.589 50 < 2.2e-16 

 
The small p-value in both tests, i.e. the very small 

probability to observe the sample if the null hypothesis is true 

indicates that the hypothesis of absence of autocorrelation in 

the data must be rejected.  

In a first approach using the autocorrelation plot approach, 

implemented in “R” software  the periodicity has been 

investigated in the first 321 days. The correlogram is reported 

in Fig.1. 

 

 
Fig. 1: Correlogram plot for the first 321 days. The value of 

autocorrelation is plotted as a function of the lag. 

 
The highest autocorrelation value is obtained for a lag of 7 

and its value, calculated by means of formula (11), is 0.79 . 

Thus, it is evident that there is a weekly periodicity in the 

noise data. This result is reasonable, because the data are 

strongly related to traffic flows, typically increasing during the 

working days and decreasing during the weekend.  

At this point, a first toy model (single seasonality model, 

SSM) using the procedure described in section 2 (see also 

[34]), is implemented considering this lag, i.e. centred moving 

average for the trend and seasonal coefficient according to a 

periodicity 7. This model allow the hole in the data set, from 

day 322 to 348, to be filled, making available a data set of 500 

measurements. In Fig. 2 is possible to notice how the data hole 

has been filled and how the model roughly approximate the 

actual observed time series.  

On this larger dataset (500 days), a second seasonality, 

with a frequency smaller than the previous one, is hidden and 

can be highlighted. The autocorrelation of the centred moving 

average values (with lag 7) has been studied by means of 

correlogram plot (Fig. 3). 

 

 
Fig. 2: Comparison between the forecasts, obtained by the single 

seasonality model (SSM), and the 500 calibration data. 

 

 
Fig. 3: Correlogram plot for the centred moving average data. The 

value of autocorrelation coefficient is plotted as a function of the lag. 

 
The correlogram highlights a statistically significant 

positive autocorrelation for a lag of 125. This autocorrelation 

has been evaluated according to formula (14), giving a result 

of 0.20. In the “R” framework, according to formula (11), the 

results is 0.19. Formula (16) has also been implemented, since 

it has the advantage of using differences from the mean of the 

data in a subset whose width is the considered range. In this 

case, a correlation between the first 50 days and the ones 

between the 125
th

 and the 175
th

, has been calculated. The 

resulting value is 0.55. 

In Fig. 4 the auto dispersion plot is reported, considering a 

lag of 125. The cluster of data along the bisector seems to 

confirm the presence of autocorrelation in the data. 
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Fig. 4: Auto dispersion plot. The moving average with span 7 is 

plotted as a function of the same moving average considering each 

data shifted by 125 days. 

 

B. Double seasonality model design and results 

After having established the presence of two seasonal 

effects, it is possible to remove these periodicities from the 

data and to evaluate two different seasonal coefficients. Thus, 

the improved model takes into account the effects of the high 

frequency seasonality, with a lag of 7 days, but also of the low 

frequency one, with a lag of 125 days. In Fig. 5, three curves 

are reported: the actual data (in black), in red the first moving 

average (span  7), in blue the second moving average (span 

125). 

In this figure, it is possible to appreciate the combination 

of the two centred moving averages, that eliminates the double 

seasonality effects. 

The first moving average curve (red curve) highlights the 

presence of four peaks and valleys. This is an empirical 

confirmation of the presence of a seasonality of about 500 

measurements over 4 peaks/valleys, which is exactly 125. 

In Fig. 6, a comparison between the actual data (black line) 

and the forecasted values of the double seasonality model 

(DSM) (red line) is presented. Looking at Fig. 6, it is possible 

to see that the forecasted values fit well the observed one. 

C. Models validation 

Both the SSM and the DSM have been validated on the 44 

days data set, from the 501st to the 544th observations. A 

graphical comparison has been performed in Fig. 7 and Fig. 8, 

respectively comparing the SSM and the DSM results with 

actual data. 

A quantitative validation analysis of the models 

performance has been pursued calculating the difference 

between actual data and forecasts of the SSM and the DSM. In 

addition, the distortion and dispersion, measured by the MPE 

and CVE (see section II), have also been evaluated. 

 

 
Fig. 5: Graph of the two centred moving averages combination. In 

black the actual data, in red the first moving average (span 7), in blue 

the second moving average (span 125). 

 

 

 

 
Fig. 6: Comparison between the forecasted values, obtained by DSM, 

and the 500 calibration data. 

 

 

 

 
Fig. 7: Comparison between the forecasted values, obtained by SSM 

model, and the validation with the actual data. 

 

66 67 68 69 70 71 72 73

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

Moving Average k=7 delayed of 125 [dBA]

M
o

v
in

g
 A

v
e

ra
g

e
 k

=
7

  
[d

B
A

]

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

ISSN: 1998-0140 389



 

 

 
Fig. 8: Comparison between the forecasted values obtained by DSM 

model, and the validation with the actual data. 

 

The statistics of the error distribution, reported in Tables 3 

and 4, show a relevant improvement in the forecasts obtained 

with the DSM, with respect to SSM results. The absolute 

values of the mean error strongly decreases, even if the 

standard deviation is practically the same. In addition, the 

DSM error distribution approximates well a normal 

distribution, considering the decreasing (in absolute value) of 

skewness and kurtosis.  

The MPE and CVE results, reported in Table 5, confirm 

the better performance of DSM. Recall that the calibration 

error metrics have been evaluated excluding the 26 data 

obtained by the application of the first model, and considering 

only the days in which the actual data were available.  

Both the graphical and quantitative comparisons between 

the models show that the DSM has a better performance on the 

considered set of data, with respect to the SSM. 

 
Table 3: SSM, summary statistics of the error distribution (in dBA) 

evaluated on the validation. 

Mean 

[dBA] 

Std.dev 

[dBA] 

Median 

[dBA] 

Min 

[dBA] 

Max 

[dBA] 

skew kurt 

-0.49 0.62 -0.44 -1.53 1.07 0.29 -0.25 

 
Table 4: DSM, summary statistics of the error distribution (in dBA) 

evaluated on the validation. 

Mean 

[dBA] 

Std.dev 

[dBA] 

Median 

[dBA] 

Min 

[dBA] 

Max 

[dBA] 

skew kurt 

-0.07 0.64 -0.01 -1.31 1.55 0.21 -0.18 

 
Table 5: MPE and CVE (error metrics) values, calculated in the 

tuning and validation phases, for the two different models. 

Type of model Dataset MPE CVE 

SSM tuning 0.0 0.013 

SSM  validation -0.7 0.009 

DSM  tuning 0.0 0.011 

DSM  validation -0.1 0.012 

 

D. Error analysis  

A statistical analysis of the prediction error, formula (9), is 

performed on DSM results, by means of the tools presented in 

section II.D . 

The summary statistics of the forecast error of the DSM on 

the 474 calibration data, i.e. the calibration dataset excluding 

the 26 missing data, are reported in Table 6, while the error 

histogram is plotted in Figure 9. 

Table 6: Double seasonality model summary statistics of the error 

distribution evaluated on the calibration dataset. 

Mean 

[dBA] 

Std.dev 

[dBA] 

Median 

[dBA] 

Min 

[dBA] 

Max 

[dBA] 

skew kurt 

0.02 0.74 0.15 -3.93 1.99 -0.79 1.72 

 

 
Fig. 9: Frequency histogram of the errors calculated on the model 

calibration dataset, performed on the 474 dataset. 

 

Using a t-test of the "R" software framework, it has been 

obtained that the average error is not statistically different 

from zero. In particular, the t-statistic calculated on the errors 

of the DSM, on 474 periods of calibration, is 0.6960518 and 

the corresponding probability of observing errors in the model, 

if the null hypothesis of zero mean is true, is 0.2433691. This 

value is generally considered too high to reject the null 

hypothesis. 

The Shapiro-Wilk and Jarque-Bera tests results are 

reported in Table 7, while the normality plot of DSM error 

distribution is presented in Figure 10. 

Table 7: Shapiro-Wilk and Jarque-Bera normality tests performed to 

errors of  MDS model applied to the 474 calibration data. 

Type of test Statistic of the 

test 

df p-value 

Shapiro-Wilk 0.968 _ 1.176 exp(-8) 

Jarque-Bera 109.024 2 < 2.2 exp(-16) 
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Fig. 10: Normal probability plot that describe error behavior of  DS 

model applied to the 474 calibration data. 

 

The p-values reported in Table 7 are very low compared to 

the levels of significance usually considered in both tests. This 

makes us lean towards the rejection of the null hypothesis, that 

is the normality of errors distribution in the calibration phase. 

This result is in contradiction with the histogram and skewness 

and kurtosis values. The QQ diagram shows that only a small 

part of the error distribution quantiles deviates from the 

bisector line. The SW and JB tests fail, probably due to the 

sample size. 

Performing the t-test on the 44 periods of validation, it has 

been shown that the average error is not statistically different 

from zero. In particular, the t-statistic calculated on the DSM 

errors is -0.7441655 and the corresponding probability of 

observing errors in the model the null hypothesis of zero mean 

is true, is 0.7695881. This value is generally considered too 

high to reject the null hypothesis. The error histogram and the 

QQ plot are reported in Fig. 11 and Fig. 12, while the Shapiro-

Wilk and Jarque-Bera tests results are reported in Table 8. 

 

 
Fig. 11: Frequency histogram of the errors calculated on the model 

validation, performed on 44 data. 

 
Fig. 12: Normal probability plot that describe error behavior of  DSM 

model applied to the 44 validation data. 

Table 8: Shapiro-Wilk and Jarque-Bera Test normality tests 

performed to errors of  MDS model used to predict the 44 validation 

data. 

Type of test Statistic of the 

test 

df p-value 

Shapiro-Wilk 0.9805 - 0.6542 

Jarque-Bera 0.3549 2 0.8374 

 

The p-values in Tab. 8 are very high compared to the 

levels of significance which usually are referred to in both 

statistical tests. That makes us lean towards acceptance of the 

null hypothesis, that is the normal distribution of errors. 

IV. CONCLUSIONS  

In this work, the attention was focused on the noise 

pollution monitoring and prediction problem in urban areas. 

The statistical analysis of a noise levels dataset, obtained from 

a measuring station in Messina (South Italy), has been 

performed. These measurements have been adopted for the 

implementation and validation of a model based on time series 

analysis. The aim was to predict noise level exposure. This 

method assumes that the noise level slope is the result of the 

composition of three parts: a long term behaviour (trend), that 

is a function of time and is obtained by smoothing the raw 

data; a seasonal component (seasonality), that describes the 

periodicities in the phenomenon; and an irregularity, that is 

not deterministic, but can be probabilistically evaluated. The 

adopted model is multiplicative between trend and seasonality, 

and additive when considering the irregularity. 

A first set of 321 data has been considered, and, thanks to 

the application of statistical tests, the presence of periodic 

variations has been evidenced. Then, a toy model has been 

implemented on this dataset, considering a weekly periodicity, 

highlighted by a strong autocorrelation corresponding to a lag 

value of 7 days. 

With the application of this model, a subset of 26 missing 

measurements has been filled and a 500 dataset has been 

obtained and analysed. The evaluation of the correlogram on 

this enlarged dataset confirmed the weekly periodicity (k1 = 

7). Once the trend has been evaluated, by means of centred 
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moving average (with span equal to 7), the correlogram has 

been computed on the moving average dataset and a second 

periodicity has been evidenced. This time, the periodicity is 

related to a longer term period (k2 = 125, i.e., about 4 months). 

Thus, the “single seasonality model” (SSM) has been 

improved, considering this multiple periodicity evidenced on 

the entire large dataset, resulting in the “double seasonality 

model” (DSM). Both SSM and DSM have been validated by 

comparing their forecasted values with a 44 actual 

measurement dataset (not used in the calibration phase). These 

validation data have been also used for a quantitative 

comparison between the performances of the two models, by 

means of error (difference between actual value and forecast) 

distributions. The double seasonality model showed better 

performances, in terms of lower standard deviation and closer 

to zero mean value of the error distribution. In addition, the 

application of normality tests confirmed the hypothesis of 

normal distribution for the error in the validation dataset. 
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