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Abstract—This paper deals with a parameter set up of a PI-
regulator to be applied in a system for permanent magnet three-
phase synchronous motors to obtain a smooth tracking dynamics
even though a chopper control structure is included in the drive.
In particular, an anti-windup control structure is considered to
avoid saturation and conditions on all controller parameters are
found which guarantee stability. High performance application
of permanent magnet synchronous motors (PMSM) is increasing.
In particular, application in electrical vehicles is very much used.
The technique uses a geometric decoupling procedure and a
Lyapunov approach to perform a PWM control to be used as
a chopper. Chopper control structures are very popular because
they are very cheap and easy to be realised. Nevertheless, using
a chopper control structure smooth tracking dynamics could
be difficult to be obtained without increasing the switching
frequency because of the discontinuity of the control signals.
No smooth tracking dynamics lead to a not comfortable travel
effect for the passengers of an electrical vehicle or, more in
general, it could be difficult to generate an efficient motion
planning if the tracking dynamics are not smooth. The paper
presents a technique to minimise these undesired effects. The
presented technique is generally applicable and could be used
for other types of electrical motors, as well as for other dynamic
systems with nonlinear model structures. Through simulations of
a synchronous motor used in automotive applications, this paper
verifies the effectiveness of the proposed method and discusses
the limits of the results.

Index Terms—PD regulators, velocity control, adaptive control

I. INTRODUCTION

AS the high field strength neodymium-iron-boron (NdFeB)
magnets become commercially available with affordable

prices. PMSMs are receiving increasing attention due to their
high speed, high power density and high efficiency. These
characteristics are very favorable in some special high perfor-
mance applications, e.g. robotics, aerospace, and electric ship
propulsion systems [1], [2]. Permanent magnet synchronous
motors (PMSMs) as traction motors are common in electric
or hybrid road vehicles. For rail vehicles, PMSMs as traction
motors are not widely used yet. Although the traction PMSM
can bring many advantages, just a few prototypes of vehicles
were built and tested. The next two new prototypes of rail
vehicles with traction PMSMs were presented on InnoTrans
fair in Berlin 2008. They were Alstom AGV high speed
train and Skoda Transportation low floor tram 15T ForCity.
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Advantages of PMSM are well known. The greatest advantage
is a low volume of the PMSM in comparison with other types
of motors. It makes a direct drive of wheels possible. On
the other hand, the traction drive with PMSM has to meet
special requirements typical for overhead line fed vehicles.
The drives and specially their control should be robust to
wide overhead line voltage tolerance (typically from −30%
to +20% ), voltage surges and input filter oscillations. These
aspects may cause problems during flux weakening operation.
There are several reasons to use flux weakening operation of a
traction drive. The typical reason is a constant power operation
in a wide speed range and reaching nominal power during
low speed (commonly 1/3 of maximum speed). In the case
of common traction, motors like asynchronous or DC motors,
it is possible to reach the constant power region using flux
weakening. This is also possible for traction PMSM, however,
a problem with high back electromagnetic force (EMF) rises.
To achieve the desired system performance, advanced control
systems are usually required to provide fast and accurate
response, quick disturbance recovery, and parameter varia-
tions insensitivity [3]. In [4] it is shown how using a flux
weakening control strategy for PMSM a prediction control
structure improves the dynamic performance of traditional
feedback control strategies in terms, for instance, of overshoot
and rising time. To realize an effective prediction control,
it is known that an accurate knowledge of the model and
its parameters is necessary. In [5] an identification technique
is shown to detect parameters such as Rs, Ldq and Φ or
the PMSM is shown. In the existing applications chopper
control structures are very popular because they are very
cheap and easy to be realised. Nevertheless, using a chopper
control structure smooth tracking dynamics could be difficult
to be obtained without increasing the switching frequency
because of the discontinuity of the control signals. No smooth
tracking dynamics lead to a not comfortable travel effect for
the passengers of the electrical vehicle. PI regulators are very
often used in industrial applications because of their simple
structure and in the last years advanced PI controllers have
been developed to control nonlinear systems, [6], [7]. One of
the most important problems concerning PI or PID controllers
is tuning their parameters. In the scientific literature one of
the most important approaches is the optimal tuning. An
interesting contribution in this context is that presented in [8]
in which the authors proposes as tuning techniques two sets
of evolutionary strategies which are differential evolution and
genetic algorithms. In [8] the optimal PID control parameters
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are applied for a high order system, system with time delay
and non-minimum phase system. This paper extends the results
proposed in [9] and deals with a parameter set up of a PI
regulator to be applied in a system for a permanent magnet
three-phase synchronous motor to obtain smooth tracking
dynamics even though a chopper control structure is included
in the drive. Moreover, the proposed PI controller uses an anti-
windup scheme to avoid saturations. When saturation happens,
the feedback loop is effectively broken and if a regulator with
an integrator is used, the error will continue to be integrated.
The value at the output of the regulator can become very
large and often degrades the closed-loop performance in the
form of large overshoot, long settling time and sometimes
even instability. This is more evident if compared with the
expected linear performance for the systems. The phenomenon
described is called windup. The windup phenomenon has
attracted interest in academic and in industrial community
already at the end of the eighties. The problem became to have
the first solution, an overview of the basic schemes is available
in [10]. Other contributions like in [11] analyse the conditions
in order to find invariant subspaces and in [12] a pre-action
is employed to avoid windup. The paper is organized in the
following way. In Section II a sketch of the model of the
synchronous motor and its behaviour are given. Section III
is devoted to derive a decoupling controller which will be
used to calculate parameters Kp and Ki of the controller with
Lyapunov approach. Section V shows simulation results using
real data. The conclusions close the paper.

II. MODEL AND BEHAVIOR OF A SYNCHRONOUS MOTOR

To aid advanced controller design for PMSM, it is very
important to obtain an appropriate model of the motor. A
good model should not only be an accurate representation of
system dynamics but also facilitate the application of existing
control techniques. Among a variety of models presented
in the literature, since the introduction of PMSM, the two
axis dq-model obtained using Park’s transformation is the
most widely used in variable speed PMSM drive control
applications, see [3] and [13]. The Park’s dq-transformation
is a coordinate transformation that converts the three-phase
stationary variables into variables in a rotating coordinate
system. In dq-transformation, the rotating coordinate is defined
relative to a stationary reference angle as illustrated in Fig. 1.
The dq-model is considered in this work.[
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Fig. 1. Park’s transformation for the motor

The dynamic model of the synchronous motor in d-q-
coordinates can be represented as follows:[

did(t)
dt

diq(t)
dt

]
=

[
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0
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]
, (3)

and

Mm =
3

2
p{Φiq(t) + (Ld − Lq)id(t)iq(t)}. (4)

In (3) and (4), id(t), iq(t), ud(t) and uq(t) are the dq-
components of the stator currents and voltages in syn-
chronously rotating rotor reference frame; ωel(t) is the rotor
electrical angular speed; parameters Rs, Ld, Lq , Φ and p
are the stator resistance, d-axis and q-axis inductance, the
amplitude of the permanent magnet flux linkage, and p the
number of couples of permanent magnets, respectively. At the
end the motor torque is indicated with Mm. Considering an
isotropic motor for that Ld ≃ Lq = Ldq , it follows:[

did(t)
dt

diq(t)
dt

]
=

[
− Rs

Ldq
ωel(t)

− Rs

Ldq
ωel(t)

] [
id(t)
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]
+[

1
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0

0 1
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][
ud(t)
uq(t)

]
−

[
0

Φωel(t)
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]
, (5)

and

Mm =
3

2
pΦiq(t) (6)

with the following movement equation:

Mm −Mw = J
dωmec(t)

dt
, (7)

where pωmech(t) = ωel(t) and Mw is an unknown mechanical
load.
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III. STRUCTURE OF THE DECOUPLING CONTROLLER

To achieve a decoupled structure of the system described in
equation (5) a matrix F is to be calculated such that:

(A+BF)V ⊆ V, (8)

where u = Fx is a state feedback with u = [ud, uq]
T and

x = [id, iq]
T ,

A =

[
− Rs

Ldq
ωel(t)

− Rs

Ldq
ωel(t)

]
, B =

[ 1
Ldq

0

0 1
Ldq

]
, (9)

and V = im([1, 0]T ) is a controlled invariant subspace. More
explicitly it follows:

F =

[
F11 F12

F21 F22

]
, and

[
ud(t)
uq(t)

]
= F

[
id(t)
iq(t)

]
,

then, according to [14], the decoupling of the dynamics is
obtained considering the following relationship:

im

([
− Rs

Ldq
ωel(t)
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Ldq
ωel(t)

])
+

im

([
1

Ldq
0

0 1
Ldq

] [
F11 F12

F21 F22

] [
1
0

])
⊆ im

[
1
0

]
,

(10)

where parameters F11, F12, F21, and F22 are to be calculated
in order to guarantee condition (10) and a suitable dynamics
for sake of estimation, as it will be explained in the next.
Condition (10) is guaranteed if:

F21 = Rs. (11)

After decoupling the first equations of the system represented
in (5) becomes as follows:

diq(t)

dt
= ωel(t)iq(t) +

uq(t)

Ldq
. (12)

IV. A LYAPUNOV APPROACH TO SET THE
PI-CONTROLLER PARAMETERS

Considering the following PI-controller:

uc(t) = Kp(ωmecd − ωmec(t))+

Ki

∫ t

0

(ωmecd − ωmec(τ))dτ +Aw(t), (13)

with Aw(t) is the anti-windup signal with

Aw(t) = Kb

(
u∗
c(t)−Kp(ωmecd − ωmec(t))−

Ki

∫ t

0

(ωmecd − ωmec(τ))dτ
)
, (14)

where

u∗
c(t) =

{
uc(t) if uc(t) < Satout
Satout if uc(t) ≥ Satout,

(15)

where Satout is the constat of the saturating level of the output
of the controller which corresponds to the saturation level of
the compressor output, Kb is a constant to be set.

A. PI-Controller parameters conditions in case of no satura-
tion

If ωmecd is a constant, it follows that:

∂uc(t)

∂t
= −Kp

∂ωmec(t)

∂t
+Ki(ωmecd − ωmec(t)), (16)

equation (12) can be written in the following way:

iq(t) =
1

ωel(t)

(
− diq(t)

dt
+

uq(t)

Ldq

)
. (17)

Combining equations (6) and (17), then the following expres-
sion is obtained:

Mm =
3

2
pΦ

1

ωel(t)

(
− diq(t)

dt
+

uq(t)

Ldq

)
. (18)

Considering equation (18) and equation (7), then the following
relation is obtained:
3

2
pΦ

1

ωel(t)

(
− diq(t)

dt
+

uq(t)

Ldq

)
−Mw = J

dωmec(t)

dt
. (19)

In order to set up parameters Kp and KI of the controller, the
following Lyapunov function is chosen:

VL(ωmec(t)) =
1

2

(
ωmecd(t)− ωmec(t)

)2
. (20)

Considering the derivative of (20), then:

∂VL(ωmec(t))

∂t
= −(ωmecd(t)− ωmec(t))

∂ωmec(t)

∂t
. (21)

From equation(19) it follows that:

∂VL(ωmec(t))

∂t
= −

(
ωmecd(t)− ωmec(t)

)
J

×(3
2
pΦ

1

ωel(t)

(
− diq(t)

dt
+

uq(t)

Ldq

)
−Mw

)
. (22)

B. Monotonic increasing dynamics

Considering the expression in (16), equation (22) becomes
as follows:

∂VL(ωmec(t))

∂t
= −

(Kp

Ki

∂ωmec(t)
∂t + ∂uc(t)

∂t
1
Ki

)
J

×(3
2
pΦ

1

ωel(t)

(
− diq(t)

dt
+

uq(t)

Ldq

)
−Mw

)
≤ 0. (23)

If
∂ωmec(t)

∂t
≥ 0, (24)

and
∂uc(t)

∂t
≥ 0, (25)

condition (23) is guaranteed ∀ Kp > 0 and ∀ Ki > 0.

Remark 1: Condition (24) should be guaranteed with a
suitable choice of the parameters of the controller. This
condition states monotonic dynamics and thus dynamics of
the motor without oscillations for the monotonic increasing
dynamics. In automotive field, this condition is an ideal
one for optimality of the electrical driver consumption and
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comfort of the passengers. �

To show under which conditions the following relation

∂ωmec(t)

∂t
≤ 0 (26)

holds, let consider PI controller defined by equation (16) which
can be rewritten in the following way:

∂uc(t)

∂t
+Ki(ωmecd − ωmec(t)) = Kp

∂ωmec(t)

∂t
≥ 0. (27)

Choosing Kp and Ki big enough, it is possible to consider

∂uc(t)

∂t
<< Ki(ωmecd − ωmec(t))−Kp

∂ωmec(t)

∂t
. (28)

The following condition must hold:

Ki(ωmecd − ωmec(t))−Kp
∂ωmec(t)

∂t
≥ 0, (29)

which is equivalent to prove that:

Kp
∂ωmec(t)

∂t
+Kiωmec(t) ≥ Kiωmecd . (30)

Considering the solution of the following differential equation,
then:

Kp
∂ωmec(t)

∂t
+Kiωmec(t) = 0, (31)

then it must be:

ωmec(t) = ωmec(0)e
− Ki

Kp
t ≥ Kiωmecd , (32)

then the following final general condition is obtained:

Ki ≤
ωmec(0)

ωmecd

Kp. (33)

Concerning assumption (25):

∂uc(t)

∂t
≥ 0, (34)

let us consider equation (16) in which ωmecd is a constant,
then:

∂uc(t)

∂t
−Ki − ωmec(t) = Kp

∂ωmec(t)

∂t
≥ 0. (35)

Considering that it should be guaranteed ∂uc(t)
∂t ≥ 0, then:

−Kp
∂ωmec(t)

∂t
+Ki(ωmecd − ωmec(t)) ≥ 0,

which it is equivalent to proof that:

Kp
∂ωmec(t)

∂t
+Kiωmec(t) ≤ Kiωmecd , (36)

Considering the solution of

Kp
∂ωmec(t)

∂t
+Kiωmec(t) = 0, (37)

then it must be:
∂ωmec(t)

∂t
= ωmec(0)e

− Ki
Kp

t ≤ ωmecd

Kp
Ki. (38)

From equation (69) a boundary condition on Ki is obtained:

Ki ≥
ωmec(0)

ωmecd

Kp. (39)

Combining condition (33) with (71), the final sufficient
condition on parameters Kp and Ki is obtained:

Ki =
ωmec(0)

ωmecd

Kp. (40)

C. Anti-windup and PI-controller parameters conditions in
case of saturation and increasing dynamics

Let us consider equation (16) in which ωmecd is a constant,
then:
∂uc(t)

∂t
= [1−Kb]

(
−Kp

ωmec(t)

∂t
+Ki(ωmecd −ωmec(t))

)
.

(41)
Considering that it should be guaranteed ∂uc(t)

∂t ≥ 0, then:

0 ≤ Kb ≤ 1, (42)

and
Kp

∂ωmec(t)

∂t
−Ki(ωmecd − ωmec(t)) ≤ 0,

which it is equivalent to proof that:

KbKp
∂ωmec(t)

∂t
+KbKiωmec(t) ≥ KbKiωmecd . (43)

Considering the solution of

Kp
∂ωmec(t)

∂t
+Kiωmec(t) = 0, (44)

then it must be:

ωmec(t) = ωmecie
− Ki

Kp
t ≥ ωmecd

Kp
Ki, (45)

where ωmeci = ωmec(0). From equation (69) a boundary
condition on Ki is obtained:

Ki ≤
ωmec(0)

ωmecd

Kp. (46)

D. Monotonic decreasing dynamics

Considering the expression in (16), equation (22) becomes
as follows:

∂VL(ωmec(t))

∂t
= −

(Kp

Ki

∂ωmec(t)
∂t + ∂uc(t)

∂t
1
Ki

)
J

×(3
2
pΦ

1

ωel(t)

(
− diq(t)

dt
+

uq(t)

Ldq

)
−Mw

)
≤ 0. (47)

If
∂ωmec(t)

∂t
≤ 0, (48)

and
∂uc(t)

∂t
≤ 0, (49)

condition (47) is guaranteed ∀ Kp > 0 and ∀ Ki > 0.
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Remark 2: Condition (48) should be guaranteed with a
suitable choice of the parameters of the controller. This
condition states monotonic dynamics and thus dynamics
of the motor without oscillations also for the monotonic
decreasing dinamics. In automotive field, this condition is an
ideal one for optimality of the electrical driver consumption
and comfort of the passengers. �

To show under which conditions the following relation

∂ωmec(t)

∂t
≤ 0 (50)

holds, let consider PI controller defined by equation (16) which
can be rewritten in the following way:

∂uc(t)

∂t
+Ki(ωmecd − ωmec(t)) = Kp

∂ωmec(t)

∂t
≤ 0. (51)

Choosing Kp and Ki big enough, it is possible to consider

∂uc(t)

∂t
<< Ki(ωmecd − ωmec(t))−Kp

∂ωmec(t)

∂t
. (52)

The following condition must hold:

Ki(ωmecd − ωmec(t))−Kp
∂ωmec(t)

∂t
≤ 0, (53)

which is equivalent to prove that:

Kp
∂ωmec(t)

∂t
+Kiωmec(t) ≥ Kiωmecd . (54)

Considering the solution of the following differential equation,
then:

Kp
∂ωmec(t)

∂t
+Kiωmec(t) = 0, (55)

then it must be:

ωmec(t) = ωmec(0)e
− Ki

Kp
t ≥ Kiωmecd , (56)

then the following final general condition is obtained:

Ki ≥
ωmec(0)

ωmecd

Kp. (57)

Concerning assumption (25):

∂uc(t)

∂t
≤ 0, (58)

let us consider equation (16) in which ωmecd is a constant,
then:

∂uc(t)

∂t
−Ki − ωmec(t) = Kp

∂ωmec(t)

∂t
≤ 0. (59)

Considering that it should be guaranteed ∂uc(t)
∂t ≥ 0, then:

−Kp
∂ωmec(t)

∂t
+Ki(ωmecd − ωmec(t)) ≥ 0,

which is equivalent to proof that:

Kp
∂ωmec(t)

∂t
+Kiωmec(t) ≥ Kiωmecd , (60)

Considering the solution of

Kp
∂ωmec(t)

∂t
+Kiωmec(t) = 0, (61)

then it must be:

∂ωmec(t)

∂t
= ωmec(0)e

− Ki
Kp

t ≤ ωmecd

Kp
Ki. (62)

From equation (69) a boundary condition on Ki is obtained:

Ki ≤
ωmec(0)

ωmecd

Kp. (63)

Combining condition (57) with (63), the final sufficient
condition on parameters Kp and Ki is obtained:

Ki =
ωmec(0)

ωmecd

Kp. (64)

E. Anti-windup and PI-controller parameters conditions in
case of saturation and decreasing dynamics

Let us consider equation (16) in which pd is a constant,
then:

∂uc(t)

∂t
= [1−Kb]

(
−Kp

ωmec(t)

∂t
+Ki(ωmecd −ωmec(t))

)
.

(65)
Considering that it should be guaranteed ∂uc(t)

∂t ≤ 0, then

0 ≤ Kb ≤ 1, (66)

and

−Kp
∂ωmec(t)

∂t
+Ki(ωmecd − ωmec(t)) ≤ 0,

which it is equivalent to proof that:

Kp
∂ωmec(t)

∂t
+Kiωmec(t) ≥ Kiωmecd . (67)

Considering the solution of

Kp
∂ωmec(t)

∂t
+Kiωmec(t) = 0, (68)

then it must be

ωmec(t) = ωmecie
− Ki

Kp
t ≤ ωmecd

Kp
Ki, (69)

where ωmeci = ωmec(0). From equation (69) a boundary
condition on Ki is obtained:

Ki ≥
ωmec(0)

ωmecd

Kp. (70)

To conclude, the intersection of all these conditions is the
two following constraints:

Ki =
ωmec(0)

ωmecd

Kp, (71)

and
0 ≤ Kb ≤ 1. (72)
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Fig. 2. Simulink structure of the whole control system

Uc(t)

1

Uc*(t)

Saturation

Kp

P-Factor

Kb

Kb-Factor

1
s

Integrator

Ki

I-Factor

Add 3

Add 2
Add 1

1

Velocity error

Fig. 3. Simulink structure of PI controller including anti-windup scheme

V. SIMULATION RESULTS

Simulations have been carried out using a special stand with
a 58 kW traction PMSM. The stand consists of PMSM, tram
wheel and a continuous rail. The PMSM is a prototype for
low floor trams. PMSM parameters: nominal power 58 kW,
nominal torque 852 Nm, nominal phase current 122 A and

Fig. 4. PWM-Simulink-Block

number of poles 44. Model parameters: R = 0.08723 Ohm,
Ldq = Ld = Lq = 0.8 mH, Φ = 0.167 Wb. Surface
mounted NdBFe magnets are used in PMSM. Advantage of
these magnets is inductance up to 1.2 T, but theirs disadvantage
is corrosion. The PMSM was designed to meet B curve
requirements. In Fig. 2 the complete control scheme is shown.
In this Simulink block diagram the transformed dq-observer is
indicated together with Park’s and inverse Park’s transforma-
tion. PWM frequency equals 100 kHz and the structure of the
simulink PWM block is shown in Fig. 4. Figure 6 shows the
obtained and desired motor velocity profiles. Figure 3 shows
PI controller with the anti-windup proposed scheme. Figure
7 shows the obtained and desired motor acceleration profiles.
From these two results it is possible to remark that the effect
of the chopper control is visible which does not allow the
tracking to be precise. In particular, according to the theoretical
condition ∂ωmec(t)

∂t the result should not present oscillation.
Because of the realisation of the controller using a chopper
which consists of discontinuous signals this is structurally
not possible. Figure 8 shows PWM signal sequence with the
maximal chopper switching frequency equals 2.5 kHz. Fig. 9
shows the chopper effect on the input of the motor.

VI. CONCLUSIONS AND FUTURE WORK

This paper deals with a PI-controller for a three-phase
synchronous motor. The technique uses a decoupling proce-
dure. A Lyapunov approach is used to calculate parameters
Kp and Ki to obtain soft velocity variation. Moreover, an
anti-windup control structure is considered to avoid saturation
and conditions on all controller parameters are found which
guarantee stability. The resulting control structure is generally
applicable for other dynamic systems with similar nonlinear
model structure. Through simulations of a synchronous motor
used in automotive applications, this paper verifies the effec-
tiveness of the proposed method, the found theoretical and
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Fig. 5. Profile of the obtained and desired motor velocity using a maximal
switching chopper frequency equals 2.5 kHz in case of positive desired
velocity
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Fig. 6. Profile of the obtained and desired motor velocity using a maximal
switching chopper frequency equals 2.5 kHz in case of negative desired
velocity

simulation results. Future work includes the calculation of the
optimal value of parameter Kp and Kb.
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