
  
Abstract— This paper analyses gravity and parabolic 

catenaries. It discusses development of an algorithm for tasks 
and optimising of the calculation. Different iteration methods 
have been used in order to optimise the calculation. The 
iteration methods are: direct iteration, regula falsi, bisection 
and Newton methods. Development of the algorithm is used in 
different tasks. For each method, attention is paid to suitability 
of application, needed time and number of calculation steps 
needed in order to achieve the correct result. Matlab was used 
for development of algorithms for tasks.   
 

Keywords— gravity catenary, parabolic catenary, iteration 
methods, development of an algorithm 

I. INTRODUCTION 

HIS paper analyses the gravity and parabolic 
catenaries. Catenaries are commonly used analysis 
methods for cable structures discussed in [1, 2]. 

Several approaches based on numerical methods with 
special catenary element are available [3, 4] when 
analysing the catenary or cable structures. Nonlinear 
analysis of cable structures is shown in [5, 6, 7]. The 
solution can be made on the basis of discrete analysis 
[8]. The Finite Element Method is used when dealing 
with cable structures for bridges [9]. 

This paper uses four interaction methods for analysis 
of gravity and a parabolic catenary. Computational 
complexity is compared for those methods. The methods 
are direct iteration, regula falsi, bisection and tangential 
methods.  

The iteration method has been used for calculation of 
some model tasks. Then, the optimum method which is 
suitable for a general solution has been chosen. The 
Matlab software [10] was used for computations. 
Algorithms for civil engineering tasks were developed in 
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Matlab, for instance, in [11] and [12]. The development 
of an algorithm was based on methods described in [13]. 

 When analysing the steel structures, it is 
recommended in some cases to use the probabilistic 
approach [14].  

II.  THEORY OF THE PARABOLIC CATENARY 

The studied problem was a parabolic catenary in the Fig. 
1 with an additional condition – the total length.  
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The cable which is suspended in two joints and loaded 
with a continuous load applied onto the horizontal 
projection is referred to as a parabolic catenary [15] and 
[16]. Because of a very low bending stiffness, the load-
carrying cable is considered in calculations to be an 
element which does not bear bending moments.  

 The only internal force which arises in the structure is 
tensile force. All geometric and static quantities are 
expressed by means of horizontal reaction. Of 
importance for description of the structure is 
determination of the horizontal force. The horizontal 
force cannot be described using conditions of balance 
only. It is necessary to choose an additional condition.  
In this case, the additional condition is the specified 
length of the cable. When calculating the horizontal 
force, the equation for the cable length (1) is taken as a 
basis. For more details about calculation see (2) and (3). 
The horizontal force H was determined using iteration 
methods.  

 
Fig. 1 Parabolic catenary 

Numerical Analysis of Gravity                                
and Parabolic Catenaries 

J. Vasek, O. Sucharda 

T 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

ISSN: 1998-0140 156



III. THEORY OF THE GRAVITY CATENARY 

The gravity catenary can be regarded as a perfectly 
flexible cable which is not able to transfer other internal 
forces than tensile normal forces. In this case, a cable 
without prolongation has been considered. The 
difference between the parabolic catenary and gravity 
catenary is the way of loading. The fibre in Fig. 2 is 
loaded with a continuous load applied onto the fibre axis. 

 
Fig. 2 Loading of the loaded catenary 

 
This type of load can be represented by the dead load. 
Effects of the dead load depend on cable deflection. In 
general, the higher the deflection is, the bigger the 
effects of the dead weight are. For this reason, it is not 
always possible to simplify the situation and use a 
parabolic catenary. In this case, it is also assumed that 
the both ends of the fibre are fixed to non-displaceable 
supports.  
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The dead weight of each cable make the cable to 
shape as a catenary. From the mathematical point of 
view, the catenary shape can be described using (4). 
Because it is mathematically easy to derive a differential 
equation (5) of a genuine gravity catenary, such a 
coordinate system is chosen where the gravity catenary 
crosses the vertical axis in the lowest point.  

 The coordinate of the point of intersection of the 
catenary and the axis is (a) - this parameter is used then 
to derive all other geometric quantities which 
characterise the catenary. Fig. 3 shows this location in 
the coordinate system.  

As this is not statically determined task, it is essential 
to include an additional condition into the calculation. In 
the case, the additional condition is the know length of 
the cable. Mathematical description of the cable length is 
obtained by (6). If coordinates and and cable length are 
known, the equations (4) and (6) can be used to derived 
(7).  

Because the parameter (a) cannot be expressed 
explicitly, iteration methods should be used.  
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Fig. 3 Location of the catenary in the coordinate system 

IV. CALCULATING THE PARABOLIC CATENARY 

A. A model case of the parabolic catenary 
The distance between the suspended points for this 

structure is l = 30 m and the difference in height is  
h = 1 m. The continuous load applied onto the cable 
projection is q = 0.8 kN/m. The additional condition – 
the length of the cable – is L = 33 m. 

B. Iteration methods 
All iteration methods are based on the equations (1) 

and (2). Another condition for those methods is selection 
of specific criteria, for instance, the value of the first 
approximation or the termination condition. In order to 
compare the solutions, same values for identical criteria 
were maintained. The use of the numerical methods was 
based on [17] and [18].  

C. Direct iteration 
For a graphical representation of this method see  

Fig. 4. The initial equation (1) was modified and one 
side shows the horizontal force only – that side of the 
equation represents the linear function (dotted), while the 
other side of the equation comprises other input 
parameters. This is the intersection of the solid line and 
dotted curve. 
Then, the zero approximation and iteration cycles result 
in the final value. This is the intersection of the solid line 
and dotted curve. 
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Fig. 4 Parabolic catenary – results Direct iteration 

 
 

Fig. 5 Parabolic catenary – results for regula falsi 
 

The zero approximation needed for iteration is 1 kN. 
Two termination conditions were specified. The first 
termination condition is the exact number of iteration 
steps being 100. The second termination condition is the 
deviation between two subsequent calculated values 
being 0.001 kN. With this method, divergence was an 
issue. Because the curve which represented the modified 
equation (1) was convex, it was moving towards infinity 
in each subsequent iteration step. Therefore, the 
algorithm was modified in order to use an inverse 

function (dashed curve). It was not necessary to 
determine the entire inversion function. It is, however, 
more efficient for the calculation to add a double of the 
difference between the original function and I and III 
quadrant axis to the original function. This resulted in 
convergence. For the required deviation the horizontal 
force was 14.8853 kN. For the required number of steps, 
100, the horizontal force was 14.8911 kN. 
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D. Regula falsi 
This method is sometimes referred to as the false 

position method or the chord method. For general 
background see Fig. 5. Once the equation (1) is adjusted 
to be homogeneous, this method gives intersection of a 
curve with a horizontal axis. The initial condition is the 
interval in which the required value is located. In every 
subsequent iteration step, a chord line is created between 
the outer points. Then, the value of the outer point in the 
interval is replaced with the value obtained by 
intersection of the chord and horizontal axis. The first 
three iteration steps are represented by the chords of the 
curve. Because of the shape of the curve under 
investigation, this method iterates very slowly. In order 
to accelerate convergence of this method, it would help 

making the input interval narrower so that the outer point 
could be as close as possible to the required value. The 
input interval comprises the required result and is limited 
by the lower boundary 1 kN and by the upper limit  
40 kN. The condition which will stop the iteration is the 
deviation between the two subsequent calculated values. 
In order to keep the input conditions, this deviation is 
again 0.001 kN. The horizontal force calculated using 
this method is 14.8937 kN. 

E. Bisection method 
The bisection method or the interval dividing method is 
similar to the regula falsi because of its input criteria. 
The interval under investigation is limited again by 1 kN 
and 40 kN. 

 
Fig. 6 Parabolic catenary – results Bisection 

 

 
Fig. 7 Parabolic catenary – results Newton method 
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The termination condition is again the difference 

between two subsequent iteration values: 0.001 kN. The 
equation for the cable length (1) was modified and is 
homogeneous now. In the next iteration step, the 
previous interval with the required value is reduced. The 
value of the outer point of the interval changes after the 
functional value of the function under investigation is 
compared in the half which precedes the interval. If the 
difference against the next value is within the specified 
termination deviation, the calculation will be interrupted. 
The bisection method is described in Fig. 6. The first 
five iteration steps are described there as horizontal 
lines. It is evident that the interval with the required 
value (14.8910 kN) becomes smaller more quickly. 
Unlike the regula falsi method, the bisection method 
does not depend much on the shape of the curve under 
investigation and iterates considerably faster. 

F. Newton method 
This iteration method is shown in Fig. 7. The initial 

and termination conditions are identical with those used 
in the direct iteration method. In the zero approximation 
point, the tangent to the curve under investigation is 
found. Then, the intersection with the horizontal axis is 
found. The next tangent is constructed in the functional 
value of that point. The tangent represents the next 
iteration step. In the chart, the first four iteration steps 
are visible. The approach the final value, 14.8905 kN, 
relatively quickly. In order to develop an algorithm for 
this method it is necessary that derivations should be 
calculated in each iteration point [5]. The model was 
calculated using the three-point forward formula (8) with 
the 0.01 differentiation. If other methods were used, the 
time needed for the modelling by means of the Newton 
method did not extend. The number of iteration steps 
were not be influenced too. 
 

2.dif

2.dif)(x f-dif)(x 4.f(x) 3.f-
(x)f , +++

=
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G. Comparison of the iteration methods 
When using the methods described above, the 

resulting H was 14.89 kN for the given input values. 
Using this value, other geometric and force parameters 
can be determined. Fig. 8 shows deflection of the cable 
for the specified values of the structure. Fig. 9 shows 
how the calculated horizontal forces depend on the 
number of steps of each method. The zero step 
represents the initial approximation values. In terms of 
necessary steps, the regula falsi method is the most 
demanding – it requires 276 steps. The reason for such a 
high value is the shape of the function under 
investigation and the initial values. The result is also 
proved by the chart which shows the iteration steps used 
in the regula falsi method, see Fig. 5. The least number 

of iterations (7 steps) was needed by the Newton method. 
Tab. 1 shows the number of iteration methods in each 
method as well as the time needed for the calculation. 
Except for the Newton method, the time correlates with 
the number of steps. The reason for more time needed in 
the Newton method is a rather long operation in one step, 
the reason being calculation of derivations in each point. 
The shortest time needed for calculation of the horizontal 
reaction was for the bisection method. Unlike the 
Newton method, the bisection method does not have 
enough input conditions. It is necessary to specify the 
interval where the required value is located. For this 
reason, it is recommended to use the tangent method. In 
this method, it is sufficient to determine the zero 
approximation and the difference. The direct iteration 
needed also a shorter time than the Newton method. But 
the direct iteration faces a similar problem as the 
bisection method.  

H. Comparison of the iteration methods 
The Matlab software [10] was used to model by means 
of iteration methods the horizontal reaction of a planar 
parabolic catenary. 
Method H [kN] Calc. 

steps 
Time (s) 

Iteration (step) 14.8911 100 0.1393 
Iteration 
(deviation) 

14.8853 44 0.0602 

Regula falsi 14.8937 276 0.5492 
Bisection 14.8910 16 0.0349 
Newton method 14.8905 7 0.0777 

Table 1. Comparison of the methods – results 
 
 It is generally assumed that the cable is a perfectly 
bendable and non-flexible fibre. The structure is 
supported in two suspended points by means of solid 
joints the difference in the height of which is 1 m. The 
plan distance between the supports is 30 m. The cable 
structure is loaded with a continuous load where  
0.8 kN/m is applied onto ground projection. Algorithms 
were developed for the following methods: the direct 
iteration, bisection, regular falsi and Newton method. 
Attention was paid to the time needed for calculations 
and for the number of iteration steps. The least time 
needed for obtaining the result was measured for the 
bisection method. This method, however, requires that 
the interval be known where the value is located. 
Therefore, the Newton method is a better choice for 
general development of an algorithm. The number of 
iteration steps is the lowest for the tangent method, even 
if the time needed for the calculation is rather long. The 
advantage of the tangent method over the bisection 
method is that it needed only to enter the first 
approximation method and difference. The reason for 
more time needed by the Newton method is the more 
extensive iteration step which calculates derivations in 
each point.  
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Fig. 8 Parabolic catenary – cable deflection 

 

 
Fig. 9 Parabolic catenary – comparison of the methods 
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V. A MODEL CASE OF THE GRAVITY CATENARY 

A. A model case of the gravity catenary 
A model case has been used to support the application 

of the iteration method for a catenary. Only three input 
parameters were used in the calculation. Difference in 
heights between the supports was 2 m. The ground 
distance between the supports was 40 m and the length 
of the cable was 45 m. It is necessary to know the load in 
order to calculate the dimensioning force.  

 This quantity, however, does not need to be known 
for determination of (a) – that is why, this quantity was 
not taken into account. 

B. Conditions for iteration methods 
The initial and end conditions are essential for the 

iteration methods. Because the goal is to compare the 
iteration methods, identical conditions have been used 
for all methods. The initial condition of 10 is the zero 
approximation value. This condition is necessary for 
following methods: direct iteration and Newton method. 
The regula falsi and bisection methods require an 
interval which comprises the solution. Limit values in the 
interval were 10 and 100. The Newton method required 
for derivation a three-point forward formula with  
a 0.1 difference. The end condition was identical in all 
cases. The difference between the two subsequent steps 
should be below 0.001. 

C. Comparison of the iteration methods 
It is essential to modify (7) in order to calculate (a) 

and apply the iteration methods. The dependence of (a) 
was determined for the direct iteration using (9). Fig. 10 
shows the graphic chart. The solution is a point which is 
located in the intersection of the curve and the axis in the 
first and third quadrants.  

  
 In case of other methods, it was necessary to adjust 

(7) into a homogeneous form – (10). Fig. 11 shows this 
equation – the point of intersection with the horizontal 
axis is the solution.  
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Table 2 shows the values of (a) and complexity of 
calculation in terms of needed calculation steps. Fig. 12, 
which corresponds with results in Table 2, shows 
development of the method, depending on the number of 
steps.  

 
 
 

 
Fig. 10 Function – direct iteration 
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Fig. 11 Function – homogeneous 

 
 

 
Fig. 12 Course of the iterations 
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Table 2. Comparison of the methods - results 
 

It follows from the results above that the rounded off 
value of (a) is 23.61. Regarding the calculation 
complexity, the most iteration steps were needed in order 
to reach the result for the direct iteration method.  

 The least calculation steps were needed for the 
Newton method. However, a big issue is there the input 
condition for the zero approximation. The curve in  
Fig. 11 shows that the initial value should be bigger than 
the minimum value of (10). For this reason, that method 
cannot be applied in general cases. Therefore, the most 
suitable method seems to be the regula falsi iteration 
method. A disadvantage is knowledge of an interval with 
the known value. The calculations included simulations 
with the increasing limit value of the input interval up to 
106. Even with such an extremely high value, the time 
needed for calculation or the number of calculation steps 
have not increased considerably.   

VI. CONCLUSION 

Algorithms based on the following methods were 
developed in Matlab [10]: direct iteration, regula falsi, 
and bisection and Newton methods. The methods were 
used for calculation of the parabolic and gravity 
catenaries. The best method suitable for the gravity 
catenary in general applications has appeared to be the 
regular falsi method.  
As far as the parabolic catenary is concerned, the choice 
of an optimum method depends on criteria. The least 
number of iterations was needed for the Newton method. 
The shortest time needed for calculation of the horizontal 
reaction was reached for the bisection method. 
The authors will focus on further research on the use of 
special cable elements [19] and application of 
probabilistic methods [20].  
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Newton method 23.6153 2 0.0696 
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