Image Color Reduction Using Iterative Refinement

Andrei Tigora, Costin A. Boianiu

Abstract—The purpose of the presented research is to improve color conversions of images that are losing important visual information when color reductions are applied. This is a very common problem in grayscale printing operations of color images when textual information and background have the same grayscale luminance value. Thus, taking into account the perceived neighboring color differences, the proposed algorithm adjusts iteratively the pixel values so that information that is usually lost in a standard color contraction becomes visible.

Keywords—color to grayscale conversion, dimensionality reduction, information preserving color removal, iterative decolorization.

I. INTRODUCTION

CONVERSION from color to grayscale is a lossy process as it reduces a three-dimensional domain to a single dimension. The loss is an acceptable compromise that ensures compatibility with devices of limited capabilities or software that cannot handle the extra complexity associated with a three channel input. The main challenge is therefore creating an image that retains the core features of the original one, without introducing visual abnormalities.

As human vision itself relies on luminance more than anything else, the most common procedure for grayscale conversion is weighted sum of the channel values that represent a particular color in the RGB model. While the end results are usually satisfactory, due to the fact that chroma and hue are completely ignored, some conversion scenarios have the potential of creating confusing outputs. To compensate for this drawback, modern algorithms usually add additional processing steps to the original grayscale conversion, aiming to optimize the result based on a previously defined evaluation function.

A natural and information preserving conversion is useful for black and white typographies [1], document analysis, high performance binarization [2] or segmentation [3], local (adaptive) and global image processing [4], computer vision, as the algorithms usually receive as input grayscale images, which could end up being uniform using a standard color to grayscale algorithm.

The rest of the paper is organized as follows. The next section is dedicated to related work. Section 3 contains the description of the algorithm we propose for grayscale conversion. The results and interpretation of the results are provided in Section 4, whereas the last section is reserved for conclusions and future work.

II. RELATED WORK

Based on how the pixels should be grouped, techniques for converting color images to grayscale can be roughly categorized as either global or local [5]. Global algorithms ensure that identical color pixels generate identical grayscale values. Local algorithms on the other hand, accomplish the conversion on small regions of the image, taking into consideration only the local features of those particular regions when applying the transformations. Whereas the algorithms in the first category are relatively fast, they offer poorer results than the ones based on local mapping. Yet, those in the latter category are orders of magnitude slower, due to the repetitive processing of overlapping regions, but produce better results. The classic conversion based on pixel luminance is perhaps the best example of global technique.

Another classification splits the conversion methods into functional and optimizing [6]. Whereas functional conversions only rely on the actual pixel values to obtain the adequate grayscale pixel, optimizing methods also take into account more complex features than can only be obtained by analyzing the image as a whole. This classification, proposed by Benedetti et all [6], closely resembles the previous one, with the difference that it goes into more detail. Functional conversions can be further divided into trivial, direct methods and chrominance direct methods. Trivial methods either select a channel to represent the color, or average the values of the channels. Direct methods expand on the trivial ones, using weighted sums of the data channels. Chrominance direct methods aim to correct the results of direct conversion methods so that they better reflect human perception, as it illustrated by the Helmholtz-Kohlrausch effect. The optimizing methods vary greatly in their approaches [7], but they too can be classified into three groups. The first group consists of functional conversions that are then followed by various optimizations based on the characteristics of the image. The second employ iterative energy minimization, whereas the last category consists of various orthogonal solutions that do not fit within any of the previously enumerated categories.

A different category altogether is the one that includes algorithms that are meant to code a color image into a grayscale image in such a way that the color image can be recovered from the printed grayscale result. One example is
In the proposed paper, the authors firstly convert the color image to grayscale, in order to make it as intuitive as possible to the human viewer. The grayscale image is split using wavelet transforms with a Haar operator. This yields a low resolution grayscale image and three texture layers (wavelet resonating factors) which are used to reconstruct the high resolution image from the low resolution. The process can repeat in order to split the image in more texture layers (similar to derivatives in 3 directions and different scales). Next, they encode the remaining, lost information, inside some of the texture layers. The image is then combined again. In this way, portions of texture are lost, but color can be fully recovered.

Information loss as result of the conversion is expected and unavoidable. Each of the techniques enumerated has its own advantages and disadvantages, and produces images that are best suited for a particular kind of processing (ex: contrast enhancing [9]) or just preserving the ambiance of the image [10].

In addition, the more sophisticated algorithm is employed, choosing a suitable color distance metric [11] is important when evaluating the result of the image processing operation.

The algorithm we propose is global, and its aim is directed primarily at converting human generated artificial RGB images that may become undistinguishable in grayscale. It should be noted though, that the algorithm is not limited strictly to a tridimensional color space, or the RGB color model [12].

III. ALGORITHM DESCRIPTION

The input of the algorithm is an $M \times N$ matrix of vectors in the normalized RGB space, such that for each vector v, $v \in [0,1]^3$. The output will be a $M \times N$ matrix of scalars, situated in the $[0,1]$ range.

Let there be three scalars $\alpha, \beta, \gamma \in [0,1]$, $\alpha \geq \beta \geq \gamma$ and $\alpha + \beta + \gamma = 1$. In this context:
- the module of vector v is $|v| = \alpha \cdot |x| + \beta \cdot |y| + \gamma \cdot |z|$, where x, y and z uniquely correspond to red, green or blue
- the virtual module of vectors v_1 and v_2 is $|v_1, v_2| = |\alpha \cdot (x_1 - x_2) + \beta \cdot (y_1 - y_2) + \gamma \cdot (z_1 - z_2)|$

- regarding relation \prec, it is said that $v_1 \prec v_2$ if and only if $|v_1| < |v_2|$ or $|v_1| = |v_2|$, $x_1 < x_2$ or $|v_1| = |v_2|$, $x_1 = x_2$, $y_1 < y_2$ or $|v_1| = |v_2|$, $x_1 = x_2$, $y_1 = y_2$, $z_1 \leq z_2$
- an optimum modulo difference of v_1 and v_2 ($\text{omd}(v_1, v_2)$) is defined as $(- |v_1, v_2| + |v_1| - |v_2|)/2$ if $v_1 \prec v_2$ and $(|v_1, v_2| - |v_1| + |v_2|)/2$ otherwise

Step 1
The first step aims at initializing the data structures necessary for computation. Compute the modules of all vectors in the input matrix and store them in matrix A.

Compute matrix BV of $(M+1) \times N$ dimension, storing the optimum modulo differences of neighboring pixels, for the vertical direction. Similarly, compute the $M \times (N+1)$ BH matrix storing the optimum modulo differences for the horizontal direction. All components situated on the edge rows (i.e. rows 0 and M) of matrix BV and similarly the edge columns (i.e. columns 0 and N) of BH respectively are 0; this is due to the fact that the original matrix is considered to be bordered with same value elements as those situated on the edge of the matrix.

Step 2
For all entries in matrix A, evaluate the difference between neighboring element. That is, for $i = 1, M$, $j = 1, N$ and $x, y \in \{-1, 1, 0\}$, $|x| + |y| = 1$ compute the difference $\text{diff} = A[i][j] - A[i + y][j + x]$. Extract this result from the value stored in either BH or BV that corresponds to the optimum modulo difference of the vectors situated at (i, j) and $(i + y, j + x)$. This step attempts to determine how large the gap between the ideal difference and that stored in the matrix actually is, and use it to correct the situation.

However, the correction is not applied directly; instead, the correction is added to the structure corresponding to the original vector that is stored at the same coordinates in the original matrix. For edge elements, because there is no neighbor element, the contribution for that particular element is equal to 0.

Step 3
After all corrections have been accumulated, the correction is averaged to the number of vectors that contributed to the correction (the counter stored in the structure). The new correction is further decreased by a specified quota q then applied to all values in matrix A that correspond to the vector value group receiving the correction. The resulting value must be checked to prevent overflowing or under-flowing, therefore values are limited to $[0,1]$.

The specified quota was introduced because changes in A tended to be radical and far from perfect, and left no place for improvement in future iterations.

Step 4
The new configuration of matrix A is evaluated, and if it is better than the previous best alternative it is stored. An error index is computed based on how far neighboring elements in matrix A are from the neighboring ideals stored in BH and BV respectively. The error index is the sum of modulo differences between neighboring elements in matrix A and their corresponding values in either BH or BV. If the newly computed error index is smaller than the previous best error
index, then the current A matrix is a better approximation for the original matrix and the best matrix is updated. All corrections in the structures stored in the map are reset. If the upper limit of expected iterations has not been reached then Step 2 is run once again.

Here is the pseudocode corresponding to the previously described algorithm:

```c
/* compute matrices $A$ and $G$ from input image */
for i : 0..m-1 do
    for j : 0..n-1 do
        $G[i][j] = A[i][j] = \text{mod}(I[i][j])$
    done
done

/* compute $BV$ and $BH$ */
for i : 1..m-1 do
    for j : 0..n-1 do
        $BV[i][j] = \text{opt_mod}(I[i-1][j], I[i][j])$
    done
done
for i : 0..m-1 do
    for j : 1..n-1 do
        $BH[i][j] = \text{opt_mod}(I[i][j-1], I[i][j])$
    done
done

/* initialize the edge elements to 0 */
for j : 0..n-1 do
    $BV[0][j] = BV[m][j] = 0$
done
for i : 0..m-1 do
    $BH[i][0] = BH[i][n] = 0$
done

/* initialize best matrix */
for i : 0..m-1 do
    for j : 0..n-1 do
        $BM[i][j] = A[i][j]$
    done
done

BEI = \text{error_index}(A, BV, BH)

iteration = MAX_ITERATIONS
while iteration > 0 do
    /* initialize the accumulator */
    for i : 0..MOD_RANGE do
        ACC[i] = 0
    done

    for i : 0..m-1 do
        for j : 0..n-1 do
            $A[i][j] += ACC[G[i][j]] * q$
        done
    done

    /* compute the error index and update */
    EI = \text{error_index}(A, BV, BH)
    if EI < BEI then
        for i : 0..m-1 do
            for j : 0..n-1 do
                $BM[i][j] = A[i][j]$
            done
        done
        BEI = EI
    done
    iteration -= 1
done
```

The usage of matrices BH and BV is no more than an optimization; had they not been used, in determining both the error index as well as the corrections it would have been necessary to compute the optimum modulo difference of various pixels in the image over and over again, which would have been time consuming. It is a classic instance of storage versus execution time tradeoff.

IV. RESULTS

The test machine for the algorithm was an Intel Core2Duo, with 2GB of RAM running 64bit Windows7. The algorithm was written in C++ using Visual Studio.

The algorithm was tested on two types of images: real-life photos and artificially generated.

For real-life photos, there is little or no difference between the grayscale image obtained through simple transformations and the one obtained through the adaptive algorithm. This may be due to the fact that a particular pixel value has a wide range of neighboring values, which means that the applied correction is neither too high, nor too low. Another reason could be the actual number of existing values: there are so many pixel values within a real-life photo that even if some pixels are transformed, the overall impact on the image is negligible.

Some results obtained in the “real-life photos” test scenario are presented in Fig. 1, where the proposed algorithm and the traditional grayscale conversion are presented side by side.
For the artificially created images on the other hand, the situation could not be more different. For specifically chosen images, the simple grayscale conversion algorithm creates images with a single tone of gray, whereas the adaptive algorithm conversion algorithm produces images with distinguishable elements. What is also interesting is that if new elements are added to a color image, and both the original and modified image are converted to grayscale, regions of the image that were unmodified in the color image can end up being different in the final grayscale image, as can be seen in the first and second row of images in Fig. 2. This is due to the fact that the new information propagates to all the regions of the image through the neighboring relations that are constantly evaluated.

Although the results were satisfactory, the execution time was hardly so. Therefore, an attempt was made to reduce the execution time. Based on the experience from the development stages, it was decided that the quota q should not be a fixed one, instead it should be dynamically adjusted. The quota q starts at a maximum level q_0; with each new iteration, the value of q is decreased by a constant predefined reduction factor r. To prevent the quota from becoming too small, at each new iteration the number of resulting underflow and overflow values is counted and if it goes beyond a certain threshold T, q is reset to q_0 and the last iteration is repeated. Under normal circumstances there is no underflow or overflow. More significant though is the risk of having the changes become too “jumpy” and unpredictable, so a lower
bound q_1, also has to be imposed on q. This lower bound allows for more free variation of the matrix values, but it is not so unpredictable to make recovery from an improbable path impossible.

Following this change, visually, the resulting images were basically identical. From the mathematical point of view, there were slight differences between the images in the natural images, but within corresponding pixels, the difference was less than 1%. As can be seen from Fig. 3, the average number of iterations drastically decreases by employing the dynamic quota. However, it did not go as low as it had originally been estimated. One reason is that in the later iterations the changes from one image to another are relatively slow, and hardly ever will influence the resulting integer based representation of the solution. This was especially true for the natural images, with high number of pixel values and high number of distinct neighboring pixel values. An attempt to set a threshold for the iterations that became increasingly less significant was made, but fixing a universally acceptable value did not produce improved results.

![Fig. 3 Average number of iterations before obtaining the “ideal” image using the fixed and dynamic quotas](image)

V. CONCLUSION OF FUTURE WORK

Future work will concentrate on finding a more efficient storage mechanism; perhaps instead of using a map entry for every single possible entry, a group of pixels could be considered similar enough and be evaluated together. Even so, the memory requirement for storing all possible values for a 24BPP image in a three dimensional matrix would require 16M structures, with an 4 octets for counter and 4 more for correction, this leads to a total of 256MB.

Another aim would be to improve execution time by parallelizing the code; though for most of it this should be simple, the fact that the algorithm repeatedly updates the correction value can be a hurdle. On a completely different note, it would be interesting to modify the algorithm to take into account more than the difference between a pixel and its neighbors. Instead, the ideal reference matrix could be computed based on a smoothed matrix.

A more radical approach would be to try a local based iterative solution. For that segmenting the image beforehand would be necessary, probably by intersecting sets of segmented areas for each of the channels. The regions that form the image would impose a correction on the neighboring regions which would result in corrections applied to the pixels that form the area. This could either be applied as a unique processing mechanism or in correlation with the global correction mechanism.

REFERENCES

