
 

 

  
Abstract— In this paper the diffuse interface model for direct 

numerical simulation of liquid-vapor interfaces in the presence of 
surface in presented. This model is developed from two-phase 
compressible flow approaches known as relaxation-projection 
method for compressible flows, simple and efficient relaxation 
method using pressure non-equilibrium model. The model accounts 
for the phase compressibility and surface tension effects and adapted 
for simulation of the bubble and drop flows. Results of testing of 
numerical technique are presented and demonstrate the good 
perspective of developed approach for simulation of multi-phase 
flows. 
 

Keywords— CFD, relaxation-projection method, surface force, 
two-phase flows.  

I. INTRODUCTION 

HE liquid–vapor flows with phase change are often 
encountered in industrial applications such as nuclear 

reactors, heat exchangers, boilers, etc. Their better 
understanding requires experimental investigations as well as 
the development of analytical models. To develop analytical 
models and to help interpret experimental data and understand 
local physical phenomena the direct numerical simulations can 
be used. The use of the direct numerical simulation is already 
quite common in single-phase fluid dynamics. The numerical 
problems encountered to simulate two-phase flows with phase 
change are much more complicated. The tracking of a surface 
of discontinuity on a fixed numerical grid is a base complexity 
in these numerical problems. Several methods proved their 
efficiency to solve this problem; the most common ones are 
the volume-of-fluid [1], front-tracking [2], and level-set 
methods [3]. These methods mainly deal with immiscible fluid 
systems. In such systems, the speed of displacement of an 
interface is equal to the velocity of the fluids (gas and liquid) 
at the interface. Therefore, knowing the velocity field, it is 
quite easy to interpolate it at the interface and move the 
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interface accordingly. When phase change exists, the problem 
is more complicated because three different velocities exist at 
an interface: the velocities of the liquid and vapor phases and 
the speed of displacement of the interface.  

Liquid–vapor phase change effects have been resolved 
within the one-fluid formulation by different researchers: Beux 
with colleagues [4] used the LS method; Jamet [5] applied the 
so-called second gradient theory or the Cahn–Hilliard 
equations. 

During of the last ten years numerical methods and 
algorithms for solving of the heat and mass transfer problems 
in compressible/incompressible fluids were developed. Among 
these are algorithms for solving of incompressible fluid 
dynamics, algorithms for solving of compressible fluid 
dynamics at the low Mach numbers, the monotone multi-
dimensional schemes for solving of an advection equation, an 
effective algorithm for solving of elliptical equation for 
pressure correction. These methods and algorithms were 
applied successfully for computational support of the 
experiments financed by Nuclear Energy Agency at 
Organization of Economic Cooperation and Development 
within the MASCA project [6], where a behavior of the two 
non-mixing liquids, such as corium and steel was investigated. 
Now these computing tools will be extended on a case of two-
phase flows as a gas-liquid system. 

For incompressible/compressible two-phase flows unified 
CFD approach was developed [7] which is based on the 
developed algorithms with small scheme diffusion, where the 
discrete approximations are constructed with use of finite-
volume methods and fully staggered grids. For modeling of 3D 
turbulent single-phase flows LES approach (commutative 
filters) was used. For modeling of 3D turbulent two-phase 
flows by means DNS the enough detailed grids and effective 
numerical methods developed in IBRAE for solving of CFD 
problems were applied. For observation of an interface of two-
phase flow the modified VOF methods and multidimensional 
transfer schemas of TVD-type with small scheme diffusion 
with use of sub-grid simulation were used.  

A considerable number of modern simulation methods of 
multiphase and multicomponents gas dynamics flows are 
based on the numerical solution of Euler or the Navier-Stokes 
equations which are usually supplemented by one or several 
equations expressing conservation laws of specific physical 
values to given problem (concentration of gas bubbles), it is 
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necessary for definition of interface parameters for multiphase 
system.  

Application of such numerical methods leads to occurrence 
of artificial diffusivity through contact discontinuity and to 
artificial mixing of substances on interface. In such artificial 
mix of value of all thermodynamic parameters are calculated 
with an error. With strongly differing parameters of substances 
such approach leads to negative values of pressure already on 
the second step on time. The two-phase model has been 
offered in Abgral and Saurel’s paper [8], which allowing 
defining thermodynamic and kinetic variables of each 
component of a mix. Thus in any place of a calculated grid the 
identical equations were solved by means of the same 
numerical method as for a case of two not mixing components 
separated by an interface, and for a case of presence of 
physical mixing of various substances. 

The diffuse interface model for direct numerical simulation 
of liquid-vapor interfaces in the presence of surface forces was 
developed from two-phase compressible flow approaches 
known as relaxation-projection method for compressible 
flows, simple and efficient relaxation method using pressure 
non-equilibrium model. The model accounts both the phase 
compressibility and surface tension effects and adapted for 
simulation of the bubble and drop flows. Results of testing of 
numerical technique speak about the good perspective of 
developed approach for simulation of multi-phase flows. 

The possibility of using diffuse interface model for direct 
numerical simulation of liquid-vapor interfaces in the presence 
of surface forces is used to test numerical technique. This 
model was developed by using Hamilton’s principle of 
stationary action [9]. Numerical technique is based on adapted 
HLLC Riemann solver [10] supplemented with simple and 
efficient relaxation method using pressure non-equilibrium 
model [11]. Such approach was used for simulation of the 
bubble and drop flows. 

Generalization for phase transition modeling can be 
achieved by natural physical processes splitting with relaxation 
and phase transition [12].  

II. MODEL DESCRIPTION 

For the mixture Lagrangian  
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where u  - velocity; ρ  - mixture density, 2211 ραραρ += ; 

ε  – mixture specific internal energy, 
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parameter; φ  - Heaviside step function; m  – interface 

sharpness parameter ( 1=m  for sharp interface), Hamilton 
principle allows obtaining the following system of equations 
governing two compressible fluids in mechanical equilibrium 
with capillary effects [12]: 
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The order parameter φ  can be identified with the mass 

fraction: 
.2yw ∇=∇= φ         (2) 

For sharp liquid-vapor interfaces ( 1=m ) system (1) in two-
dimensional case puts on: 
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(3)
 

The hyperbolicity of the model (3) is shown in [12]. 
To solve it numerically several disadvantages have to be 

taken into account [11].  
Main among these disadvantages concerns with non 

monotone behavior of the equilibrium sound speed with 
respect to the volume fraction.  

Also non-conservative volume fraction equation could yield 
to positivity preserving difficulties when rarefaction or 
compression waves are present at interfaces.  

To avoid such disadvantages pressure non-equilibrium 
model is used. With this approach system (3) will take form: 
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(4) 

where Ip  – interface pressure. 

At first step the hyperbolic part of the system (4) is solved: 
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(5) 

Next relaxation step forces the solution of pressure non-
equilibrium model (5) to converge to that of the equilibrium 
model (3). This step is fulfilled for the system: 
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III. NUMERICAL TECHNIQUE 

The main point is that the numerical algorithm does not look 
for the liquid-vapor interfaces, and it is identical in the whole 
calculated region. 

In the absence of relaxation terms the conservative part of 
system (5) are updated with conversational Godunov scheme: 
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where upper script * stands for the perturbated state, 
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The volume fraction is calculated using the Godunov 
method for advection equation that guarantees volume fraction 
positivity during the hyperbolic step: 
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The non-conservative energy equations are updated with 

simplest approximation by assuming the product ( )n
jikk p ,α  

constant during time step: 
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The lack of accuracy in the internal energy computation will 
be corrected on the relaxation step in agreement with the 
second law of thermodynamics. 

To determine the values of thermodynamic variables for 
perturbated state the adaptation of HLLC solver was 
performed. The left- and right- facing waves speeds along X 
and Y directions are obtained as following: 
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( ) ( ) ( ) ( ) ( )( ),,max RxRxLxLxxR cucuS ++=  
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RyRyLyLyyR cucuS ++=  

where 2
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2 cycyc +=  – frozen sound speed. 
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The speeds of intermediate waves or contact discontinuities 
are estimated as: 
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From above wave speeds the variable states are determined: 
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The volume fraction jump is constant along fluid trajectories 
in the absence of relaxation effects: 
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The internal energy jump conditions for stiffened EOS 
( ) ,1 kkkkkk ep πγργ −−=  )2,1( =k  provide the following 

relations: 
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Approximate Riemann solvers (7)-(15) allow to apply 
described Godunov scheme. Extension to second order can be 
done with MUSCL type method. In this approach the predictor 
step is fulfilled for primitive variables with a half time interval. 
New values for primitive variables are used then in HLLC 
solver to update system (5) in corrector step. 

Relaxation step for pressure non-equlibrium model can be 
reduced from system (6) to a couple of equations: 
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where Ip  - interface pressure, which can be evaluated as 

ppI =  or 0ppI = ; superscript 0 means initial state before 

relaxation. 
To find unknown variables: 21,, ρρp  one closure relation is 

needed. For this purpose saturation constraint is used:  
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IV. COMPUTATIONAL RESULTS 

In all computations the liquid is governed by the stiffened 

gas equation of state with parameters: 710,1.2 == liqliq πγ  Pa. 

The gas is governed by the ideal gas equation of state with 
polytropic exponent 4.1=gasγ . 
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A. Round droplet 
A round water droplet with radius mR 11.0=  placed in air. 

The pressure is 510  Pa everywhere outside the droplet. Inside 

the droplet the pressure is 109090
11.0

1000
1010 55 =+=+

R
λ

 Pa 

according to Laplace law. The mesh with 100100×  cells was 
used. The pressure profiles for initial instant and after 100000 
calculation steps are shown in Fig. 1. The scheme retains the 
pressure jump with error which is lower than 10% comparing 
with the value from Laplace law. 
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Fig. 1. The pressure profiles for initial instant and after 100000 calculation 

steps. 
 

B. Oscillating square droplet 

A square water droplet placed in air. The pressure is 510  Pa 
everywhere in the computational domain. The mesh with 

100100×  cells was used. The initial position of the square 
droplet is shown in Fig. 2 using gas volume fraction profile. 

The droplet becomes to decrease its surface energy due to 
surface tension effects which are characterized by the 
parameter mN /1000=λ . This induces the oscillations up to 
equilibrium state.  

Results of calculations are presented in Fig. 3 at different 
instants ( ,261 mst =  ,532 mst =  ,793 mst =  mst 1064 = ). At 

steady state the droplet has a circular shape of radius 0.13 m 
with an average surplus pressure 7010 Pa. The error in the 
pressure jump is lower than 10% comparing with the value 
from Laplace law, which is 7690≈ Pa. 

 

 
Fig. 2. Initial position of the square droplet. 

 

 

 

 

 
Fig. 3. Oscillation of the square droplet due to surface tension effects at 

different instants. 

 

C. Oscillating Ellipsoid Bubble 
An ellipsoid gas bubble with axis ratio 1:1.5 placed in 

water. The pressure is 510  Pa everywhere in the computational 
domain. The mesh with 100100×  cells was used.  

The initial position of the ellipsoid bubble is shown in Fig. 4 
using gas volume fraction profile.  

The bubble becomes to decrease its surface energy due to 
surface tension effects which are characterized by the 
parameter mN /1000=λ . This induces the oscillations up to 

equilibrium state.  
Results of calculations are presented in Fig. 5 at different 

instants ( ,431 mst =  ,682 mst =  ,1453 mst =  mst 1834 = ). At 

steady state the bubble has a circular shape of radius 0.135 m 
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with an average surplus pressure 6750 Pa. The error in the 
pressure jump is lower than 10% comparing with the value 
from Laplace law, which is 7400≈  Pa. 

 

 
Fig. 4. Initial position of the ellipsoid bubble. 

 

 

 

 

 
Fig. 5. Oscillation of the ellipsoid gas bubble due to surface tension effects at 

different instants. 

D. Gas Bubble Surfacing In Liquid 
A round gas bubble initially is placed at the bottom part of 

solid vertical tube, filled by the water.  

The pressure profile is stratificated from 510  Pa at lowest 
section of the tube according to the gravity force action (see 
Fig. 6).  

 

 
Fig. 6. Initial position of the gas bubble in solid tube (up) with stratificated 

profile of the pressure (down). 

 
Gas bubble begins to surface due to the density gradient in 

gravity field and changes the form due to surface tension 
effects which are characterized by the parameter mN /2=λ .  

Bubble positions at different instants 
( stststst 06.2,37.1,82.0,28.0 4321 ==== ) are shown in 

Fig. 7 using gas volume fraction profile. 
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Fig. 7. Gas bubble surfacing in surrounding liquid due to the density gradient 

in gravity field. Bubble positions at different instants. 
 

E. Propagation of pure capillary standing wave 
A water and vapor sinusoid interface is located at the middle 

part of the square domain with solid walls.  

The pressure is 510  Pa everywhere in the computational 
domain. The mesh with 150150×  cells was used.  

The initial position of the interface is shown in Fig. 8 using 
water mass and volume fraction profiles.  

The surface tension and dynamic viscosity coefficients are 
mN /1000=λ  and sPa ×= 6ν .  

The simulation results provided for pure capillary waves 
with viscosity effects are presented in Fig. 9 at different 
instants ( ,16.01 st =  ,29.02 st =  ,46.03 st =  st 59.04 = ) 

using water mass fraction profile. 
 

   

 
Fig. 8. Initial water mass (left) and volume (right) fraction profiles. 

 

V. CONCLUSION 

Results of testing of numerical technique speak about the 
good perspective of developed approach for multi-phase flow 
simulation. 
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Fig. 9. Water and vapor interface oscillation due to capillary waves with 

viscosity effect at different instances. 
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