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Abstract— An algorithm of variable structure for solving stiff 

problems is constructed using L-stable and explicit methods. It is 

based on explicit and L-stable methods, both schemes of order two, 

and on an explicit method of the first order, which interval of 

stability is extended. On each step an efficient numerical scheme is 

chosen by criterion of stability. The numerical results of modeling the 

simplest oregonator and the modified oregonator exhibiting 

complicated limit cycle are given. 

 

Keywords— Stiff system, accuracy and stability control, variable 

structure algorithms.  

I. INTRODUCTION 

he Cauchy problem for stiff systems of ODEs arises in 

many applications [1, 2]. The main trends in construction 

of numerical methods are associated with expansion of 

their possibilities in solving large-scale problems. 

In many cases calculations are required to be conducted 

within limits of so called engineering accuracy about 1% and 

lower. This is due to the fact, that measurement of constants in 

a right part of a system of differential equations is often quite 

rough. Sometimes, such accuracy of calculations is satisfactory 

in terms of a goal. It is well-known (see, e.g. [3]), that order of 

approximation of a numerical scheme should be associated 

with required accuracy of calculations. Therefore, below we 

shall consider only those numerical formulas, that have order 

of accuracy less or equal to two.  

Modern methods for solving stiff problems usually use 

calculation and inversion of the Jacobi matrix of a system of 

differential equations. In case of a sufficiently large dimension, 

efficiency of numerical methods is almost completely 

determined by inversion (decomposition) of the matrix. To 

increase efficiency of calculations in a number of algorithms, 

the freezing of the Jacobi matrix is used, that means using 

same matrix on several integration steps [4]. This approach is 

the most successful in algorithms based on multistep methods 

and, in particular, in backward differentiation formulas [5]. 

This problem does not cause any particular difficulties in 

constructing integration algorithms based on other numerical 
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schemes, if their stages are computed with the Jacobian matrix 

in some iterative process.  

This is due to the fact, that in this case the Jacobian matrix 

does not affect accuracy order of a numerical scheme, but only 

determines rate of convergence of iterations. So, it needs to be 

recomputed, when there is a significant slowdown on 

convergence rate of the iterative process. 

The situation is worse in an integration algorithm, based on 

the known noniterative methods, which include methods of the 

Rosenbrock type [6] and their various modifications [4]. It 

should be noted, that the noniterative method is much simpler 

in terms of computer implementation than algorithms, based 

on numerical formulas, which are evaluated with using 

iterations. However, in methods of form [6], the Jacobi matrix 

affects accuracy order of a numerical scheme and, therefore, 

difficulties with its freezing arise. If a problem of using same 

matrix on several steps of integration is left unsolved, then, 

obviously one is limited to solve only problems of low 

dimensions. In [7, 8], this problem is considered in relation to 

the Rosenbrock methods. It is proved, that maximum accuracy 

order of the Rosenbrock methods is equal to two, if in an 

integration algorithm the same Jacobi matrix is applied on 

several steps of integration. There is an algorithm with 

freezing the Jacobi matrix, based on L-stable numerical 

formulas of second accuracy order and results of calculations, 

confirming its high efficiency. 

Another important requirement for modern integration 

algorithms is numerical approximation of the Jacobi matrix. 

This is due to the fact, that a right part of a system of 

differential equations often has large dimensions and quite 

complex form. A typical example is provided by problems of 

chemical kinetics, where complexity of a right part increases 

with number of elementary stages in a chemical reaction. 

Nowadays, simulation involves reactions, which contain 

dozens of reagents and hundreds of elementary stages. 

Therefore, in some cases, less effective numerical methods are 

more preferable, if their implementation does not require the 

analytical calculation of elements of the Jacobi matrix. This 

barrier can be removed if an integration algorithm includes 

possibility of numerical approximation of the Jacobi matrix. 

Note, that the problems of freezing and numerical 

approximation are in some sense close to each other and, 

therefore, can be solved simultaneously. 

Some analog of freezing the Jacobi matrix is using in 

calculations integration algorithms, based on explicit and L -

stable methods with automatic selection of a numerical 

scheme. In this case, efficiency of the algorithm can be 
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improved by calculating transitive regions corresponding to a 

maximum eigenvalue of the Jacobi matrix by an explicit 

method. It is natural to apply an inequality for stability control 

[9] as a criterion for choosing an efficient numerical formula. 

Note, that using such hybrid algorithms does not fully 

eliminate the problem of freezing the Jacobi matrix, because 

the explicit method can be applied, generally speaking, only 

for a boundary layer solution, corresponding to a maximum 

eigenvalue of the Jacobi matrix. 

Here, based on the explicit methods of the Runge-Kutta type 

of the first and second orders, as well as the L-stable (2,1)-

method of second-order accuracy, an algorithm of variable 

structure is constructed, which allows both a numerical and an 

analytical Jacobi matrix. Numerical results confirm high 

efficiency of the integration algorithm.  

To insert images in Word, position the cursor at the  

II. L-STABLE (2,1)-METHOD 

In [10] for numerical solution of the Cauchy problem for 

stiff systems of ordinary differential equations 

 ,y f t y  , 
0 0( )y t y , 

0 kt t t  , (1) 

where y  and f  are real N -dimensional vector functions, t  

is an independent variable, the class of ( m k )-methods is 

proposed. From the standpoint of computer implementation, 

( m k )-methods are as simple as the Rosenbrock schemes. 

However, in contrast to the Rosenbrock methods, in this class 

it is much easier to solve a problem of freezing the Jacobi 

matrix and its numerical approximation. In addition, ( m k )-

methods have more good properties of accuracy and stability 

with slight increase of computational cost. In traditional 

methods, number of stages m  completely describes a 

numerical formula. In ( m k )-methods two constants are 

required to describe numerical schemes: number of stages m  

and  number of calculations of a right part  of the system (1) 

on an integration step k .  

To solve the problem (1), we consider a (2,1)-scheme 

 
1 1 1 2 2

1 2 1

,

, , ,

n n

n n n n

y y p k p k

D k hf t βh y D k k

   

  
 (2) 

where 
1k  and 

2k  are stages of the method; 
n nD E ahA  , E  

is an identity matrix, h  is an integration step, 
nA  is some 

matrix, which can be represented in a following form 

 2

n n nA f hB O h   , (3) 

 ,n n nf f t y y     is the Jacobi matrix of the system (1), nB  

is an independent of an integration step arbitrary matrix, a , 

 ,
1p  and 

2p  are numerical coefficients. Using the matrix 
nA  

represented in form (3) allows us to apply (2) with freezing 

both an analytical and a numerical Jacobi matrix [11]. In case 

of using the Jacobi matrix 
n kf 
 , calculated k  steps back we 

have 

n n nB kf f  , 2 2( )n n nf f f y y    .  

If the Jacobi matrix is computed numerically with a step 

j jr c h ,  then elements n ijb   of the matrix 
nB  have a form 

 2 20 5 ,n ij j i n n jb c f t y y     .  

In calculations the step 
jr  is chosen according to a formula 

14 7max(10 10 )j jr y     .  

Let's obtain the coefficients of the L -stable numerical 

scheme (2) of second order and an inequality for accuracy 

control. An expansion of an exact solution 
1( )ny t 

 in the 

Taylor series in a vicinity of a point 
nt  to terms with 3h  

inclusive has a form 

   

 

2

1

3 2 2 4

1

2

1
2

6

n n t y

tt y t yt y yy

y t y t hf h f f f

h f f f f f f f f f O h


      

            

 (4) 

where the elementary differentials are calculated on an exact 

solution ( )ny t . To find the coefficients β , a , 
1p  и 

2p  of the 

scheme (2) we write an expansion of the stages 
1k  and 

2k  in a 

Taylor series in a vicinity of a point 
ny  to terms with 3h  

inclusive and substitute it in (2). We obtain 

   

   

   

   

2

1 1 2 1 2 ,

2 2 3

1 2 , 1 2 ,

3 2 3 2

1 2 , , 1 2 ,

3 4

1 2

1
2

2

2 3

2 ,

n n n t n

y n n tt n

y n t n y n n

n n

y y p p hf β p p h f

a p p h f f β p p h f

aβ p p h f f a p p h f f

a p p h B f O h


    

    

     

  

 (5)  

where the elementary differentials are calculated on an 

approximate solution 
ny . Assuming, that ( )n ny y t  and 

comparing the expansions (4) and (5) to terms with 2h  

inclusive, we obtain conditions of second-order accuracy of 

scheme (2), i.e. 

1 2 1p p  , 1 2

1
( 2 )

2
a p p  , 

1

2
β  . (6) 

Let's investigate stability of a numerical formula (2). 

Applying it to a problem 

y λy  , 
0(0)y y , Re( ) 0λ  , (7) 

we obtain 
1 ( )n ny Q x y x hλ    , where a function of stability 

( )Q x  has the following form 

   

 

2

1 2 1

2

1 2
( )

1

p p a x a a p x
Q x

ax

    



.  

Then, the scheme (2) is L -stable, if 
1p a . Substituting this 

relation in (6), we obtain a set of the coefficients 

1p a , 
2 1p a  , 

1

2
β  , (8) 

where a  is determined from a L-stability condition 

2 1
2 0

2
a a   . (9) 

Comparing (4) and (5) to terms with 3h  inclusive, we find, 

that a local error nδ  of the numerical scheme  (2) with the 

coefficients (8) have a form 
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 

3 2 3 3 2

3 3 3 4

1 1 1

3 24 6

1 1 1
.

3 2 2

n y tt yy

yt y t n

δ a h f f h f h f f

h f f h f f h B f O h

 
      

 

     

 (10) 

The equation (9) has two roots 1 1 0 5 2a     and 

2 1 0 5 2a    . We choose 
1a a , as in this case the 

coefficient in the leading term 
23( 1 3)a h ff    of error (10) is 

less.  

Let's consider simultaneously the numerical Rosenbrock 

formula with two calculations of the function  f  on an each 

step 

   
1 1 1 2 2

1 2 1

,

, .

n n

n n n n

y y p k p k

D k hf y D k hf y ak

   

  
 (11) 

According to [7], for γ a , a set of coefficients (8) provides  

a second accuracy order of (11), and condition (9) provides its 

L -stability. It follows from [7] that the numerical formula (11) 

with the coefficients (8) is one of the most efficient among the 

methods of the Rosenbrock type, with two computations of a 

right part of a differential problem on an integration step. A 

local error roz

nδ  of the numerical formula (11) has a form 

 

23 3 2

3 4

1 1 1 2

3 6 2

.

roz

n

n

δ h a f a h f ff

ah B f O h

  
          

 

 (12) 

The scheme (2) with coefficients  (8) as well as scheme (11) 

with coefficients (8) has second accuracy order and L -

stability, and their local errors (10) and (12) differ slightly. At 

the same time, the scheme (2) requires one less calculation of 

function f  than (11) on an each step, with other costs being 

equal, which makes it more preferable.  

We construct accuracy control of the numerical scheme (2) 

by analogy with [12]. For this purpose, we denote 

   1

2 1
nj

n nv j D k k


  , (13) 

where 
1k  and 

2k  are calculated by the formulas (2). Then, 

according to [12], in order to control the accuracy on an each 

step, one has to control an inequality 

( )nv j ε , 1 2nj  , (14) 

where ε  is required accuracy of calculations,   is some norm 

in NR , and the integer variable 
nj  is selected as the lowest, 

for which inequality (14) holds.  

Note one important feature of error estimation (13). The 

scheme (2) is L -stable, that is, for its stability function ( )Q x , 

the relation ( ) 0Q x   for x    holds. Since for an exact 

solution 
1( ) exp( ) ( )n ny t x y t   of the problem (7) a similar 

property holds, it is natural to require convergence to zero of 

the error estimation for x   . However, for (1)v  this 

property is not satisfied — this estimation has an A -stable 

manner. 

To correct asymptotic behavior of the estimated error we 

introduced an estimation ( ) 1 2n nv j j    instead of (1)v . In 

this case, behavior of error estimations for 2nj   will be 

coordinated with behavior of the exact solution of the test 

problem for x   . We emphasize, that in sense of a 

general member, estimations (1)v  and (2)v  coincide. Using 

( )nv j  actually does not lead to increase of computational 

costs. This is due to the fact, that ( )nv j  for 2nj   is checked 

only when it is violated for 1nj  . This situation appears 

rarely, mainly when an integration step grows rapidly. 

However, this allows us to choose the step more accurately 

and thereby reduce the number of unnecessary recomputing 

solutions (returns).  

An estimation of a maximum eigenvalue 0 maxn nw hλ   of 

the Jacobi matrix of the system (1), necessary to switch to an 

explicit formula, is estimated through its norm 

 0 ,n n nw h f t y y    . Below, this estimation will be used 

for automatic selection of a numerical scheme. 

III. EXPLICIT SECOND ORDER RUNGE-KUTTA 

METHOD 

For solution the problem (1) we consider an explicit two-

stage Runge-Kutta method [13] 

   
1 1 1 2 2

1 2 1

,

, .

n n

n n

y y p k p k

k hf y k hf y βk

   

  
 (15) 

Let's consider the autonomous problem (1) to simplify 

formulas. In case of a non-autonomous system ( )y f t y    the 

scheme (15)  is written as 

   
1 1 1 2 2

1 2 1

,

, .

n n

n n n n

y y p k p k

k hf t y k hf t βh y βk

   

     
  

We obtain relations for the coefficients of the method (15) 

of second accuracy order. For this purpose, we expand the 

stages 
1k  and 

2k  in Taylor series in powers of h  up to terms 

with 3h  inclusive, and substitute them in the first formula (15). 

As a result, we obtain 

 

 

2

1 1 2 2

2 3 2 4

2

1
,

2

n n n n n

n n

y y p p hf βp h f f

β h p f f O h


   

 
  

where the elementary differentials are calculated on the 

approximate solution 
ny . Comparing this expression with (4) 

to terms with 2h  inclusive, assuming, that ( )n ny y t , we 

write conditions 
1 2 1p p   and 

2 0 5βp    of second 

accuracy order of the scheme (15). In these relations, the local 

error 
nδ  of the scheme (15) can be written as follows 

 23 2 41 2 3

6 12
n

β
δ h f f f O hf

 
   

 
.  

We construct an inequality for accuracy control. For this 

purpose, we consider an auxiliary scheme 1 1 1n ny y k     of 

first accuracy order. Using the idea of nested methods, 

estimation of error 2nε   of the second-order method can be 

calculated by formula [12] 
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 2 1 1 1 2 2 1n n nε y y p k k       .  

To improve reliability of this estimation, we choose 1β  . 

Then, stage 
1k  is computed at the point 

nt , and 
2k  is 

computed at the point 
1nt 

. Calculations show, that using 

information in extreme points of a step leads to more 

reliability. For 1β  , coefficients of the method of second 

order are uniquely determined 
1 2 0 5p p    and a local error 

and an accuracy control inequality are, respectively, given 

below 

 
3

2 42
12

n

h
δ f f f O hf    

, 2 10 5 k k ε   .  

Now, we construct an inequality for stability control of (15) by 

method proposed in [9]. For this purpose, we consider an 

auxiliary stage 3 1( )nk hf y  . Note, that 
3k  coincides with the 

stage 
1k , which is used on a next integration step and, 

therefore, its applying does not lead to additional computing of 

the right part of (1). We write the stages 
1k , 

2k  and 
3k  to a 

problem y Ay  , where A  is a matrix with constant 

coefficients. A result is given below 

1 nk Xy ,  2

2 nk X X y  ,  

 2 3

3 0 5 nk X X X y    ,  

where X hA . It is easy to see, that 

 2 3

2 1 3 2, 2n nk k X y k k X y    .  

Then, according to [9] an estimation of a maximum eigenvalue 

2n n maxw hλ   of the Jacobi matrix of the system (1) can be 

calculated by a following formula 

3 2

2
1

2 1

2max

i i

n i ii N

k k
w

k k


 

  
  

  

. (16) 

A stability domain of the scheme (15) is shown on a Fig. 1. 

 

A stability interval of (15) of second accuracy order is 

approximately equal to two. Therefore, an inequality 2 2nw    

can be applied for stability control. In case of using this 

inequality for step selection, roughness  of estimation (16) 

should be considered, because a maximum eigenvalue may not 

be strongly separated from rest, in a power method few 

iterations are applied and additional distortions occur, because 

of nonlinearity  of the problem (1). Therefore, stability control 

is used to limit size of an integration step. As a result, we will 

calculate the projected step 
1nh 
 as follows. We define a new 

step ach  by criterion of accuracy according to the formula 
ac

nh qh , where 
nh  is the last successful step of integration 

and q , taking into account a relation 

2

2 1 ( )nk k O h  ,  

is given by an equation  
2

2 1q k k ε  .  

A step sth  by criterion of stability is given by a formula 
st

nh dh , where d , taking into account a relation 

2 ( )nw O h  , is determineв from an equation 2 2ndw   . Then, 

the projected step 
1nh 
  is calculated by a formula 

 1 max min ac st

n nh h h h
   
 

. (17) 

Note, that the formula (17) is used to predict size of the 

integration step 
1nh 
 after successful computation of solution 

with the previous step 
nh  and, therefore, does not actually lead 

to increase of computational cost. If the step by criterion of 

stability is less than the last successful one, it will not be 

reduced, because it may be caused by roughness of estimation 

of a maximum eigenvalue. However, the step will not be 

increased, because there is a possibility of instability of the 

numerical scheme. If the step should be reduced by criterion of 

stability, then the latest successful step 
nh  is applied again. As 

a result, the formula (17) is proposed to select a step. This 

formula allows to stabilize step behavior on a settling region of 

solution, where stability has a defining role. Indeed, existence 

of this region limits possibilities of applying explicit methods 

for solving stiff problems.  

IV. FIRST ORDER RUNGE-KUTTA METHOD 

For numerical solution of the problem (1), we consider a 

scheme 

   
1 1 1 2 2

1 2 1

,

, .

n n

n n

y y r k r k

k hf y k hf y k

   

  
 (18) 

Note, that when 
1 2 0 5r r   ,  the numerical formula (18) has 

second order of accuracy, and coincides with (15) with 

coefficients 
1 2 0 5p p   . We construct a less accurate 

scheme with a maximum interval of stability. For this purpose, 

we use (18) for solution the scalar test equation (7). We obtain 

1 ( )n ny Q x y  , where the function of stability ( )Q x  has a 

form 

    2

1 2 21Q x r r x r x    , x hλ .  

Requirement of first order of accuracy leads to the relation 

1 2 1r r  ,  

which, below, we will assume to be satisfied. Now, we choose 

2r  so that the method (18) has a maximum stability interval. 

For this purpose, we consider the Chebyshev polynomial 

 

 

Fig. 1 Stability domain of the scheme (15) 
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2

2 ( ) (2 1)T z z    

on an interval [-1,1]. We carry out change of variables, setting 

2
1z x

γ
  .  

We obtain 

2

2 2

8 8
( ) 1T x x x

γ γ
   ,  

and the interval [ 0γ ]  passes to  

[-1,1]. It is easy to show, that among all polynomials of a form 
2

2 2( ) 1P x x c x     

for 
2 ( )T x  the inequality 

2| ( ) | 1T x   is satisfied at a maximum 

interval [ 0γ ], 8γ   . We require, that the coefficients of 

( )Q x  and 
2 ( )T x  coincide at 8γ   . This leads to relations 

1 2 1r r  , 
2

1

8
r  .  

As a result, we have coefficients 

1

7

8
r  , 

2

1

8
r    

of the first accuracy order method with a maximum stability 

interval, with a local error 

 2 33

8
nδ h f f O h  .  

We will use estimation of the local error to control accuracy of 

the numerical formulas of the first order. Taking into account, 

that 

 2 3

2 1 n nk k h f f O h     

and a form of the local error, an inequality for accuracy control 

can be written as 

2 1

8

3
k k ε  ,  

where ||⋅|| is some norm in NR , ε  is required accuracy of 

calculations.  

We construct an inequality for stability control for a first 

order method. For this purpose, we consider an auxiliary stage 

3 1( )nk hf y  .  

We write 
1k , 

2k  and 
3k , applied to the problem y Ay  , 

where A  is the matrix with constant coefficients. As a result, 

we obtain 

1 nk Xy ,  2

2 nk X X y  ,  

2 3

3

1

8
nk X X X y

 
   
 

,  

where X hA . It is easy to see, that 
2

2 1 nk k X y  ,   3

3 28 nk k X y  .  

Then, according to [9], estimation of a maximum eigenvalue 

1n n maxw hλ   of the Jacobi matrix of the system (1) can be 

calculated by a formula 

3 2

1
1

2 1

8max

i i

n i ii N

k k
w

k k


 

  
  

  

.  

A stability domain of the scheme (18) is shown on a Fig. 2. 

An interval of stability of the numerical scheme (18) is equal 

to eight. Therefore, an inequality 
1 8nw    can be applied to 

control stability. 

V. ALGORITHM WITH AUTOMATIC SELECTION OF A 

NUMERICAL SCHEME 

An algorithm of alternating order and step can be easily 

formulated on a base of constructed explicit methods of first 

and second orders of accuracy. Calculations are always begun 

with the second order method as it is more accurate. Transition 

to the first order scheme is carried out in case of violation an 

inequality 2 2nw   . Reverse transition to the second order 

method is carried out if an inequality 1 2nw    holds. On 

calculations by the first order method in addition to accuracy 

control there is stability control, and choice of a projected step 

is carried out in the same manner as in the second order 

method applying a formula of type (17).  

Using the scheme (2) does not present difficulties. 

Violation of an inequality 1 8nw    causes a transition to the 

scheme (2). Transfer to explicit methods is carried out if an 

inequality 0 8nw    holds. 

The numerical formula (2), without the loss of the accuracy 

order, can be applied with the frozen matrix 
nD . Note, that 

during the freezing the Jacobi matrix, size of an integration 

step remains constant. An attempt to freeze the matrix 
nD  is 

carried out after each successful step. The matrix thaws in the 

following cases: (1) violation of accuracy of calculations; (2) if 

number of steps with a frozen matrix reaches a defined 

maximum number hi ; (3) if a projected step is greater than the 

last one by hq  times. By the numbers hi  and hq  we can affect 

the redistribution of computational cost. When 0hi   and 

0hq  , freezing does not occur; with increasing hi  and hq , 

the number of calculations of a right part increases, while the 

number of inversions of the Jacobi matrix decreases.  

The norm in a left part of inequality for accuracy control is 

calculated by a formula 

 

 

Fig. 2 Stability domain of the scheme (18) 
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2 1

2 1
1
max

i i

ii N
n

k k
k k

y r 

   
   

   
,  

where i  is a number of component, r  is a positive parameter. 

If, for the i -th component of solution, an inequality | |i

ny r  

holds, then an absolute error rε  is controlled, otherwise, the 

relative error ε  is controlled. Below, the algorithm of 

alternating order and step with automatic selection of an 

explicit or a L -stable numerical scheme is called RKMK2.  

VI. DIFFERENTIAL EQUATIONS OF CHEMICAL 

KINETICS 

The kinetic scheme of any chemical reaction includes the 

following elementary reactions (stages) 

1,1 1 NR,1 NR 1,1 1 NR,1 NR

1,1 1 NR,1 NR 1,1 1 NR,1 NR

... ...

... ...

α x α x β x β x

α x α x β x β x

    

    

    (19) 

where
ix , 1 NRi   are chemical reagents, NR  and NS  are 

numbers of the reagents and the stages in the reaction, 

respectively; ijα  and ijβ , 1 NRi  , 1 NSj   are the 

stoichiometric coefficients. For each elementary reaction a 

corresponding stage velocity constant jk , 1 NSj   is given. 

For process (19) under the lumped model of an isothermal 

reactor of constant capacity the corresponding ordinary 

differential equations system has the following form 
TC A V  ,   00C C .  

Here, TA  is a stoichiometric matrix, C  and V are vectors of 

reagents concentrations and stage velocities, respectively. 

When a reaction proceeds in non-isothermal conditions, this 

system also involves the heat balance equation 

 01

T

T

V

Q V α T T
T

C C

 
  ,  

where T  is mixture temperature in a reactor, 
01T  is 

temperature of walls of a reactor, TQ  is the vector of calorific 

capacities of the stages, T

VC  is a vector of heat capacities of 

the reagents, /α αs r  , where α  is a heat-conduction 

coefficient, s  and r  are square of an area and volume of the 

reactor, respectively. The superscript T  of the vectors TQ  and 

T

VC  denotes the transposition. The heat capacities of the 

reagents and the heat-conduction coefficient may be functions 

of the reagents concentrations 
ic , 1 NRi  , α  may depend 

on temperature.  

If a reaction proceeds in an isothermal reactor of constant 

capacity with substance exchange (an open system, a perfect-

mixing reactor), a system of ordinary differential equations has 

a form 

 
1T

pC A V C C   


,   00C C .  

where pC  is a vector of inlet reagent concentrations, /r u  

is a stay period of mixture in a reactor, u  is mixture space 

velocity. If a reaction proceeds in non-isothermal conditions, 

then this system also involves a heat balance equation 

 
 01

02

1
T

T

V

Q V α T T
T T T

C C

 
   


,  

where 
02T  is inlet mixture temperature in a reactor. The 

temperature of reaction mixture can be described by a function 

of time t and concentrations of reagents 
ic , 1 NRi  , i.e. 

 ,T T t C . 

VII. ALGORITHM FOR GENERATING CHEMICAL 

KINETIC EQUATIONS 

If an elementary reaction is balancing, its velocity 
sW  is 

equal to a difference of its forward 
sW   and backward 

sW 
  

reactions, i.e. 
s s sW W W   ,  1 NSs  . If there is some 

third entity in a reaction, the velocity 
sV   is calculated by 

formulas 

s s sV PW , 
NR+NI

si

1

s i

i

P ε c


  , 1 NSs  ,  

where
siε , 1 NSs  , NR 1 NR+NIi   , are efficiencies 

of the third entities, NI is number of inert substances, 
siε  and 

ic  are efficiencies and concentrations of the inert substances, 

respectively. Values of components of the vector 
sW  are 

determined from a scheme of a chemical reaction (19) by 

relations 
NR+NI

1

ijα

s s
i

W k c



  , 
NR+NI

1

ijβ

s s
i

W k c




  ,  

where 
sk  and 

sk
, 1 NSs  , are forward and backward 

velocity stage constants, respectively. Velocity constants of the 

stages are calculated using the formulas 

expjn j

j j

E
k A T

RT

 
  

 
,  

where T  is temperature of mixture in a reactor; jA , jn  and 

/jE R  are given constants. Note, that, in general, the velocity 

constants values are not constant in case of a non-isothermal 

reactor – they depend on temperatures. However, historically, 

an isothermal reactor was considered earlier than non-

isothermal one and thus jk , 1 NSj  , at the present time, 

are still called constants. The stoichiometric matrix TA with 

elements ija  is formed from the kinetic scheme (19) 

conforming to the following rule. A number of a stage is 

aligned with a column number and a reagent number is aligned 

with a row number of a matrix TA . If 
ix  is an initial reagent, 

then ij ija α  , if 
ix  is a product, then ij ija β . If 

ix is both 

an initial reagent and a product, then ij ij ija α β   . Usually, a 

few amount of reagents are reacting in a stage, i.e. a 

stoichiometric matrix is sparse. 
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VIII. NUMERICAL RESULTS 

Calculations were carried out on PC Intel(R) Core(TM)  

i7-3770S CPU@3.10GHz with double precision. In the 

calculations, the parameter r  was chosen so that practical 

accuracy of all components of solution was not worse than 

required accuracy. Calculations were performed with defined 

accuracy 210ε  . This is due to the fact, that the algorithm is 

based on low accuracy order schemes, and, therefore, it is 

impractical to carry out calculations with higher accuracy with 

this method. A comparison of its efficiency was carried out 

with the well-known Gear method in the implementation of A. 

Hindmarsh named DLSODE from the ODEPACK collection 

[5].  

Below 
fi  and 

ji  denote, respectively, total numbers of 

calculations of a right part and number of inversions 

(decompositions) of the Jacobi matrix of the problem (1), 

which allow us to evaluate objectively the efficiency of the 

integration algorithm.  

As the first test, the simplest model of the Belousov-

Zhabotinsky reaction [14] was chosen 

 6 2

1 2 1 2 1 177 27 8 375 10y y y y y y        ,  

 2 2 1 2 3

1

77 27
y y y y y    


,  

 3 1 30 161y y y    , (20)  

1 3(0) (0) 4y y  , 
2 (0) 1 1y   ,  

[0 300]t  , 3

0 2 10h   .  

Calculations were carried out with the numerical Jacobi 

matrix.  

A solution of this problem by the algorithm RKMK2 was 

calculated with costs 1 214fi   and 65ji  . Calculations 

only by the L -stable scheme (2) give 926fi   and 88ji  . 

Practical accuracy of the calculations at the end of the interval 

of integration is not worse than required one. Solution of (20) 

was calculated by explicit methods of alternating order and 

step with cost 2 112 678fi  . This problem is too stiff for 

shown here to demonstrate principal possibility of application 

explicit methods for solving stiff enough examples, those in 

solving some high-dimensional problems may be more 

efficient than L -stable methods. For calculations by the 

DLSODE program, the required accuracy 210  is achieved, 

when the defined accuracy equal is 410  with costs 1 129fi   

and 107ji  . On calculations with higher accuracy, DLSODE 

is more efficient than the constructed algorithm. This is a 

sequence of low accuracy order of the constructed numerical 

formulas. On defined accuracy equal to 210 , the algorithm 

RKMK2 is more efficient than the well-known method 

DLSODE in 1.5 times in number of inversions of the Jacobi 

matrix, while number of computations of the right part of (20) 

for RKMK2 and DLSODE vary slightly. In case of the large-

scale problem (1), the constructed integration algorithm may 

be more efficient than DLSODE in calculating time. The time 

dependence of  
1y  is showed on a Fig. 3. 

A second example describes the modified oregonator 

exhibiting complicated limit cycle. This reaction includes 

following six elementary stages [15] 

A+Y X+P , 
1 0.084k  , 4

1 10k  ,  

X+Y 2P , 8

2 4 10k   , 5

2 5 10k 

   ,  

A+X 2W , 3

3 2 10k   , 7

3 2 10k   ,  

C+W X+Z , 5

4 1.3 10k   , 7

4 2.4 10k   ,  

2X A+P , 7

5 4 10k   , 11

5 4 10k 

   ,  

Z C+0.462Y , 
6 0.65k  ,  

where 
ik , 1 6i  , velocity constants of forward (with 

positive indices) and backward (with negative indices) 

elementary stages. There are 7 entities in this reaction, denoted 

by 

3A=BrO , C=M(n) , P=HOBr ,  

2W=BrO , 
2X=HBrO , Y=Br , Z=M(n+1) .  

In these notations M(n) is an ion of metal accelerant, 

M(n+1) is an oxygenated form of the ion. Let's denote 

concentrations of reagents by 

1 3= BrOc    , 2 = Brc    ,  3 = M nc    ,  

 4 2= HBrOc ,   5 = HOBrc ,  6 2= BrOc ,  7 M(n+1)c  .  

This reaction proceeds in an isothermal reactor with constant 

capacity with substance exchange. A corresponding system of 

equations is given below 

 1 1 3 5 1 1

1
pc v v v c c      


,  

 2 1 2 6 2 2

1
0.462 pc v v v c c      


,  

 3 4 6 3 3

1
pc v v c c     


,  

 4 1 2 3 4 5 4 4

1
2 pc v v v v v c c       


, (21)  

 5 1 2 5 5 5

1
2 pc v v v c c     


,  

 6 3 4 6 6

1
2 pc v v c c    


,  

 7 4 6 7 7

1
pc v v c c    


,  

 

 

Fig. 3 Time dependence of y1 (fragment) 
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where 125.5  and velocities 
1v , 

2v , …, 
6v

 
of stages are 

defined by formulas 

1 1 1 2 1 4 5v k c c k c c  ,  2

2 2 2 4 2 5v k c c k c  ,  

2

3 3 1 4 3 6v k c c k c  , 
4 4 3 6 4 4 7v k c c k c c  ,  

2

5 5 4 5 1 5v k c k c c  ,  
6 6 7v k c .  

Integration of the system (21) was made on an interval 

[0,1000] with an initial step equal to 510 . Inlet concentrations 

of reagent are given below 

1 0.14pc  , 
5

2 0.151 10pc   ,  

3

3 0.125 10pc   , 4 5 6 7 0p p p pc c c c    .  

Initial values of reagent concentrations are equal to 

1 0.1387c  , 6

2 0.1534 10c   ,  

3

3 0.1176 10c   , 7

4 0.3165 10c   ,  

3

5 0.1956 10c   , 6

6 0.5814 10c   ,  

5

7 0.631 10c   .  

Time dependence of [BrO2] is showed on a Fig. 4. 

Calculations were performed with the numerical Jacobi matrix. 

Solution of the problem was calculated by the algorithm 

RKMK2 with fi  = 5 623 and ji  = 533. Calculations with the 

L -stable scheme (2) only give fi =5 371 and ji =591. 

Practical accuracy in the end of the integration interval is as 

good as defined one. In calculations by DLSODE required 

accuracy 210  is achieved for defined accuracy equal to 410  

with computational costs fi =7 806 and ji =542. On higher 

accuracy of calculations DLSODE is more efficient than the 

constructed algorithm. It is a result of low order of accuracy of 

constructed numerical formulas. In case of high dimension of 

the problem (1) the constructed algorithm may be more 

efficient in time than DLSODE. 

IX. CONCLUSION 

The constructed algorithm RKMK2 is designed for low 

precision calculations — about 1% and lower. In this case, its 

maximum efficiency is reached. 

In RKMK2, with its parameters, one can specify different 

modes of calculations:  

(1) explicit methods of first or second order of accuracy 

with or without stability control;  

(2) explicit methods of alternating order and step;  

(3) L -stable method with or without freezing, both an 

analytical and a numerical Jacobi matrix. 

(4) with automatic selection of a numerical scheme.  

This allows us to apply this algorithm to solving both stiff 

and non-stiff problems. In calculations with automatic 

selection of a numerical scheme, the integration algorithm 

makes a decision whether a problem is stiff or not by itself.  

Using the inequality for stability control does not actually 

lead to increase of computational cost, because estimation of a 

maximum eigenvalue of the Jacobi matrix of (1) is carried out 

through a previously computed stages and does not lead to 

increase of number of computed values of function f . This 

estimation is rough. However, using stability control for 

limiting the step growth allows us to avoid the negative effects 

of roughness of estimation. Moreover, in some cases this leads 

to an exceptionally high growth of efficiency of the algorithm. 

In a settling region , the old errors tend to zero due to stability 

control and new ones are low, due to small values of 

derivatives of a solution. In some cases, following eigenvalue 

is estimated instead of a maximum one. An integration step 

becomes greater than a maximal admissible one, and with such 

a step the integration is carried out as long as the inequality for 

accuracy control is not violated. Typically, the number of such 

steps is small. However, the step may be an order of 

magnitude greater than the maximum step by a criterion of 

stability. After violation of the inequality for accuracy control, 

the step is reduced to a maximum admissible. This effect may 

occur many times, depending on length of a region of settling. 

As a result, an average integration step may be greater than the 

maximum admissible one. 

Application of the explicit first order method with an 

extended stability domain on a settling region allows us to 

increase step size by 4 times in comparison with the explicit 

second order method without increasing of computational cost. 

On transition regions, where accuracy of calculations has a 

defining role, the second accuracy order method is more 

efficient, though it has rather small stability domain. 

Combining methods of low and high orders applying an 

inequality for stability control, improves efficiency of 

calculations. 
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