
 

 

  
Abstract— In this work, we study the elliptic curve over the ring 

; ; where d is a  positive integer. More precisely in 
cryptography applications, we will give many various explicit 
formulas describing the binary operations calculus in  . 
The motivation for this work came from the observation that several 
practical discrete logarithm-based cryptosystems, such as ElGamal, 
the Elliptic Curve Cryptosystems. 
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I. INTRODUCTION 
ET d be an integer, we consider the quotient ring  
A =   where   is the finite field  

of order . Then the ring A is identified to the ring  
with ;  ie: A = {  +   | ;     },  See, [3] 
and, [5]. We consider the elliptic curve over the ring A which 
is given by equation 

where a, b, c are in A and  is inv ertible in A ; but we 
can  take  c = 1; see, [4]. 

• Notation 
Let a,  b  A  such that b is invertible in A and c = 1: So, We 
denote the elliptic curve over A by  and we write:  

 = { [X : Y : Z]   |
} if  and , we also write: 

 = { [X : Y : Z]   |
}. 

 

II. CLSSIFICATION OF ELEMENTS OF  
 

Let [X :Y :Z]  , where X, Y and Z are in A. We 
have two cases for Z: 

*  Z  invertible: then [X : Y : Z] = [X  : Y : 1]; hence 
we take  just [X: Y: 1].  
*   Z non invertible: So  Z = ; see [3] in this cases we have 
two cases for Y. 
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        -     Y invertible: Then  [X : Y : Z] = [X  : 1 : Z  ]; 
so we just take [X : 1 : ] ,  then is verified the equation of 

 . 
so we can write: 

  
a =  
b =  
X =  

We have: 
 

Which implies that : 
 

Then : 
 

Since,  is a base of the vector space A over then 
 so X =  and  hence 

 : 1 :0]. 

- Y non invertible: then we have ; so 
 is invertible so we take ; 

 thus,   
which is absurd. 
 
Proposition 1:  Every element of  , is of the form 

  or  ; where   and  we write 
 [X : Y : 1]   | }

. 
 

 

III. EXPLICIT FORMULAS 

 
We consider the canonical projection  defined by :  

 
 

 
We have  is a morphism of ring. 
 
* Let  the mapping defined by : 

 
 

 
 
The mapping is a surjective homomorphism of groups. 
 
Theorem 1 :  

• If then : 
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• If then : 
 

 
 

 
 

 
 

 
 

 
 
Proof :  Using the explicit formulas in W.Bosma and 
H.Lenstras article see, [13] we prove the theorem. 
 

IV. MAIN RESULTS 
1. Procedures:  

     The following Maple procedure will help us to 
calculate, expressively the sum of two 
points in the elliptic curve . 

 
• The procedure 
This procedure computes the sum of two points of  

which verify the condition (1) in the theorem. 
 

> := proc(P,Q, a, b)  
local x1,y1,z1,x2,y2,z2; 
x1:=P[1];y1:=P[2];z1:=P[3]; x2:=Q[1];y2:=Q[2];z2:=Q[3]; 
expand([y1*y2^2*x1+y1^2*y2*x2+x2^2*y1^2+x1*x2^2*y1+
a*x1^2*x2*y2+a*x1*x2^2*y1+a*x1^2*x2^2+b*x1*z2^2*y1
+b*x2*z1^2*y2+b*x1^2*z2^2+z1*z2^2*b*y1+z1^2*z2*b*y
2+x1*z1*z2^2*b, 
y1^2*y2^2+x2*y1^2*y2+a*x1*x2^2*y1+a^2*x1^2*x2^2+b*
x1^2*x2*z2+b*x1*x2^2*z1+b*y1*z2^2*x1+x1^2*z2^2*b+a
*b*x2^2*z1^2+y1*z1*z2^2*b+x1*z1*z2^2*b+x1*z1*z2^2*a
*b+x2*z1^2*z2*a*b+b^2*z1^2*z2^2, 
x1^2*x2*y2+x1*x2^2*y1+y1^2*y2*z2+y1*y2^2*z1+x1^2*x
2^2+y1^2*z2*x2+x1^2*y2*z2+a*x1^2*y2*z2+a*x2^2*y1*z
1+x1^2*x2*z2+a*x1*x2^2*z1+b*z1*z2^2*y1+b*z1^2*z2*y
2+b*z1*z2^2*x1] mod 2); 

end:  
 
   • The procedure 
     This procedure computes the sum of two points of  
which verify the condition (2) in the theorem. 
 
> := proc(P,Q, a, b) 
 local x1,y1,z1,x2,y2,z2; 
x1:=P[1];y1:=P[2];z1:=P[3]; x2:=Q[1];y2:=Q[2];z2:=Q[3]; 
expand([x1*y2^2*z1+x2*y1^2*z2+x1^2*y2*z2+x2^2*y1*z1
+a*x1^2*x2*z2+a*x1*x2^2*z1+b*z1*z2^2*x1+b*z1^2*z2*x
2, 
x1^2*x2*y2+x1*x2^2*y1+y1^2*y2*z2+y1*y2^2*z1+x1^2*y
2*z2+x2^2*y1*z1+a*x1^2*y2*z2+a*x2^2*y1*z1+a*x1^2*x
2*z2+a*x1*x2^2*z1+b*z1*z2^2*y1+b*z1^2*z2*y2+b*z1*z2
^2*x1+b*z1^2*z2*x2, 
x1^2*x2*z2+x1*x2^2*z1+y1^2*z2^2+y2^2*z1^2+x1*z2^2*
y1+x2*z1^2*y2+a*x1^2*z2^2+a*x2^2*z1^2] mod 2); end: 

  • The procedure 
   This procedure gives the image of an element of the ring 

A by the canonical projection  defined above. 
 

:=proc(X)  
coeff(X, epsilon, 0); end: 
 

  • The somme procedure 
   This procedure computes the sum of two points chosen 

arbitraily in , by using the procedures   and  
 

>somme:=proc(P,Q, a, b) 
if ([  (P[1]),  (P[2]),  (P[3])]=[  (Q[1]),  (Q[2]),  
(Q[3])]) 
then  (P, Q, a, b) 
else  (P, Q, a, b) 
end if; 
end: 
 

2. Binary operation 
 

Let  
 
Lemma 1.   
Let  and  two points in  
then : 
  
Proof : As , then by applying the formula (1) 
in theorem, we find the result. 
 
Lemma 2. 
Let  and  two points 
in , then : 
  
Proof : With the somme procedure, we find : 
 
> P:=[x1*epsilon, 1, 0];Q:=[t0+t1*epsilon, h0+h1*epsilon, 1]; 
a:=a0+a1*epsilon; b:=b0+b1*epsilon;  
collect(somme(P,Q, a, b), epsilon)mod2: 
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eval(%,epsilon^2=0):eval(%,epsilon^3=0):eval(%,epsilon^4=
0):eval(%,epsilon^5=0):eval(%,epsilon^6=0): 
eval(%,epsilon^7=0):eval(%,epsilon^8=0):eval(%,epsilon^9=
0); 
 
                        
 
 
               
 
                         
 
                          
 
                                 
 
         
which  proves the lemma. 
 
Lemma3.     
   Let   and   two  
points in   then : 
 

 +  

    

 
 

 
 
Proof : With the somme procedure we find : 
 
> P:=[x0+x1*epsilon, y1*epsilon, 1];Q:=[x0+t1*epsilon, 
h1*epsilon, 1]; 
collect(somme(P, Q, a, b,), epsilon) mod 2: 
eval(%,epsilon^2=0):eval(%,epsilon^3=0): 
eval(%,epsilon^4=0):eval(%,epsilon^5=0): 
eval(%,epsilon^6=0); 
 
                 
 
                 
 
 

 +  

    

 
 

 
 
Which gives the result. 
 
Lemma4. 

Let  and  
two points in , where  Then : 

 
 

 
 

 
 

 
Proof : With the somme procedure we find : 
 
> P:=[x0+x1*epsilon, y0+y1*epsilon, 1];Q:=[x0+t1*epsilon, 
h1*epsilon, 1];  
collect(somme(P,Q, a, b,),epsilon) mod2:eval(%,epsilon^2=0): 
eval(%,epsilon^3=0):eval(%,epsilon^4=0):eval(%,epsilon^5=
0):eval(%,epsilon^6=0); 
 
               
 
               
 

 
 

 
 

 
 

 
 
Which gives the result. 
 
Lemma5. 

Let  ; 
 two points of  , where 

, then : 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
Proof : With the somme procedure we find : 
 
> P:=[x0+x1*epsilon, y0+y1*epsilon, 1];Q:=[x0+t1*epsilon, 
y0+h1*epsilon,1];  
collect(somme(P,Q, a, b,),epsilon) mod2:eval(%,epsilon^2=0): 
eval(%,epsilon^3=0):eval(%,epsilon^4=0): 
eval(%,epsilon^5=0):eval(%,epsilon^6=0); 
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This gives the result. 
 
Lemma6. 

Let  ; 
 two points in , where 

, or , then : 
 
 

 
 

 
 

 
 

 
 

 
 

 
Proof : With the somme procedure we find . 
> P:=[x0+x1*epsilon, y0+y1*epsilon, 1];Q:=[t0+t1*epsilon, 
h0+h1*epsilon, 1];  
collect(somme(P,Q, a, b,), epsilon) mod 2: 
eval(%,epsilon^2=0):eval(%,epsilon^3=0): 
eval(%,epsilon^4=0):eval(%,epsilon^5=0):eval(%,epsilon^6=
0); 
 
               
 
 
               
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
Which gives the result. 
 

 

V. CONCLUSION 
Finally, in the field ; let m is the cost of multiplying;   

s is the cost of sum, and  i  is the cost of the reverse. Its clair 
that  we neglect the cost of the reverse and that his 
comparison. We have the following table: 
 

Table 1: 

Cost Cost of sum Cost of 
multiplying 

Theorem- case1   

Theorem- case2   

Lemma1 

Lemma2 

Lemma3 

Lemma4 

Lemma5 

Lemma6 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Graphic interpretation 
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• Result: 
 
   After these graphs, we see that the cost of  sum  and the cost 
of Multiplying of lemmas are less weak than  those of 
theorem. Hence the time complexity of  lemmas is lower than 
the time complexity  of  theorem; which shows the necessity 
of these lemmas. 
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