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Inertial Navigation by Interpolating the Flight Path
of Moving Objects Based on Acceleration or

Velocity Measurements
Peter Z. Revesz

Abstract—This paper presents solutions to two cases of the
inertial navigation problem, which is the problem of estimating
the flight path of a moving object based on partial information.
In the first case considered, only acceleration data and in the
second case considered only velocity data is assumed to be
available. In both cases simple and fast recurrence equation-
based algorithms are provided that can estimate the flight path
in O(n) computational time complexity where n is the number
of measurements.

Index Terms—acceleration, cubic spline, interpolation, inertial
navigation, velocity.

I. INTRODUCTION

Inertial navigation is the problem of estimating the flight
path of a moving object based on only acceleration or ve-
locity measurements. With the wide-spread availability of
GPS sensors, inertial navigation is still important when the
GPS system is not accessible, for example, when the moving
object is a submarine deep in the ocean or when the GPS
system is deliberately disrupted in the course of combat.
Understanding inertial navigation is also important for biology
because several animal species, including different kinds of
birds, seem to use inertial navigation to find they way.

The problem of inertial navigation is more challenging than
the simpler problem of estimating the flight path of a moving
object based on data on its position at either sporadic or regular
periodic time intervals. This simpler problem may be solved
using several interpolation methods. For example, the problem
can be solved using cubic spline interpolation for functions
of one time variable [3]. Cubic splines can be described as
follows.

Let f(t) be a function fromR toR. Suppose we know about
f only its value at locations t0 < . . . < tn. Let f(ti) = ai.
Piecewise cubic spline interpolation of f(t) is the problem of
finding the bi, ci and di coefficients of the cubic polynomials
Si for 0 ≤ i ≤ n− 1 written in the form:

Si(t) = ai + bi(t− ti) + ci(t− ti)
2 + di(t− ti)

3 (1)

where each piece Si interpolates the interval [ti, ti+1] and
fits the adjacent pieces by satisfying certain smoothness con-
ditions. Taking once and twice the derivative of Equation (1)
yields, respectively, the equations:
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S′i(t) = bi + 2ci(t− ti) + 3di(t− ti)
2 (2)

S′′i (t) = 2ci + 6di(t− ti) (3)

Equations (1-3) imply that Si(ti) = ai, S′i(ti) = bi and
S′′i (ti) = 2ci. For a smooth fit between the adjacent pieces,
the cubic spline interpolation requires that the following con-
ditions hold for 0 ≤ i ≤ n− 2:

Si(ti+1) = Si+1(ti+1) = ai+1, (4)

S′i(ti+1) = S′i+1(ti+1) = bi+1 (5)

S′′i (ti+1) = S′′i+1(ti+1) = 2ci+1 (6)

This paper is organized as follows. Section II describes
the cubic splines interpolation method using the tridiagonal
matrix approach. Section III describes an alternative recurrence
equation-based approach. Section IV presents an example of
cubic spline interpolation of a moving object and compares the
two approaches. Section V describes the generalization of the
two approaches to objects that move in 3D space. Section VI
considers the cubic spline interpolation problem in the case
when only velocity measurement data is available. Finally,
Section VII gives some conclusions and describes several open
problems and future work.

II. A TRIDIAGONAL MATRIX-BASED SOLUTION

In this section we present a cubic spline interpolation using
a tridiagonal matrix-based approach. Let hi = ti+1 − ti.
Substituting Equations (1-3) into Equations (4-6), respectively,
yields:

ai + bihi + cih
2
i + dih

3
i = ai+1 (7)

bi + 2cihi + 3dih
2
i = bi+1 (8)

ci + 3dihi = ci+1 (9)

Equation (9) yields a value for di, which we can substitute
into Equations (7-8). Hence Equations (7-9) can be rewritten
as:
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ai+1 − ai = bihi +
2ci + ci+1

3
h2
i (10)

bi+1 − bi = (ci + ci+1)hi (11)

di =
1

3hi
(ci+1 − ci). (12)

Solving Equation (10) for bi yields:

bi = (ai+1 − ai)
1

hi
− 2ci + ci+1

3
hi (13)

which implies for j ≤ n− 3 the condition:

bi+1 = (ai+2 − ai+1)
1

hi+1
− 2ci+1 + ci+2

3
hi+1 (14)

Substituting into Equation (11) the values for bi and bi+1

from Equations (13-14) yields:

(ai+1 − ai)
1

hi
− (2ci + ci+1)

hi

3
+ (ci + ci+1)hi =

(ai+2 − ai+1)
1

hi+1
− (2ci+1 + ci+2)

hi+1

3

The above can be rewritten as:

2ci+1 + ci+2

3
hi+1 −

2ci + ci+1

3
hi + (ci + ci+1)hi =

(ai+2 − ai+1)
1

hi+1
− (ai+1 − ai)

1

hi

and

(2ci+1 + ci+2)hi+1 − (2ci + ci+1)hi + 3(ci + ci+1)hi =

(ai+2 − ai+1)
3

hi+1
− (ai+1 − ai)

3

hi

and furher as

(2ci+1 + ci+2)hi+1 + (ci + 2ci+1)hi =

(ai+2 − ai+1)
3

hi+1
− (ai+1 − ai)

3

hi

which is equivalent to:

hici + 2(hi + hi+1)ci+1 + hi+1ci+2 =

(ai+2 − ai+1)
3

hi+1
− (ai+1 − ai)

3

hi

and

3

hi
ai −

(
3

hi
+

3

hi+1

)
ai+1 +

3

hi+1
ai+2 =

hici + 2(hi + hi+1)ci+1 + hi+1ci+2

The above holds for 0 ≤ i ≤ n− 3. However, changing the
index downward by one the following holds for 1 ≤ j ≤ n−2:

3

hi−1
ai−1 −

(
3

hi−1
+

3

hi

)
ai +

3

hi
ai+1

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 = (15)

The above is a system of n − 1 linear equations for the
unknown position values ai for 1 ≤ i ≤ n in terms of
the measured acceleration values 2ci for 0 ≤ i ≤ n. By
Equation (3) S′′0 (t0) = 2c0 and by extending Equation (6)
to i = n− 1, S′′n−1(tn) = 2cn.

The cubic spline interpolation allows us to specify several
possible boundary conditions regarding the values of a0 and
an. A commonly used boundary condition, called a natural
cubic spline, assumes that a0 = an = 0, which is equivalent
to saying that the moving object starts at position 0 and returns
to it at the end of its flight. This is a natural condition because
birds can be expected to return to their nests and airplanes can
be expected to return to their hangars. Hence this is used as
a common default condition when there is no better boundary
value available. However, we can assume any boundary value
for f(t0) = a0 and f(tn) = an if they are known.

In solving a cubic spline, a uniform sampling is also
commonly assumed to be available. This is natural to assume
because accelerometers can send a signal every few seconds.
In that case each hi has the same constant value h. Then
multiplying Equation (15) by h/3 yields:

ai−1 − 2ai + ai+1 =
h2

3
(ci−1 + 4ci + ci+1) (16)

Since the values of ci are known, the values of ai can
be found by solving a particular tridiagonal matrix-vector
equation Ax = B. The matrices can be represented as follows:

A =



1 0 0 0 . . . 0 0 0 0
1 −2 1 0 . . . 0 0 0 0
0 1 −2 1 . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 1 −2 1 0
0 0 0 0 . . . 0 1 −2 1
0 0 0 0 . . . 0 0 0 1



the vector of unknowns is:

x =


a0
a1
...
an



and the vector of known constants is:
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B =


f(t0)

h2

3 (c0 + 4c1 + c2)
...

h2

3 (cn−2 + 4cn−1 + cn)
f(tn)

.

The above describes a system of n + 1 linear equations
with n + 1 unknowns. Such a system normally yields a
unique solution except in some special cases. Moreover, such
a tridiagonal matrix system can be solved in O(n) time. Once
the ai values are found, the di and the bi values also can be
found by Equations (12) and (13), respectively. Computing the
bi and di coefficients can be done also within O(n) time.

The above solution to the inertial navigation problem seems
new, although the reverse problem of finding the acceleration
values given the position values is a straightforward cubic
spline problem. The novelty of the above approach is in Equa-
tion (16), which highlights that three consecutive a variables
could be considered the unknowns and can be expressed by
three consecutive c constants.

III. A SIMPLER RECURRENCE EQUATION-BASED
SOLUTION

Instead of using a tridiagonal matrix, in this section we give
a more direct and effective method for solving the problem
of interpolating the location of a moving object described by
a function f(t) when we know only the acceleration of the
object at times t0 < . . . < tn. The measured acceleration
value at any time ti is twice the value of the corresponding
constant ci, that is, f ′′(ti) = 2ci. Hence in this case we need
to find a piecewise cubic spline interpolation of f(t) by finding
the ai, bi and di coefficients of the cubic polynomials Si for
0 ≤ i ≤ n − 1 written in the form of Equation (1). At first
note that Equation (11) implies:

bi = bi−1 + (ci−1 + ci)hi−1 (17)

The above can be used to express any bi for i > 0 in terms
of the initial velocity b0 and the ci coefficients, the known
constants, as follows:

bi = b0 +
∑

1≤k≤i

(bk − bk−1) = b0 +
∑

1≤k≤i

(ck−1 + ck)hk−1

Further, we can rewrite Equation (10) as:

ai = ai−1 + bi−1hi−1 +
2ci−1 + ci

3
h2
i−1 (18)

The above can be used to express each ai for i > 0 in terms
of the bi and ci constants as follows:

ai = a0 +
∑

1≤j≤i

(aj − aj−1) =

a0 +
∑

1≤j≤i

(
bj−1hj−1 +

2cj−1 + cj
3

h2
j−1

)
(19)

By substituting bj−1 in the above, we obtain:

ai = a0 +
∑

1≤j≤i

((
b0 +

∑
1≤k≤j−1

(ck−1 +

ck)hk−1

)
hj−1 +

2cj−1 + cj
3

h2
j−1

)
(20)

Clearly, we can find first all the bi in O(n) time, and then
we can compute all the ai also in O(n) time. All the di can
be also computed in O(n) time using Equation (12). Hence in
this case also the piecewise cubic interpolation can be found
in O(n) time.

IV. EXAMPLE OF AN OBJECT IN FREE FALL

Suppose that an object is released from a height of 400
feet and falls to the ground in five seconds. Suppose also
that we measure the object’s acceleration at every second
until five seconds after release to be always −32ft/sec2 due
to the gravitational pull of the earth. Find a cubic spline
approximation for the object’s position at all times from the
release to five seconds after.

As the object falls to the earth, its elevation is decreasing.
Hence the gravitational force is considered with a negative
sign. The cubic polynomials we need to find for the intervals
[0, 1], [1, 2], [2, 3], [3, 4] and [4, 5] can be expressed as follows:


S0(t) = a0 + b0t+ c0t

2 + d0t
3

S1(t) = a1 + b1(t− 1) + c1(t− 1)2 + d1(t− 1)3

S2(t) = a2 + b2(t− 2) + c2(t− 2)2 + d2(t− 2)3

S3(t) = a3 + b3(t− 3) + c3(t− 3)2 + d3(t− 3)3

S4(t) = a4 + b4(t− 4) + c4(t− 4)2 + d3(t− 4)3

We have n = 6, c0 = −16, c1 = −16, c2 = −16, c3 = −16
c4 = −16 c5 = −16 and the uniform time step size is h = 1
second. By our assumption f(0) = 400 and f(4) = 0. Hence
matrix A and the vectors x and B are:

A =


1 0 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
0 0 0 0 0 1

,

x =


a0
a1
a2
a3
a4
a5


and
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B =



400

1
3

(
− 16 + 4(−16)− 16

)
= −32

1
3

(
− 16 + 4(−16)− 16

)
= −32

1
3

(
− 16 + 4(−16)− 16

)
= −32

1
3

(
− 16 + 4(−16)− 16

)
= −32

0


We can solve the above tridiagonal linear system to be:

a0 = 400

a1 = 384

a2 = 336

a3 = 256

a4 = 144

a5 = 0

Solving for the bi coefficients by Equation (13) gives:

b0 = 1
1 (384− 400)− 1

3 (−16− 32) = 0

b1 = 1
1 (336− 384)− 1

3 (−16− 32) = −32

b2 = 1
1 (256− 336)− 1

3 (−16− 32) = −64

b3 = 1
1 (144− 256)− 1

3 (−16− 32) = −96

b4 = 1
1 (0− 144)− 1

3 (−16− 32) = −− 128

Solving for the di coefficients by Equation (12) gives:

d0 =
1

3
(−16− (−16)) = 0

d1 =
1

3
(−16− (−16)) = 0

d2 =
1

3
(−16− (−16)) = 0

d3 =
1

3
(−16− (−16)) = 0

d4 =
1

3
(−16− (−16)) = 0

The above values show that an object in free fall travels a
quadratically increasing distance. Using the calculated values,
we can now describe the cubic spine interpolation as follows:

S0(x) = 400− 16t2

S1(x) = 384− 32(t− 1)− 16(t− 1)2

S2(x) = 336− 64(t− 2)− 16(t− 2)2

S3(x) = 256− 96(t− 3)− 16(t− 3)2

S4(x) = 144− 128(t− 4)− 16(t− 4)2

It can be calculated that in each piece the cubic spline
interpolation can be simplified to 400 − 16t2, which agrees

with the physics equation for the position of a free falling
object that starts with zero velocity from an elevation of 400
feet above the surface of the earth.

Let us next consider the calculation of the same problem
using the alternative method. Since the initial velocity is b0 =
0, we can calculate by Equation (17) that:

b1 = 0 + (−16 + (−16)) = −32
b2 = −32 + (−16 + (−16)) = −64
b3 = −64 + (−16 + (−16)) = −96
b4 = −96 + (−16 + (−16)) = −128

Similarly to the previous approach, Equation (12) can be
used to calculate the di constants. Hence we get the same
solution as with the previous method.

In comparing the two approaches, we see that they require
different boundary conditions. For the first method, the tridi-
agonal system required only the initial and the final position
of the moving object. The second method required the initial
position and the initial velocity. While both methods work
in O(n) time where n is the number of past acceleration
measurements, the recurrence equation-based method can be
updated easier when a new measurement data is obtained.
Hence it may be more practical in time-critical applications.

V. OBJECTS MOVING IN 3D SPACE

A moving object, such as an airplane, can fly in 3-
dimensional space along latitude, longitude as well as ele-
vation. To model the flight of the airplane, it is possible to
describe its movement by a parametric solution consisting of
separate functions fx(t), fy(t) and fz(t) for the movement
along the x, the y and the z-axis, respectively. Accelerometers
signal separately the movement along these three dimensions.
Hence it is possible to find a separate cubic spline interpolation
for the the functions fx(t), fy(t) and fz(t). Moreover, it is
possible to use different kinds of boundary conditions for each
of the separate interpolations. For example, to interpolate the
elevation function fz(t), one may use the initial conditions
fz(t0) = fz(tn) = 0 when an object is expected to start and
finish its movement on the ground, while for fx(t) an initial
position different from zero and some initial velocity may be
used.

VI. INTERPOLATING THE FLIGHT PATHS OF OBJECTS
USING VELOCITY MEASUREMENT DATA

As a special case of the piecewise cubic interpolation
problem, suppose that f describes the motion of a moving
object, and we know about f only its speed at locations
x0 < . . . < xn. Let f ′(xi) = bi. Such a situation could
naturally arise when we have available only an odometer
instead of an accelerometer. In this case, piecewise cubic
spline interpolation of f is the problem of finding the ai, ci and
di coefficients of the cubic polynomials Si for 0 ≤ i ≤ n− 1
written in the form of Equation (1).
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To solve this case of piecewise cubic interpolation, note first
that Equations (10-11) imply that:

2ci + ci+1 =
3

h2
i

(ai+1 − ai)−
3

hi
bi (21)

ci + ci+1 =
1

hi
bi+1 −

1

hi
bi (22)

Subtracting the second from the first equation yields:

ci =
3

h2
i

(ai+1 − ai)−
2

hi
bi −

1

hi
bi+1 (23)

Hence by shift of indices we get:

ci+1 =
3

h2
i+1

(ai+2 − ai+1)−
2

hi+1
bi+1 −

1

hi+1
bi+2

Substituting the above two values for ci and ci+1 into
Equation (11) and rewriting we get:

3

h2
i

(ai+1 − ai)−
1

hi
bi −

2

hi
bi+1 +

3

h2
i+1

(ai+2 − ai+1)−
2

hi+1
bi+1 −

1

hi+1
bi+2 = 0

Collecting the bs and the as on different sides of the
equation yields:

1

hi
bi +

2

hi
bi+1 +

2

hi+1
bi+1 +

1

hi+1
bi+2 =

3

h2
i

(ai+1 − ai) +
3

h2
i+1

(ai+2 − ai+1)

Multiplying both sides by hihi+1, we get:

hi+1bi + 2hi+1bi+1 + 2hibi+1 + hibi+2 =
3hi+1

hi
(ai+1 − ai) +

3hi

hi+1
(ai+2 − ai+1)

The above can be rewritten as:

−3hi+1

hi
ai +

(
3hi+1

hi
− 3hi

hi+1

)
ai+1 +

3hi

hi+1
ai+2 =

hi+1bi + 2(hi+1 + hi)bi+1 + hibi+2

Finally, further simpifying yields:

−3hi+1

hi
ai +

(
3hi+1

hi
− 3hi

hi+1

)
ai+1 +

3hi

hi+1
ai+2 =

hi+1(bi + 2bi+1) + hi(2bi+1 + bi+2) (24)

The above is another system of linear equations that can be
represented by a tridiagonal matrix. In this case the unknown
values are the ais. This tridiagonal system also can be solved
in O(n) time.

VII. CONCLUSIONS AND OPEN PROBLEMS

Inertial navigation relies heavily on the accuracy of ac-
celerometers that need to signal at periodic time intervals the
acceleration values in all three dimensions. Another problem
is speed. Even an O(n) method is too slow when the object is
traveling at very high speeds. In that case, we need a solution
that can be easily updated with each new accelerometer
measurement. The balancing of computational efficiency with
computational accuracy is a challenging problem. We are
currently developing methods that describe a trade-off in these
two variables.

We also implemented the cubic spline interpolation method
in the MLPQ constraint database system [7]. The advantage
of the implementation is that the moving object representation
can be queried using constraint query languages [6], which
are extensions of SQL and Datalog. This approach was used
successfully in dealing with other interpolation data, such
as real estate prices [5] and other moving objects [1], [4].
The MLPQ system also provides a convenient user-friendly
graphical user interface that enables animation and other
visualizations of moving objects.

Recurrence equations may be applicable also to other in-
terpolation problems in data mining, data classification and
efficient data encryption and transmission [2], [9], [11], [12],
[13], [8], [14].
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