
 

 

  
Abstract— In this paper, we present an empirical study for 

modeling the citation distribution of papers of individual authors. We 
analyzed the citation records of applicants to the so called 
“Abilitazione Scientifica Nazionale” (ASN), a new procedure, based 
on scientific qualification criteria, for the recruitment of academic 
staff in Italy. We analyzed citation records of 131 physicists who 
were applicants in the ASN for a full professorship in the specific 
area of Condensed Matter Physics, using different mathematical 
models, namely: zeta, geometric, logarithmic and Pareto (of the first 
kind). Each model was “estimated”, on the basis of the observed 
citation pattern, via minimum Kullback-Leibler distance method. The 
geometric distribution was also considered by using a trimmed 
version of the estimator. As a measure of the effectiveness of the 
model, we computed the Kolmogorov-Smirnov distance. The most 
remarkable result is that the geometric distribution can provide an 
adequate tool for the modelization of the citation distribution of an 
author. Model fit may be further improved by adopting the trimming 
method. 
 

Keywords—Citation analysis, geometric distribution, trimmed 
estimator, Kullback-Leibler estimation, size-frequency data. 

I. INTRODUCTION 
owadays, research assessment is often based on citation 
counting techniques, used for evaluating scientific 
activities of individual researchers or research institutions. 

Number of citations received by articles, or individuals, are 
frequently used as a measure of “quality” in science. In 
citation analysis, there are two possible ways to interpret 
citation distributions and, accordingly, there are also two 
possible ways to fit citation distributions with probabilistic 
models, namely, i) the size-frequency or ii) the rank-frequency 
approach. In the first case, we consider the number of citations 
(for a given author) of each paper as observations that 
constitute a sample. Hence, the frequency of an observation c 
represents the number of articles with exactly c citations. 
Following a second approach, we may observe the rank of a 
paper and the frequency of its citations. In this case, the 
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frequency of an observation, say r, is the number of citations 
of the paper ranked at the r-th position and we speak of rank-
frequency distribution. In other words, we could interpret the 
citations as empirical observations (first approach) or 
frequencies (second approach). In other words, we could 
interpret the citations of papers as empirical observations 
(size-frequency case) or frequencies (rank-frequency case).  In 
this paper we consider the problem form the point of view of 
the first approach, that is, the size-frequency analysis, 
therefore we try to answer to the question “Which is the best 
model for representing the citation-frequency curve?” 

Several mathematical models have been proposed in the 
literature for the analysis of the citation distributions of the 
papers of different authors. Examples of models for citation 
distribution analysis are, for example, the Price distribution 
[1], exponential, stretched exponential (or Weibull 
distribution; [2]), Yule, Tsallis distribution, also known as q-
exponential [3], [4], log-normal, discrete generalized beta 
distribution [5], [6], [7], [8], logarithmic distribution, to cite a 
few; and last but not least, a class of “Paretian” citation 
models which are of special interest in bibliometrics and in 
citation analysis. 

The paper is organized as follows. In section II we present 
four different well known models and propose a general 
procedure to estimate their (unknown) parameters, in order to 
fit citation data as accurately as possible. Then, we present our 
dataset, which consists of 131 physicists who were applicants 
for a full professorship (in the specific area of Condensed 
Matter Physic) in Italy. Finally, we describe the results yielded 
by the estimation procedure in terms of goodness-of-fit 
between theoretical (estimated) and real (observed) data. The 
obtained results surprisingly show that, generally, the citation 
distributions of the considered authors comply to the 
geometric model, which can thereby represent a simple and 
valid alternative to other models, which are typically more 
popular in the field of bibliometrics. 

 

II. MODEL DISTRIBUTIONS 
We assume that, for a fixed author, the number of papers 

with c citations received is given by a formula 𝑛𝑛(𝑐𝑐,𝜶𝜶), 
𝑐𝑐 = 1,2, …, where alpha is a (possibly vectorial) parameter. 
The unknown parameter alpha can be determined via a fitting 
procedure. By definition, the function n must satisfy the 
constraint ∑ 𝑛𝑛(𝑐𝑐,𝜶𝜶) = 𝑁𝑁∞

𝑐𝑐=1 , where N represents the author’s 
total number of publications with at least one citation. We 
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might also give a probabilistic interpretation of n by noting 
that this function must be proportional to a probability mass 
function. Indeed  

� 𝑓𝑓(𝑐𝑐,𝜶𝜶) = 1
∞

𝑐𝑐=1
 

 
where 𝑓𝑓(𝑐𝑐,𝜶𝜶) = 𝑁𝑁−1 ∙ 𝑛𝑛(𝑐𝑐,𝜶𝜶). In this form, f represents the 
probability mass function (p.m.f.) of a discrete random 
variable with support {1,2,3, … }. 

In this paper we shall consider the following models of 
p.m.f.. 

A. Zeta distribution 

The p.m.f. is  𝑓𝑓(𝑐𝑐,𝛼𝛼) = 𝑐𝑐−𝛼𝛼

𝜁𝜁(𝛼𝛼)
 , 𝛼𝛼 > 1, where 𝜁𝜁(𝛼𝛼) =

∑ 𝑐𝑐−𝛼𝛼∞
𝑐𝑐=1  denotes the Riemann zeta function ([9], p.527). This 

distribution is also referred to as discrete Pareto distribution 
and, depending on the context, it is also called Zipf 
distribution (see e.g. [10]). In the bibliometric literature, this 
formula is also known to as power-law distribution. When 𝛼𝛼 is 
set equal to 2, 𝜁𝜁(2) = 𝜋𝜋2

6
, we obtain the Lotka distribution  

[11], [12]. Somewhat strangely, in the literature the term 
Lotka’s law is frequently used, in a more general sense than 
that used by Lotka [11], to refer to the above formula 
𝑐𝑐−𝛼𝛼𝜁𝜁(𝛼𝛼)−1 as a size-frequency density function expressing the 
number/proportion of articles with exactly c citations [13], 
[14], [15], [16], [17], [18]. In applications, the “Lotka’s law” 
is probably the simplest and the most used model for the 
analysis of citation frequency data.  

B. Geometric distribution 
We consider the p.m.f. of the geometric distribution in the 
following form: 𝑓𝑓(𝑐𝑐,𝛼𝛼) = 𝛼𝛼(1 − 𝛼𝛼)𝑐𝑐 , 0 < 𝛼𝛼 < 1. This model 
is also known as shifted geometric, because its support does 
not contains the value 𝑐𝑐 = 0. The geometric distribution  is an 
instance of a power series distribution (PSD, see [9]). A PSD 
follows the probability mass function of the type 𝑏𝑏−1 𝑎𝑎𝑐𝑐𝜃𝜃𝑐𝑐 , for 
𝑐𝑐 = 0,1,2, …  where 𝑎𝑎𝑐𝑐 ≥ 0, and 𝜃𝜃 (𝜃𝜃 > 0) is the so-called 
power parameter, and 𝑏𝑏 = ∑ 𝑎𝑎𝑖𝑖𝜃𝜃𝑖𝑖∞

𝑖𝑖=0  is the series function. 
C. Logarithmic distribution 
 The p.m.f. is 
 

𝑓𝑓(𝑐𝑐,𝛼𝛼) = −[log(1 − 𝛼𝛼)]−1𝑐𝑐−1𝛼𝛼𝑐𝑐 , 0 < 𝛼𝛼 < 1 
 
(see [9], p.302). 

D. Pareto distribution 

Let 𝑓𝑓(𝑐𝑐,𝛼𝛼) = ∫ 𝑙𝑙(𝑦𝑦,𝛼𝛼) 𝑑𝑑𝑑𝑑𝑐𝑐+0.5
𝑐𝑐−0.5 , where 

𝑙𝑙(𝑦𝑦,𝛼𝛼) = (𝛼𝛼 − 1)0.5𝛼𝛼−1𝑦𝑦−𝛼𝛼 , 𝑦𝑦 ≥ 0.5, 𝛼𝛼 > 1 

(see [19] p.574). The Pareto distribution is a continuous 
variant of the zeta distribution described above. For this 
reason, 𝑙𝑙 is also known as continuous Lotka function (usually 
considered on the domain [1,∞)�). The model 𝑙𝑙 is also known 
as the Pareto distribution of the first kind 𝑃𝑃(𝐼𝐼)(0.5,𝛼𝛼), where 
𝛼𝛼 > 1 is the shape parameter [20]. Then, in this case the p.m.f. 
is obtained from the (continuous) distributional model 𝑃𝑃(𝐼𝐼), 
by continuity correction. In order to warrant the existence of 

its expectation, 𝜇𝜇 = 𝛼𝛼−1
𝛼𝛼−2

 , the condition 𝛼𝛼 > 2 must be 
assumed (unless to consider a truncated  -i.e. with “cutoff”- 
version of the distribution). 

Denote by 𝑐𝑐𝑖𝑖  the number of citations gained by the i-th 
paper, 𝑖𝑖 = 1, … ,𝑁𝑁. Let 𝐶𝐶 = ∑ 𝑐𝑐𝑖𝑖𝑁𝑁

𝑖𝑖=1  the total number of 
citations (of an author). And let 𝑛𝑛𝑗𝑗  the number of papers with 
exactly j citations. Let 𝐹𝐹𝑁𝑁∗(𝑡𝑡) be the empirical distribution 
function, defined as 𝐹𝐹𝑁𝑁∗(𝑡𝑡) = ∑ 𝑛𝑛𝑗𝑗

𝑁𝑁𝑗𝑗≤𝑡𝑡  , for every 𝑡𝑡 ∈ ℝ. 
Since in our context it is hard to assume the independence 

between observations, we rely on the estimation approach 
given by the minimum distance (MD) method (see [21], p.65-
67; [22], [23]), by adopting the Kullback-Leibler distance. 
Remember that the mimimum distance estimate of the 
parameter 𝜶𝜶, with respect to the Kullback-Leibler distance, is 
the value of 𝜶𝜶 for which 
 

−∑ 𝑛𝑛𝑗𝑗  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑗𝑗,𝜶𝜶)𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗=1 = 𝑚𝑚𝑚𝑚𝑚𝑚𝜶𝜶�−∑ 𝑛𝑛𝑗𝑗  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑗𝑗,𝜶𝜶)𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗=1 �. 
 

It is worth noting that, under the independence assumption, the 
minimum Kullback-Leibler estimator coincides with the 
maximum likelihood estimator. Otherwise said, we search for 
the point 𝜶𝜶� for which the function ∑ 𝑛𝑛𝑗𝑗  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑗𝑗,𝜶𝜶)𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗=1  attains 
its absolute maximum value, given the set of observed pairs 
�𝑗𝑗,𝑛𝑛𝑗𝑗 �. All the models considered depend on two parameters, 
one for normalization (N), and one (𝛼𝛼, as a scalar parameter) 
that characterizes the shape of the citation distribution. 

III. DATASET 
For a case study, we examined publication and citation data 

for applicants to the so called “Abilitazione Scientifica 
Nazionale” (ASN), a nation-wide evaluation based on 
scientific qualification criteria for the recruitment of academic 
staff in Italy. These data were also considered elsewhere for a 
comparative study concerning 13 different bibliometric 
indices [24],[25]. The ASN involved tens of thousands of 
candidates. Here we focus on its first edition, year 2012 (for 
candidates, the deadline for applications was November 20, 
2012), so called ASN 2012.  

The evaluation relied completely on applicants' research 
productivity (and it does not require any personal interaction 
between evaluators and candidates). An expert panel of 
evaluators (a Committee of five members) was asked to 
approve (‘‘habilitate’’) or to reject each candidate. In Italy, 
habilitation is necessary to be eligible for a full professorship. 
Precisely, we consider a cohort of 131 physicists who were 
applicants in the ASN 2012 for a full professorship (from the 
original sample of 149 applicants, 18 scientists were discarded 
from the analyses due to insufficient citation data -e.g. an h-
index less than 2- or difficulties in identifying the single 
scientist). The whole sample can be considered as highly 
homogeneous, in that information regarding individual 
publications are collected from a single well-defined area 
within Physics, i.e. Condensed Matter Physics, and all 
candidates must be considered on a similar level of scientific 
maturity and similar academic qualifications. 

The publication and citation data were retrieved from 
Scopus in January 2014. Table I summarizes some of the most 
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important citation metrics concerning our dataset: C=total 
number of citations; N=total number of cited papers; 
C/N=average number of citations per paper; 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚  = citation 
count of the most cited paper; h=h-index g = g-index [26]; R= 
R–index [27]; basic statistics: Mean = Arithmetic mean; 𝑄𝑄𝑖𝑖  = 
i-th quartile; Min = minimum: Max = maximum; SD = 
standard deviation. 
 

TABLE I:  Main characteristics for the 
131 datasets analyzed in the present study 

 
 C N C/N 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚  h g R 

Mean 2206 85 25 359 21.6 39.7 37 

Min 18 5 3 5 2 3 3.31 

Max 13916 328 102 3068 53 200 102.1 

Q1 1156 57 16 104 18 29 26.1 

Q2 1786 77 21 177 22 40 36.7 

Q3 2740 107 31 330 27 48.8 44.1 

SD 1935 51 16 543 8.7 18.2 17.3 

 
The applicants published a total of T=13347 papers, N=11079 
of which cited at least once. The total number of citations was 
C=288972. We do not removed self-citations. The average 
percentage of uncited paper was 17%. The publications (cited 
at least once) received an average of 25 citations each (median 
= 23). The average percentage of citations of the most cited 
publication was 16%. The 77% of the authors received at least 
1000 citations, and approximately 44% of the authors had at 
least 100 publications cited at least once. The most prolific 
author published 405 papers.  
It is also of interest to analyze the dataset according to the 
values of the famous Hirsch index h, defined as the maximum 
number of articles with at least h citations each, and other h-
type indices, viz., the g- and R-indices. Generally, h-type 
indices are aimed at assessing scientists, by summarizing 
(based on citation data) both their productivity and impact on 
the scientific community by a single number. The applicants’ 
h-index values were on average 21.6 (median = 22), and 
ranged from a minimum of 2 to a maximum of 53. We found 
an average h-index of 21.6. The maximum observed value for 
h was 53. In contrast, only 13% of the scientists  have an h-
index smaller than 10. As for the other considered h-type 
indices, Egghe [26] defines the g-index as follows: “The 
highest number 𝑔𝑔 of papers that together received 𝑔𝑔2 or more 
citations”. Differently, the R–index  is defined as the square 
root of the sum of citations in the Hirsch core (that is, the set 
consisting of the most cited h papers). The R–index and the g–
index present very similar results, as already pointed out in 
[28], and are both highly correlated with 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 . Then, it may 
be argued that their values could be inflated by a single highly 
cited paper. Besides, it is known that the h-index is positively 
correlated with the total number of citations C as well as to the 
number of publications N [29]. On the other hand, increasing 
publications alone, or the total number of citations alone, or 
C/N alone, does not have immediate effect on the h-index. 
Summarizing, the h-index combines in a simple way both 
productivity (N) and quality (C/N), but it is relatively 

insensitive to one (or few) very highly cited papers and, at the 
same time, it does not take into account the citation counts of 
papers with fewer than h citations. In short, the h-index 
captures only “a small amount of information about the 
distribution of a scientist’s citations” ([30], p. 2). 

IV. RESULTS 
As discussed above, the main goal of this analysis was to 

obtain an estimate of the number of papers with c citations, for 
every 𝑐𝑐 ∈ {1,2, … , 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 }, using a theoretical model 
distribution. Based on the empirical observations, we estimate 
each one of the considered models and we compute a 
Kolmogorov-Smirnov (K-S) distance as a discrepancy 
measure (between observed and fitted data) for goodness-of-fit 
purposes. 

Indeed, the K-S distance can be used (here only for 
descriptive and comparative purposes) to compare the 
different distributional assumptions and to identify the model 
which better complies with observed citation frequency data, 
among those considered. We recall that the K-S statistic, say 
𝐷𝐷𝑁𝑁 , is defined as the maximum (vertical) distance between the 
empirical and the estimated theoretical distribution function 
𝐹𝐹𝛼𝛼�(𝑡𝑡), that is, in symbols, 𝐷𝐷𝑁𝑁 = sup𝑡𝑡 |𝐹𝐹𝛼𝛼�(𝑡𝑡) − 𝐹𝐹𝑁𝑁∗(𝑡𝑡)|. For 
taking into account the sample dimension, we also compute 
the statistic 𝐷𝐷𝑁𝑁∗ = 𝐷𝐷√𝑁𝑁, more useful for comparisons 
between different sizes. 

We observe that, frequently, the sets of citations contain 
outliers, that is, some author may have one (or few) article(s) 
which has been cited an outstandingly high number of times, 
compared to all his (or her) other papers. This may be due to 
several reasons (“age” of the paper, number of co-authors, 
etc.). We note that the presence of outliers has a negative 
influence on the geometric model. Table 2 reports the 
correlation coefficients between the K-S distance and some of 
the most important bibliometric indicators, namely: the h-
index; the total number of citations C; the number of papers 
with at least one citation, N; the average number of citations 
per paper C/N and the number of citations of the most cited 
paper  𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 . From data reported in Table 2, we can observe a 
quite strong dependence between the K-S distance between 
empirical and geometric distribution and the maximum 
number of citations (𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ), and thereby the average number of 
papers (C/N). This result suggest that, for the geometric 
model, the goodness-of-fit could be enhanced by excluding 
from the sample the highest observed values, which can 
actually be considered as outliers. In particular, we find a 
satisfactory improvement of the goodness of fit by trimming 
the 5% of the highest observations in each sample dataset 
(note that, however, the K-S distance is evaluated over the 
whole sample). As the MD estimator for the geometric 
distribution is the reciprocal of the sample mean, then we 
estimate 𝛼𝛼 by the reciprocal of a trimmed (truncated) sample 
mean, which is less sensitive to outliers and is especially 
suitable for dealing with heavy tailed distributions. However, 
we observed that this technique has a negative effect on the 
other models, as also confirmed by Table II, where: zeta= zeta 
distribution; geo=geometric distribution; log=logarithmic 
distribution; par=Pareto distribution; geo(t)= geometric 
distribution with a trimmed estimate of its parameter. 
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Interestingly, the logarithmic model yields even a better fit for 
higher values of  𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 . For these reasons, we report the values 
produced by the trimming method, just for the geometric 
distribution (geo(t)). 
 

TABLE II: Correlations between the K-S distance 
and some important citation metrics 

 
 zeta geo log par geo(t) 

h 0.17 0.10 0.02 -0.06 -0.36 

C 0.14 0.31 -0.07 -0.08 -0.29 

n 0 -0.07 -0.13 -0.22 -0.46 

C/n 0.28 0.50 0.08 0.06 0.05 

MC 0.16 0.60 -0.11 -0.05 -0.03 

 
 
From Table II we observe that the geometric distribution, 
estimated with the trimming method, is substantially 
insensitive to the citation count of the most cited paper 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚  
and C/N, but is positively influenced by the bibliometric 
indicators of “productivity” (h, C and N). In particular, the K-
S distance is reduced for larger samples (a sort of 
consistency), especially with the (trimmed) geometric 
distribution. 

Table III reports, in the first row, the average value 𝑀𝑀(𝐷𝐷) 
of the K-S statistic 𝐷𝐷, over the 131 datasets, and, in the 
second, third and fourth row, respectively, the number of cases 
in which this average is smaller than 0.1, 0.15 and 0.2. For 
completeness, we also considered the finite size version of the 
Zipf distribution with a finite range {1,2, … , 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 }. 
Introducing the upper limit (cut-off) 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚  for the summation, 
we obtain the so called Estoup distribution (est in the Table 
III), with the citation distribution function 𝑁𝑁∑ 𝑐𝑐−𝛼𝛼

𝜁𝜁(𝛼𝛼)
 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐=1 .  
 As can be seen, the geometric model shows better fit 
compared to the other distributions, especially when the 
parameter is estimated with the trimmed MD estimator. 
Moreover, note that using a finite size version of the Zipf 
model gives an improvement to the quality of the fit. Indeed, 
we observe that the Estoup distribution is well fitting to data, 
compared to the non-truncated zeta distribution. We recall that 
the zeta distribution is defined only when the parameter 𝛼𝛼 is 
greater than 1, while the Estoup distribution allows the 
parameter 𝛼𝛼 to be less or equal to 1. In particular, in our 
estimation results we observe an average value of 𝛼𝛼� of 1.37 
for the zeta model and 1 for the Estoup model, for which, for 
51 over 131 datasets, 𝛼𝛼� is less than 1. It should be stressed, 
that the condition 𝛼𝛼 < 2, for the zeta distribution, implies the 
non-existence of the first moment, which means, in this case, 
that the expected average number of citations of an author is 
infinite, as well as the expected total number of citations. 
Therefore, we argue that citation-frequency profiles may 
comply to a power law, provided that the truncated version 
(i.e. the Estoup distribution) is considered. 
 
 

 
 

TABLE III: Values of the K-S distance  
for different model distributions 

 
 zeta geo log est par geo(t) 

M(D) 0.26 0.18 0.18 0.14 0.25 0.12 

#(D<0.10) 1 
(1%) 

19 
(14%) 

10 
(7%) 

23 
(17%) 

0 (0%) 52 
(40%) 

#(D<0.15) 2 
(1%) 

49 
(37%) 

44 
(33%) 

77 
(58%) 

0 (0%) 105 
(80%) 

#(D<0.20) 12 
(9%) 

83 
(63%) 

80 
(61%) 

121 
(93%) 

56 
(43%) 

123 
(94%) 

 
 
Finally, Table IV summarizes the basic statistics regarding the 
metric 𝐷𝐷∗ for the whole sample of datasets. The geometric 
distribution estimated via trimming method resulted the most 
reliable among the considered models. This is also shown in 
Fig. 1, which compares the fitted distributions yielded by the 
geometric and zeta models with the empirical distribution of a 
Physicist, who is particularly suitable for representing the 
whole sample, in terms of total number of citations (2091), 
cited papers (89) (which are definitely on average) and h-
index (26). As apparent from Fig. 1, the geometric model is 
extremely well-fitting to the empirical distribution, compared 
to the zeta model. 
 

TABLE IV: Summary statistics concerning the metric  𝐷𝐷𝑁𝑁∗ = 𝐷𝐷√𝑁𝑁 
 

D* zeta geo log est par geo(t) 

Mean 2.26 1.60 1.58 1.24 1.81 1.00 

Min 0.29 0.26 0.17 0.25 0.53 0.32 

Max 4.59 4.89 3.34 2.98 3.31 2.49 

SD 0.79 0.84 0.65 0.53 0.51 0.35 

Q1 1.76 1.02 1.09 0.81 1.50 0.77 

Q2 2.30 1.47 1.58 1.24 1.81 0.95 

Q3 2.74 2.06 2.02 1.54 2.10 1.18 

 
 

 
Fig. 1. Empirical and estimated distributions with the geometric and 

zeta models 
 

V. CONCLUSION 
In this paper we considered four different types of 

distributions, suitable for describing citation frequency data - 
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that is: zeta; geometric; logarithmic and Pareto (of the first 
kind). All these models–that are directly comparable because 
are families that depend on a single scalar parameter (a shape 
parameter 𝛼𝛼)–are used for fitting the citation frequency curves 
of a relatively homogeneous cohort of physicists. The 
investigated scientists can be considered as “average authors” 
(the mean value of the h-index was about 21), then our case 
study can be considered less typical than would be expected 
from a standard informetric analysis, where attention is 
focused on very prominent persons. 

Precisely, we analyzed the citation records of 131 physicists 
who were applicants in the ASN 2012 for a full professorship. 
Each one of the models considered was estimated, on the basis 
of the observed citation pattern, via MD (Kullback-Leibler) 
method. The geometric distribution was also considered by 
using a trimmed version of the MD estimator. 

Overall, our study provides sufficient evidence of a 
somewhat unexpected result: the (perhaps) most popular 
model for the analysis of citation frequency data -i.e. the 
Pareto distribution of the first kind, known as the Lotka’s 
power law- is not always the best candidate for the 
representation of the citation frequency curve.  

Analysis of the data of citation distribution of papers of 
different authors revealed that, at least as far as concerns the 
size-frequency data at hand, the geometric distribution was 
found to be a better alternative to more traditional models  (for 
evaluating the quality of the fit, we used the K-S statistic). It is 
interesting to note that the geometric model represents the data 
more satisfactorily when the trimmed version of the Kullback-
Leibler estimator is adopted. Further studies will be conducted 
to verify our results. 
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