
 

 

 

Abstract—This article deals with the metaheuristic solution 

to the Multi-Depot Vehicle Routing Problem (MDVRP) using 

the Ant Colony Optimization (ACO) algorithm. The first part of 

this article presents the original algorithm of the authors. It introduces 

pivotal principles of the algorithm, along with conducted experiments 

and acquired results on benchmark instances in comparison with rival 

state of the art methods. The primary part of the article deals with two 

tactical models based on our problem solution: (a) optimal supply 

distribution on the battlefield and (b) optimal UAVs reconnaissance. 

Both models have become a part of our tactical information system 

which serves as a tool for commanders to support them in their 

decision making process. The models are introduced in terms of 

problem formulation, implementation, and application in practical 

situations in the domain of the military.  

 

Keywords—Ant colony optimization, multi-depot vehicle routing 

problem, tactical modeling 

I. INTRODUCTION 

HE Multi-Depot Vehicle Routing Problem (MDVRP) is a 

well-known problem with many real applications in the 

areas of transportation, distribution and logistics [1]. In many 

businesses (e.g. parcel delivery, appliance repair), it is vital  to 

find the optimal solution to this problem as it saves resources 

for a company, reduces its expenses, shortens time needed to 

distribute services, and thus makes the company more 

competitive. 

The MDVRP problem consists in computing optimal routes 

for a fleet of vehicles to drop off goods or services at multiple 

destinations (customers); each customer should be served only 

once. The vehicles might start from multiple depots, each 

located in a different place. The important characteristic is the 

limited capacity of each vehicle which cannot be exceeded. 

After visiting the selected customers, each vehicle returns to its 

depot and might start a new journey to other (so far unvisited) 

customers with a new load. 

MDVRP is an NP-hard problem as it is a generalization of 

the travelling salesman problem [2], therefore polynomial-time 

algorithms are unlikely to exist [3]. In this article, we present 

our original solution approach based on the Ant Colony 
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Optimization (ACO) theory as a new approach to this topical  

issue. In fact, there have already been some attempts to use this 

theory for this problem, but nevertheless, the results of these 

solutions are not of the quality as when using other 

contemporary methods (see Table 2). We managed to develop 

and design the fundamental details and parameters of this 

approach so that the results are comparable to other state of the 

art algorithms. 

The primary part of this article comprises two tactical models 

based on our problem solution which have a practical 

application in the specific domain of the military. It is a model 

of optimal supply distribution on the battlefield and a model of 

optimal reconnaissance by Unmanned Aerial Vehicles (UAV). 

This tactical model has been implemented into an actual 

tactical information system designed to support commanders in 

their decision making process [4]. A key goal of the model is to 

provide a tool to support commanders in their decision making 

as this system include both fundamental and advanced models 

of military tactics. 

II. LITERATURE REVIEW 

The solution methods for VRPs can be categorized as exact, 

heuristic, and metaheuristic. A broad overview of various 

methods is offered e.g. in [5]. For examples of exact methods, 

see e.g. [6], or [7], to name a few. Similar to the exact methods, 

many of heuristics have been developed, see e.g. [8], or [9]. 

Very popular metaheuristic methods have emerged in the last 

few years. These can be classified as state space search or 

evolutionary algorithms. For instance, simulated annealing [10] 

or genetic algorithms [11], [12] belong to the main evolutionary 

principles. 

The remainder of this section focuses on the ACO methods. 

The potential of the ACO algorithm has been discovered very 

soon since it was published [13]. It was successfully applied for 

various problems [14], [15], [16]. 

Recently, there have been publications using the ACO theory 

for MDVRP problems [17], [18], [19]. The solution published 

in [17] is compared with our algorithm as it uses the standard 

Cordeau’s test instances for evaluation. 

III. ANT COLONY OPTIMIZATION ALGORITHM 

ACO algorithm is a probabilistic technique for developing 

good solutions of computational problems. The principle is 
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adopted from the natural world where ants explore their 

environment to find food; the idea is based on the behavior of 

ants seeking a path between their colony and a source of food. 

A. Principle of the Algorithm 

Fig. 1 presents the ACO algorithm we proposed for MDVRP. 

The solution found by the algorithm is improved in successive 

generations (iterations). In point 1, the termination condition is 

tested, points 2 to 15 cover an individual generation. Each depot 

employs a colony with the specific number of ants. 

 

 

Fig. 1 ACO algorithm in pseudo code 

 

In each generation, all ants in all colonies move between 

individual customers (referred to as nodes in Fig. 1). At first, 

the state of all nodes is set as unvisited in point 3. The algorithm 

continues until all nodes are visited (just once). In point 5, the 

depot (colony) is selected according to the given method; points 

6 to 11 apply only to the ant from the selected colony. The ant’s 

probability is computed in point 6; it determines the chance of 

the ant to go to every remaining unvisited nodes. In point 7, a 

node to be visited is chosen according to this probability. 

Point 8 checks whether the ant can visit the selected node (i.e. 

whether its current load allows taking the load in the node and 

thus not exceeding ant’s maximum capacity). If not, the ant 

returns to its colony (emptying its load) and the algorithm 

continues in point 5. If yes, the ant visits the selected node 

(delivering node’s load and marking it as visited). 

In point 12, after visiting all nodes, each ant returns to its 

colony. Then, if the best solution found in the generation is 

better than the best solution found in previous ones, it is saved 

(see point 13). Point 14 ensures evaporating the pheromone 

trails and in point 15, pheromone trails are updated according 

to the given method. Then, the next generation begins until the 

termination condition is met. The best solution found is 

returned at the end of the algorithm in point 16. 

B. Parameters of the Algorithm 

The ACO algorithm requires setting a number of parameters 

influencing the problem solution. Some parameters are adopted 

from related problems; others are new. The list of all parameters 

is in Fig. 4. 

A crucial parameter (proposed by authors) influences how 

depots are selected (see point 5 in Fig. 1). We propose five 

possibilities as follows: 

 Random selection: depot (i.e. its vehicle) is selected 

randomly. 

 Selection of an idle depot: depot with the shortest 

distance travelled so far is selected (i.e. vehicles take 

turns according to their distance they travelled at the 

moment of selection). 

 Selection of an idle depot (probability model): selection 

probabilities for all depots are computed based on the 

distance travelled so far (i.e. depots with shorter routes 

are more likely to be selected).  

 Selection of a depot with the greatest potential: depot 

with the greatest potential is selected. The potential is 

computed as the sum of all pheromone trails which lead 

to unvisited customers (at the time of selection) – see 

formula (1). 

 Selection of a depot with the greatest potential 

(probability model): selection probabilities for all depots 

are computed based on the sum of pheromone trails to 

unvisited customers (i.e. depots with the bigger sum are 

more likely to be selected). 

 

𝜀𝑘 = ∑ 𝜏𝑖𝑗
𝑘

𝑗𝜖𝑆𝑢

  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑗 ∈ 𝑆𝑢 , (1)  

 

where 𝜀𝑘 is a potential for the colony (depot) 𝑘, 

 𝜏𝑖𝑗
𝑘  is strength of a pheromone trail from the colony 𝑘 

between nodes 𝑖 and 𝑗, 

 𝑖  is an index for the node with the current position of the 

ant from colony 𝑘, 

 𝑆 is a set of all nodes, 

 𝑆𝑢 is a set of so far unvisited nodes (𝑆𝑢 ⊂ 𝑆). 

 

When testing individual options, we found out that the last 

two surpass the others. This can be seen in Fig. 2 showing the 

results of parameter tuning which was conducted on a set of 

testing experiments. 

These testing experiments we proposed were composed of 20 

different problems of various complexity (from tens to several 

hundred of nodes) and at least 100 executions were processed 

to confirm the results statistically. All results are expressed as a 

solution quality in % (compared to the best result which was 

achieved). 

 

1.  while not terminated 

2.    for each ant in a colony 

3.      set all nodes as unvisited 

4.      while number of unvisited nodes > 0 do 

5.        select a depot 

6.          compute ant’s probability of going to 

            unvisited nodes 

7.          select a node according to the 

            probability 

8.          if ant.load + node.load > ant.capacity 

            then 

9.            return to the depot 

10.         else 

11.           visit the selected node 

12.     return to the depot 

13.   save the best solution if found 

14.   evaporate pheromone trails 

15.   update pheromone trails 

16. return the best solution 
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Fig. 2 Parameter tuning for depot selection 

 

In point 6 in Fig. 1, after a depot (colony) is chosen according 

to the methods mentioned above, the probabilities of choosing 

ant’s path to the one of so far unvisited nodes are computed 

according to formula (2).  

 

𝑝𝑖𝑗
𝑘 =

𝜏𝑖𝑗
𝑘 𝛼

∙ 𝜂𝑖𝑗
𝛽 ∙ 𝜇𝑖𝑗

𝑘 𝛾
∙ 𝜅𝑖𝑗

𝑘 𝛿

∑ 𝜏𝑖𝑙
𝑘 𝛼

∙ 𝜂𝑖𝑙
𝛽 ∙ 𝜇𝑖𝑙

𝑘 𝛾
∙ 𝜅𝑖𝑙

𝑘 𝛿
𝑙∈𝑆𝑢

  for all  𝑗 ∈ 𝑆𝑢 , (2)  

 

where 𝑝𝑖𝑗
𝑘  is a probability for an ant from the colony 𝑘 in a 

node 𝑖 to visit a node 𝑗, 

 𝜏𝑖𝑗
𝑘  is strength of a pheromone trail from the colony 𝑘 

between nodes 𝑖 and 𝑗, 

 𝜂𝑖𝑗 is a multiplicative inverse of the distance between 

nodes 𝑖 and 𝑗, 

𝜇𝑖𝑗
𝑘  is a so-called savings measure [8], 

 𝜅𝑖𝑗
𝑘  is a measure for including the influence of ant’s 

current load [20], 

 𝛼, 𝛽, 𝛾, 𝛿 are coefficients controlling the influence of 

𝜏𝑖𝑗
𝑘 , 𝜂𝑖𝑗 , 𝜇𝑖𝑗

𝑘 , 𝜅𝑖𝑗
𝑘  – see formula (2), 

 𝑆 is a set of all nodes, 

 𝑆𝑢 is a set of so far unvisited nodes (𝑆𝑢 ⊂ 𝑆). 

 

Method of updating pheromone trails (see point 15 in Fig. 1) 

is another key parameter. There are three possibilities as 

follows: 

 Update according to the best solution found in a current 

generation: only the best solution found in a current 

generation influences the pheromone trails update 

process. This is an option proposed by authors. 

 Update according to the best solution found so far: only 

the best solution found so far influences the pheromone 

trails update process. 

 Update according to all solutions found in a current 

generation: all solutions found in a current generation 

influences the pheromone trails update process. 

 

Number of ants in colonies 𝑛𝑎 (see point 2 in Figure 1) is a 

parameter determining the number of different solutions to be 

created and evaluated within a generation. Pheromone trails are 

then updated according to these solutions (based on the given 

method mentioned above). 

Pheromone evaporation coefficient 𝜌 determines the speed 

of evaporating pheromone trails at the end of each generation 

(point 14 in Figure 1) – see Formula (3). 

 

𝜏𝑖𝑗
𝑘 = (1 − 𝜌) ∙ 𝜏𝑖𝑗

𝑘   for all  𝑖, 𝑗 ∈ 𝑉, (3)  

 

where 𝜏𝑖𝑗
𝑘  is strength of a pheromone trail from the colony 𝑘 

between nodes 𝑖 and 𝑗, 

 𝜌 is the pheromone evaporation coefficient. 

 

Pheromone updating coefficient 𝜎 controls the influence of 

individual solutions when updating pheromone trails (see point 

15 in Fig. 1). The right ratio of the pheromone evaporation and 

updating coefficients is very important since bad values can 

cause the fast evaporation of pheromone trails on the one hand 

or the solution to get stuck in a false optimum on the other. 

Formulas (4) to (6) present the update of pheromone trails for 

different methods chosen (according to the best solution in a 

generation (4), or according to the best solution found so far (5), 

or according to all solutions in a generation (6) respectively). 

 

𝜏𝑖𝑗
𝑘 = 𝜏𝑖𝑗

𝑘 + 𝑥𝑖𝑗
𝑘 ∙ 𝜎 ∙

𝑑𝑚𝑖𝑛

𝑑1

  for all  𝑖, 𝑗 ∈ 𝑉, (4)  

 

𝜏𝑖𝑗
𝑘 = 𝜏𝑖𝑗

𝑘 + 𝑥𝑖𝑗
𝑘 ∙ 𝜎  for all  𝑖, 𝑗 ∈ 𝑉, (5)  

 

𝜏𝑖𝑗
𝑘 = 𝜏𝑖𝑗

𝑘 + 𝜎 ∙ ∑ 𝑥𝑖𝑗
𝑘

𝑎
∙

𝑑𝑎

𝑑𝑡𝑜𝑡
𝑎

  for all  𝑖, 𝑗 ∈ 𝑉, (6)  

 

where 𝜏𝑖𝑗
𝑘  is strength of a pheromone trail from the colony 𝑘 

between nodes 𝑖 and 𝑗, 

  𝑥𝑖𝑗
𝑘 = { 

1  if 𝑖 preceeds 𝑗 on route 𝑘,
0  otherwise.

  

 𝜎 is the pheromone updating coefficient, 

 𝑑𝑚𝑖𝑛 is the distance of the best solution found so far, 

 𝑑1 is the distance of the best solution found in a 

generation, 

 𝑑𝑎 is the distance of the 𝑎-th solution, 𝑎 = 1, … , 𝑛𝑎, 

 𝑑𝑡𝑜𝑡 is the sum of distances of all the solutions in a 

generation (𝑑𝑡𝑜𝑡 = ∑ 𝑑𝑎𝑎 ). 

 

C. Experiments and Results 

As benchmark problems, we chose Cordeau’s MDVRP 

instances taken from [21], namely p01, p02, p03, p04, p05, p06, 

p07, p08, p09, p10, p11, p12, p15, p18, and p21 (instances p13, 

p14, p16, p17, p19, and p20 were not included in the 

experiments as they incorporate the constraint on the maximum 

length of a single route, which the algorithm does not support).  

Table 1 presents the results. We conducted 100 tests on each 

instance and registered the best solution found, the mean and 
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standard deviation. The last column shows the difference 

between our results and the best solutions known so far which 

were received from [21]. The best known solutions were 

achieved by various algorithms during the history of benchmark 

instances. 

 
Table 1 Results for MDVRP benchmark problems 

Inst. NoC NoD BKS OBS Mean Stdev Error 

p01 50 4 576.87 576.87 583.15 6.50 0.00% 

p02 50 4 473.53 475.86 482.86 3.44 0.49% 

p03 75 5 641.19 644.46 650.04 4.12 0.51% 

p04 100 2 1001.59 1018.49 1035.39 5.69 1.69% 

p05 100 2 750.03 755.71 763.09 3.68 0.76% 

p06 100 3 876.50 885.84 899.51 4.89 1.07% 

p07 100 4 885.80 895.53 912.48 5.62 1.10% 

p08 249 2 4420.95 4445.51 4572.23 66.75 0.56% 

p09 249 3 3900.22 3990.19 4145.33 96.89 2.31% 

p10 249 4 3663.02 3751.50 3864.92 50.21 2.42% 

p11 249 5 3554.18 3657.16 3760.60 38.94 2.90% 

p12 80 2 1318.95 1318.95 1320.48 1.90 0.00% 

p15 160 4 2505.42 2510.11 2576.27 18.46 0.19% 

p18 240 6 3702.85 3741.80 3812.25 37.22 1.05% 

p21 360 9 5474.84 5631.12 5788.19 46.64 2.85% 

NoC – number of customers, NoD – number of depots 

BKS – best known solution, OBS – our best solution 

 

Table 2 compares results obtained via our algorithm with 

other results published. Algorithms called GA1 [12], GA2 [22], 

and GA3 [11] are based on genetic algorithm principles. GJ 

stands for Gillett and Johnson’s algorithm [23]; CGW stands 

for Chao, Golden and Wasil’s algorithm [24]. FIND (Fast 

improvement, INtensification, and Diversification) is a tabu 

search based algorithm [9], and finally ACO is another version 

of an algorithm based on the ACO theory [17]. Best solution 

values in Table 2 are indicated by bold numbers. 

 
Table 2 Best solutions values obtained by various algorithms 

Inst. Our GA1 GA2 GA3 GJ CGW FIND ACO 

p01 576.9 591.7 622.2 598.5 593.2 576.9 576.9 620.5 

p02 475.9 483.1 480.0 478.7 486.2 474.6 473.5 - 

p03 644.5 694.5 706.9 699.2 652.4 641.2 641.2 - 

p04 1018.5 1062.4 1024.8 1011.4 1066.7 1012.0 1003.9 1585.9 

p05 755.7 754.8 785.2 - 778.9 756.5 750.3 - 

p06 885.8 976.0 908.9 882.5 912.2 879.1 876.5 - 

p07 895.5 976.5 918.1 - 939.5 893.8 892.6 1257.9 

p08 4445.5 4812.5 4690.2 - 4832.0 4511.6 4485.1 - 

p09 3990.2 4284.6 4240.1 - 4219.7 3950.9 3937.8 9633.2 

p10 3751.5 4291.5 3984.8 - 3822.0 3727.1 3669.4 - 

p11 3657.2 4092.7 3880.7 - 3754.1 3670.2 3649.0 - 

p12 1319.0 1421.9 1319.0 - - 1327.3 1319.0 - 

p15 2510.1 3059.2 2579.3 - - 2610.3 2551.5 - 

p18 3741.8 5462.9 3903.9 - - 3877.4 3781.0 - 

p21 5631.1 6872.1 5926.5 - - 5791.5 5656.5 - 

 

We can see that our algorithm managed to find better 

solutions in all cases when compared with the genetic principle 

based algorithms (GA1, GA2, GA3) and also in case of Gillett 

and Johnson’s algorithm (GJ). The results are also better in 7 

cases (and in 1 case the same) in comparison with the CGW 

algorithm and in 4 cases (and in 2 cases the same) in comparison 

with the algorithm FIND. 

The last column of Table 2 shows the results for another 

version of the algorithm based on the ant colony optimization 

theory. As we can see, the results for this algorithm do not 

compare well with any other algorithm presented; in case of the 

instance p09, the error is more than 140% compared to the best 

known solution. 

In addition to the experiments mentioned above, we launched 

our algorithm on another set of Cordeau’s test instances (taken 

from [21]), namely pr01 to pr10. The results are shown in 

Table 3. In two cases (pr02 and pr07), we managed to improve 

the best known solution. 

 
Table 3 Results for another set of MDVRP benchmark problems 

Instance NoC NoD BKS OBS Error 

pr01 48 4 861.32 861.32 0.00% 

pr02 96 4 1288.37 1277.12 -0.87% 

pr03 144 4 1782.58 1802.16 1.10% 

pr04 192 4 2072.52 2114.06 2.00% 

pr05 240 4 2343.66 2380.75 1.58% 

pr06 288 4 2675.16 2709.41 1.28% 

pr07 72 6 1085.61 1077.33 -0.76% 

pr08 144 6 1666.60 1686.96 1.22% 

pr09 216 6 2153.10 2182.10 1.35% 

pr10 288 6 2811.49 2817.31 0.21% 

NoC – number of customers, NoD – number of depots 

BKS – best known solution, OBS – our best solution 
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IV. OPTIMAL SUPPLY DISTRIBUTION MODEL 

The ACO algorithm has been integrated into our tactical 

information system designed to support command decision-

making. 

This model seeks distribution patterns to provide supplies to 

friendly elements operating in the area of interest as efficiently 

as possible. Efficiency is based on the nature of the task at hand; 

the objective might be to minimize the sum of distances 

travelled by all vehicles, or minimize the time of the whole 

operation, or minimize the total fuel consumed by all vehicles. 

The system provides a user friendly interface enabling to add, 

edit and delete nodes (depots and customers). Fig. 3 shows the 

main dialog for this model. As an example, 4 depots (labelled 

A to D) and 18 customers were included. 

When all nodes are added (including their maximum 

load/capacity in kilograms), the MDVRP algorithm is executed. 

Values of algorithm’s parameters are set and used to select the 

best options for the task at hand (see Fig. 4). Note the parameter 

called number of cores used; this parameter represents the 

number of cores of a multi-core processor used for the 

execution since the ACO algorithm can be parallelized. 

 

 

Fig. 3 Dialog for the optimal supply distribution model 

 

 

 

 

Fig. 4 Parameters for the ACO algorithm 

 

Final routes for all vehicles are displayed both textually and 

graphically – see Fig. 5. Depots are shown as blue hexagons, 

customers as blue circles, and the red lines present the optimal 

routes for individual vehicles. Although the example is rather 

simple, the same system can be used for tasks with many depots 

and hundreds of customers. 
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Fig. 5 Solution to the example situation 

 

V. OPTIMAL UAVS RECONNAISSANCE MODEL 

The second tactical model implemented is designed for 

optimal aerial reconnaissance of the area if interest. It can be 

used by one or more teams (squads) equipped with unmanned 

aerial vehicle(s). The model requires defining the area of 

interest. This is done via a system interface where the area is 

created using a polygon. The position(s) of UAV base(s) also 

need to be specified. The goal is to explore the defined area of 

interest as efficiently as possible; most often the objective is to 

minimize the overall time of the operation. 

Fig. 6 presents the main dialog for this model depicting an 

example with 3 UAV bases (labelled A to C), i.e. 3 unmanned 

aerial vehicles are available. The average velocity for each 

vehicle can also be specified (see Fig. 7). Note that the area of 

interest in the example is defined by a polygon with total area 

of 989,891 m2. 

The optimization starts by spreading out the number of 

checkpoints uniformly inside the area of interest; these 

checkpoints are customers for the MDVRP problem, i.e. each 

checkpoint is visited just once by any vehicle. The number of 

checkpoints depends on the distance parameter (see Fig. 6) 

which defines the approximate distance between neighbor 

checkpoints. It is assumed that by visiting all checkpoints the 

area of interest is completely explored. 

 

 

 

 

Fig. 6 Dialog for the optimal UAVs reconnaissance planning 

 

 

Fig. 7 Dialog for specifying the average velocity for UAVs 
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In Fig. 8, the solution for the example situation is shown. The 

solution offers a very good time (close to optimal) required for 

the entire reconnaissance of the given area (note that the 

average velocities of individual vehicles are not the same). Blue 

lines show the exact routes for every vehicle; the system is 

designed and prepared for uploading the routes immediately 

into the real vehicles in the real situation on the battlefield. 

 

 

Fig. 8 Solution to the example situation 

 

VI. CONCLUSION 

The paper presents the approach proposed by authors to the 

capacitated MDVRP problems based on the ant colony 

optimization theory. We have developed same new parameters 

and options not published yet (e.g. methods of selecting depots, 

method of updating pheromone trails according to the best 

solution found in a generation), thus contributing to the ACO 

theory. The new parameters we designed and verified 

participate on the very good results which the algorithm was 

able to achieve. 

 

The strengths of the proposed algorithm are as follows: 

 Fast convergence close to the optimal solution. 

 High quality of solutions (comparable to the state of  

the art methods). 

 

 

 Universal applicability (to metric, non-metric, and 

asymmetric problems). 

 Possibility of distributed parallel processing. 

 Application of the algorithm without any modification 

to solve classic VRP or capacitated VRP problems. 

 

The proposed algorithm is of considerable significance in 

practical application in the domain of the military. It has been 

implemented into our tactical information system designed to 

support commanders’ decision-making in order to provide the 

interface to solve the tactical task. 

 

There are also a lot of ways of improving the current version 

of the algorithm and the system in the future. 
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Some future perspectives are as follows: 

 Distribution of some computation to a GPU processor. 

 Distribution of processing not only to the cores of a 

multi-core processor but also among more computers 

(to the GRID networks for instance). 

 Development of other methods than empirical 

approach how to find the best parameter setting for 

various tasks. 

 Extension of the algorithm for solving other problems 

(for instance MDVRP with Time Windows or with 

Pick-up and Delivering). 
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