
 

 

  
Abstract—Of special importance for the philosophy of the Cell 

Method (CM) is the classification diagram of the physical variables. 
Originally, the classification diagram was obtained on the basis of 
physical considerations on the associations between physical 
variables and geometry. We will show in this paper that we may 
obtain the same associations on the basis of mathematical 
considerations, thus deepening the mathematical foundations of the 
CM. This will allow us to recognize in the classification diagram of 
the Cell Method a structure of bialgebra, where the operators are 
generated by the outer product of the geometric algebra and the 
exterior product of the dual algebra of the enclosed exterior algebra. 
In doing so, the classification itself of the physical variables will take 
on a deeper meaning, by allowing us to associate the configuration 
variables with the geometric interpretation for the elements of a 
vector space and the source variables with the geometric 
interpretation for the elements of the dual vector space in the 
bialgebra. We will also discuss a new four-dimensional space/time 
cell-complex for studying time dependent phenomena with the CM.  
 

Keywords—Bialgebra, Cell Method, Inner Orientation, Outer 
Orientation.  

I. INTRODUCTION 
he Cell Method (CM) [1] is a numerical method that 
allows us to achieve a numerical modeling of Physics 

without starting from the differential equations.  
It must be said that, from the birth of the differential 

calculus forth, more than three centuries ago, we are 
accustomed to provide each experimental law with a 
differential formulation. There is no doubt that the 
infinitesimal analysis played in the past and will play in future 
a major role in the mathematical treatment of Physics, but we 
must be aware that its introduction hides some important 
features of the phenomenon being described, such as the 
geometrical and topological features. Moreover the limit 
process introduces some limitations, by requiring regularity 
conditions on the field variables. These regularity conditions, 
in particular the conditions of differentiability, are the price we 
have to pay for using a formalism that is very advanced and 
easy to manipulate.  

With the advent of computers, the differential equations 
were discretized by means of one of various discretisation 
methods (FEM, BEM, FVM, FDM, etc. [2]–[33]), since the 
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numerical solution, which is no longer an exact solution, 
cannot be achieved in the most general case if a system of 
algebraic physical laws is not provided.  

The very need to discretise the differential equations in 
order to achieve a numerical solution gives rise to the question 
of whether or not it is possible to formulate the physical laws 
in an algebraic manner directly, through a direct algebraic 
formulation. As we have already shown in [34]–[51], the 
answer to this question is affirmative and providing a direct 
algebraic formulation is exactly what the CM does. The aim of 
this paper is to study the philosophy of the CM from the 
mathematical point of view, in order to investigate the 
mathematical meanings of the choices that are at the basis of 
the CM.  

II. MAIN FEATURES OF THE CELL METHOD 
The starting point of the algebraic formulation of the CM is 

that just few physical variables arise directly as functions of 
points and instants. Most of them are obtained from variables 
referred to extended space elements and time intervals, by 
performing densities and rates.  

We will denote as global variables those variables that are 
neither densities nor rates of other variables. Specifically:  
• a global variable in space is a variable that is not the line, 

surface or volume density of another variable; 
• a global variable in time is a variable that is not the rate of 

another variable.  
By using global variables, it is possible to obtain an 

algebraic formulation directly, without requiring to the global 
variables of being differentiable functions. Moreover, the 
algebraic formulation preserves the length and time scales of 
the global physical variables [37]–[39], [41], [47], [52] since it 
avoids the limit process.  

By performing the limit process of the mean densities and 
rates of the global variables, we obtain the traditional field 
functions of the differential formulation. Due to their point-
wise and/or instant-wise nature, the field variables are local 
variables.  

Since performing densities and rates of the domain variables 
implies the assumption of continuity and differentiability of the 
global variables, the range of applicability of the differential 
formulation is restricted to regions without material 
discontinuities and concentrated sources, whereas the range of 
applicability of the algebraic formulation is not restricted to 
regions of regularity.  

The mathematical foundations of the cell 
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A. Association between Global Physical Variables and 
Space Elements 
Besides than using the global rather than local nature of 

global variables, we can classify them on the basis of the role 
they play in a theory. In this second case, we can distinguish 
between:  
• configuration variables, describing the field configuration; 
• source variables, describing the field sources.  

The equations used to relate the configuration variables of 
the same physical theory to each other and the source variables 
of the same physical theory to each other are known as 
topological equations, whereas those relating configuration to 
source variables, of the same physical theory, are constitutive 
equations. Moreover, the product between a configuration 
variable and a source variable gives rise to an energetic 
variable.  

Since each physical phenomenon occurs in space, and space 
has a multi-dimensional geometrical structure, the global 
physical variables have a multi-dimensional geometrical 
content. As a consequence, all the global physical variables are 
associated with one of the four space elements, that is (Fig. 1):  
• the point ( P ), 
• the line ( L ), 
• the surface ( S ), 

• the volume ( V ).  
In the CM, the global variables in space are associated with 

the related space elements P , L , S , and V  of three-
dimensional cell-complexes. This allows us to describe global 
variables in space directly.  

Also the global variables in time are associated with the 
elements of a cell-complex, which has dimension 1 and 
generalizes the time axis. The two time elements, that is:  
• the time instant ( I ), 
• the time interval ( T ), 
are represented by the nodes and lines of this one-dimensional 
cell-complex, respectively.  

The CM makes use of the notions provided by algebraic 
topology [53], [54] which denotes the nodes (points) of the 
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Fig. 3 Association between space elements and variables in continuum mechanics 

 

 
Fig. 1 notations for the four space elements in three-dimensional 
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Fig. 2 The four space elements in algebraic topology 
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cell-complexes as 0-cells, the edges (lines) as 1-cells, the 
surfaces as 2-cells, and the volumes as 3-cells (Fig. 2). 
Specifically, as far as Continuum Mechanics is concerned (Fig. 
3), volume forces, which are source variables, are associated 
with 3-cells, since their geometrical referents are volumes. 
Analogously, surface forces, which are source variables, have 
2-cells as their geometrical referents (the surfaces), strains, 
which are configuration variables, have 1-cells as their 
geometrical referents (the lines), and displacements, which are 
configuration variables, have 0-cells as their geometrical 
referents (the points).  

The CM uses two cell-complexes: the primal cell-complex 
and the dual cell-complex, in relation of duality with the 
primal cell-complex. In order to explain the reason for this 
choice, let us start from an example on a two-dimensional 
domain (Fig. 4): once a mesh has been introduced, the primal 
mesh, it is natural to associate the primal nodes with the 
displacements of the primal nodes and the total load over an 
area surrounding the primal nodes (tributary area), which is an 
area defining a dual cell-complex. Thus, the displacements, 
which are configuration variables, are computed on elements 
of the primal mesh, whereas the loads, which are source 
variables, are computed on elements of the dual cell-complex.  

This result is general, independently of the kind of 
configuration or source variable, the shape of the domain, and 
the physical theory involved. Actually, for each physical 
theory and for each set of primal nodes, the source variables 
are always associated with the elements of the dual cell-
complex and the configuration variables are always associated 
with the elements of the primal cell-complex.  

This is a remarkable finding, which allows us to gain a new 
understating of the structural similarities between physical 

theories, commonly called “analogies” [55]. Actually, just the 
existence of an underlying structure, common to different 
physical theories, is the main responsible for the analogies, 
since the homologous global variables of two physical theories 
are those associated with the same space element. This allows 
us to explain the analogies in the light of the association 
between the global variables and the four space elements. In 
other words, the analogies between physical theories arise 
from the geometrical structure of the global variables and not 
from the similarity of the equations relating variables to each 
other in different physical theories.  

In algebraic topology, it is usual to consider cell-complexes 
made of simplexes, that is, triangles in plane domains and 
tetrahedra in space. Also the Cell Method uses simplexes for 
building the primal mesh. The reason for this choice is that any 
scalar or vector field in the neighborhood of each point, in a 
region of regularity, can be approximated by an affine field 
and simplexes are compatible with the affine description of the 
field, whereas cells with an arbitrary number of sides are not 
compatible. In Fig. 5, we have depicted the displacement field 
as an affine field for both a plane domain made of just one 
triangle (Fig. 5a) and a three-dimensional domain made of just 
one tetrahedron (Fig. 5b).  

Once the primal mesh has been generated, we have several 
possibilities for building the dual mesh. As the nodes of the 
dual mesh in plane domains we can choose, for example, the 
circumcenters of the primal triangles (Fig. 6b). In this case, the 
dual of each primal side is a straight line. Specifically, the 
sides of the dual polygons are the axes of the primal sides.  

Another possibility for building the dual mesh is to connect 
the barycenters of the primal triangles to the mid-points of the 
primal sides (Fig. 6a). In this second case, the dual of each 

 

primal mesh 

displacement 
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Fig. 4 Association between variables and space elements of a two-dimensional cell-complex 

 

 
Fig. 5 Approximation of a vector field by an affine vector field defined by the vectors at the vertices of a triangle, in two-dimensional space (a), 

and of a tetrahedron, in three-dimensional space (b) 
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primal side is no longer a straight line.  
The choice for the dual mesh is arbitrary, but the 

circumcentric dual mesh has a disadvantage. In fact, whereas 
the barycentric dual mesh does not involve any restriction on 
the shape of the primal mesh, the circumcentric dual mesh 
requires that all the angles of the primal triangles are lower 
than 90°, in order to avoid that some triangle has a 
circumcenter that lies outside the triangle itself, since this 
generates numerical errors. This is the reason why we will 
prefer to use the barycentric dual mesh.  

The primal mesh is provided with a thickness also in plane 
domains, as we can see in Fig. 7, where the thickness is a unit 
thickness. Therefore, the two meshes are shifted for half the 
thickness and the dual nodes are not in the same planes as the 
primal nodes.  

B. The Classification Diagram of the Cell Method 
In the classification diagram of the Cell Method [1], the 

global variables are stored in two columns (Fig. 8), the column 
of the configuration variables, with their topological equations, 
and the column of the source variables, with their topological 
equations.  

The configuration variables are arranged from top to bottom 
in their column, in order of increasing multiplicity of the 
associated space element, thus realizing a downward cochain 
[56]. Conversely, the source variables are arranged from 
bottom to top in their column, in order of increasing 
multiplicity of the associated space element, thus realizing an 
upward cochain.  

With this choice, each primal space element is at the same 
level of the corresponding dual space element. Actually, the 
sum of the dimensions of a space element and its dual element 
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Fig. 6 The barycentric dual mesh (a) and the circumcentric dual mesh of Voronoi (b) in two-dimensional domains 

 

 
Fig. 7 Staggering in 2D cell-complexes with barycentric dual cells 
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always equals the dimension n  of the space they are in (for the 
case of Fig. 8, 3n = ). Consequently, the relationships between 
primal and dual variables at the same level of the classification 
diagram are the constitutive relations.  

The space elements of both the primal and the dual cell-
complexes may also be oriented (Fig. 9). We will define the 

inner orientation of a space element as the orientation that 
follows from choosing an order of traversal of its boundary. It 
is denoted as the inner orientation because, since we stay on 
the space element, this orientation does not depend on the 
dimension of the embedding space.  

This definition immediately applies to the two-dimensional 
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Fig. 8 The columns of the configuration and source variables in the classification diagram of the Cell Method 
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Fig. 9 Positive inner and outer orientations of the space elements associated with the global variables 
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cells and can be easily extended to cells of dimensions 1 and 3. 
Finally, it can be extended also to points, where the (positive) 
inner orientation is the inward orientation, given by the 
incoming lines.  

By providing the primal elements with an inner orientation, 
we also orientate the dual elements at the same level (Fig. 9). 
Moreover, since the dual elements depend on the dimension of 
the embedding space, this dual orientation depends on the 
space immersion. This is why we will denote the dual 
orientation as the outer orientation. This second time, we do 
not stay on the space element but we cross it.  

A point, a line, a surface, and a volume endowed with outer 
orientations will be denoted by putting tildes over their 
symbols (Fig. 8, Fig. 9). 

A point, a line, a surface, and a volume endowed with inner 
orientations will be denoted by putting bars over their symbols 
(Fig. 8, Fig. 9).  

The structure of the classification diagram is the same for 
both the global and the field variables of every physical theory 
of the macrocosm. The importance of this diagram stands just 
in its ability of providing a concise description of physical 
variables, without distinguishing between the physical theories.  

III. SOME BASICS OF THE EXTERIOR ALGEBRA 
From the mathematical point of view, the algebra that 

provides an algebraic setting in which to answer geometric 
questions is the exterior algebra, which is the largest algebra 
that supports an alternating product on vectors. Its product is 
the exterior product, or wedge product.  

The exterior product of any number k  of vectors can be 
defined and is sometimes called a -bladek . It lives in a 
geometrical space known as the -thk  exterior power, denoted 
by kVΛ , which is the vector space of formal sums of 

-multivectorsk . The magnitude of the -bladek  is the volume 
of the -dimensionalk  parallelotope whose sides are the given 
vectors, just as the magnitude of the scalar triple product of 
vectors in three dimensions gives the volume of the 
parallelepiped spanned by those vectors.  

In particular, the exterior product of two vectors a  and b , 
denoted by ∧a b , is a 2-vector, or bivector, and lives in a 
space called the exterior square, a geometrical vector space 
that differs from the original space of vectors. The magnitude 
of the bivector ∧a b  can be interpreted as the area of the 
parallelogram with sides a  and b  (Fig. 10).  

In three dimensions, the magnitude of ∧a b  can also be 

computed by using the cross product of the two vectors.  
The senses of a  and b  orientate the sides of the 

parallelogram and define a sense of traversal of its boundary. 
In the case of Fig. 10, the traversal sense of ∧a b  is a 
clockwise sense, which can be depicted by a clockwise arc.  

Since the exterior product is antisymmetric, ∧b a , the 
exterior product between b  and a , is the negation of the 
bivector ∧a b , producing the opposite orientation (Fig. 10).  

The product of a -multivectork  and an -multivector  is a 
( ) -multivectork +  . So, the direct sum:  

 
k

k
V⊕ Λ  (1) 

 
forms an associative algebra, which is closed with respect to 
the wedge product. This algebra, commonly denoted by VΛ , 
is called the exterior algebra of the vector space V .  

The exterior algebra is one example of a bialgebra, meaning 
that it has a dual space that also possesses a product and this 
dual product is compatible with the exterior product. The dual 
algebra is precisely the algebra of alternating multi-linear 
forms on V  and the pairing between the exterior algebra and 
its dual is given by the interior product.  

Any vector space, V , has a corresponding dual vector space 
(or just dual space), *V . Given any vector space V  over a 
field F , the algebraic dual space *V , also called the ordinary 
dual space, or simply the dual space, is defined as the set of all 
linear maps (linear functionals) from V  to F :  

 
:V Fϕ → , ( )v vϕ . (2) 
 
The elements of the algebraic dual space *V  are sometimes 

called covectors, or 1-forms, and are denoted by bold, 
lowercase Greek. They are linear maps from V  to its field of 
scalars.  

If V  is finite-dimensional, then *V  has the same dimension 
as V . Dual vector spaces for finite-dimensional vector spaces 
can be used for studying tensors.  

The pairing of a functional ϕ  in the dual space *V  and an 
element x  of V  is sometimes denoted by a bracket:  

 
( ) [ ], ,x x xϕ ϕ ϕ= = . (3) 
 
The pairing defines a non-degenerate bilinear mapping:  
 

[ ] *, :V V F× →  . (4) 
 
Specifically, every non-degenerate bilinear form on a finite-

dimensional vector space V  gives rise to an isomorphism 
from V  to *V , ,  . Then, there is a natural isomorphism:  

 
*V V→ , *v v , (5) 

 
 

b 

│b˄a
│ │a˄b

│ A 
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Fig. 10 Magnitudes and orientations of the bivectors ∧a b  and 

∧b a  
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given by:  

 
( )* : ,v w v w= , (6) 

 
where **v V∈  is said to be the dual vector of v V∈ .  

A topology on the dual space, *X , of a topological vector 
space, X , over a topological field, K , can be defined as the 
coarsest topology (the topology with the fewest open sets) 
such that the dual pairing *X X× → K  is continuous. This 
turns the dual space into a locally convex topological vector 
space. This topology is called the weak* topology, that is, a 
weak topology defined on the dual space *X . In order to 
distinguish the weak topology from the original topology on 
X , the original topology is often called the strong topology. If 
X  is equipped with the weak topology, then addition and 

scalar multiplication remain continuous operations and X  is a 
locally convex topological vector space.  

If V  is a vector space of any (finite) dimension, then the 
level sets of a linear functional in *V  are parallel hyperplanes 
in V  and the action of a linear functional on a vector can be 
visualized in terms of these hyperplanes, or -planesp , in the 
sense that the number of hyperplanes (1-forms) intersected by 
a vector equals the interior product between the covector and 
the vector.  

In Fig. 11 we have depicted the level planes of two linear 
functionals in 3d Euclidean space. The pairing of the first 
linear functional and the vector u  equals 3, because the vector 
u  intersects the level planes three times.  

Also the vector v  intersects the level planes three times, 
whereas w  does not intersect the planes. For the second linear 
functional, u  and v  do not intersect the level planes, whereas 
w  intersects the level planes two and one half times.  

The pairings between the linear functional that is the sum of 
the former two functionals and vectors u , v  and w  are given 

by the sums of the previous pairings (Fig. 11).  
In multi-linear algebra, a multi-linear form, or -formk , is a 

map of the type:   

 
Fig. 11 Linear functionals (1-forms) α , β , their sum σ  and vectors u , v , w , in 3d Euclidean space 

 

 
 

 
Fig. 12 Geometric interpretation for the exterior product of k  1-

forms ( ε , η , ω ) to obtain an -formk  (“mesh” of coordinate 
surfaces, here planes), for 1,2,3k = . The “circulations” show 

orientation 
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: kf V → K , (7) 
 

where V  is a vector space over the field K , which is 
separately linear in each its k  variables. The -formsk  are 
generated by the exterior product on covectors.  

The geometric interpretation for the exterior product of k  
covectors is that of mesh of k  coordinate surfaces. In 3d 
Euclidean space, the coordinate surfaces are planes. Thus, we 
have a mesh of two planes when we perform the exterior 
product of 2 1-forms and a mesh of three planes when we 
perform the exterior product of 3 1-forms (Fig. 12).  

The exterior algebra is contained in a wider algebra, the 
geometric algebra.  

IV. AN INSIGHT INTO GEOMETRIC ALGEBRA 
The geometric algebra (GA) [57]–[63] is an approach 

alternative to vector algebra for providing additional algebraic 
structures on vector spaces, with geometric interpretations. 
The difference between vector algebra and geometric algebra 
is that vector algebra is specific to Euclidean three-
dimensional space, whereas geometric algebra uses multi-
linear algebra and applies in all dimensions. They are 
mathematically equivalent in three dimensions, though the 
approaches differ.  

Geometric algebra gives emphasis on geometric 
interpretations and physical applications. A geometric algebra 
is the Clifford algebra ( ),V Q  of a vector space over the 
field of real numbers endowed with a quadratic form.  

The distinguishing multiplication operation that defines the 
geometric algebra as a unital ring is the geometric product. 
Taking the geometric product among vectors can yield 
bivectors, trivectors, or general -vectorsp . The addition 
operation combines these into general multi-vectors. This 
includes, among other possibilities, a well-defined sum of a 
scalar and a vector, an operation that is impossible by the 
traditional vector addition.  

In the most general case, the geometric product is the sum 
between a scalar and a bivector. Actually, we may write the 
geometric product of any two vectors a  and b  as the sum of a 
symmetric product and an antisymmetric product:  

 

( ) ( )1 1
2 2

ab ab ba ab ba= + + − , (8) 

 
where the symmetric product is a real number, because it is a 
sum of squares:  

 

( ) ( )( )2 2 21 1:
2 2

a b ab ba a b a b⋅ = + = + − − , (9) 

 
and is not required to be positive definite. The symmetric 
product defines the inner product a b⋅  of vectors a  and b . It 

is not specifically the inner product on a normed vector space.  
Moreover, the antisymmetric product in Eq. (8) is a 

bivector, equal to the exterior product a b∧  of the contained 
exterior algebra, and defines the outer product of vectors a  
and b :  

 

( )1:
2

a b ab ba∧ = − . (10) 

 
Geometrically, the outer product a b∧  can be viewed by 

placing the tail of the arrow b  at the head of the arrow a  and 
extending vector a  along vector b  (Fig. 13). The resulting 
entity is a two-dimensional sub-space that has an area equal to 
the size of the parallelogram spanned by a  and b .  

The geometric interpretation of the outer product b a∧  is 
achieved by placing the tail of the arrow a  at the head of the 
arrow b  and extending vector b  along vector a  (Fig. 14). 
This reverses the circulation of the boundary, whereas it does 
not change the area of the parallelogram spanned by a  and b .  

In conclusion, the geometric product in Eq. (8) can be 
written as:  

 
ab a b a b= ⋅ + ∧ . (11) 

 
The scalar and the bivector are added by keeping the two 

entities separated, in the same way in which, in complex 

 
Fig. 13 The extension of vector a  along vector b  provides the 

geometric interpretation of a b∧  
  

 
Fig. 14 The extension of vector b  along vector a  provides the 

geometric interpretation of the outer product b a∧  
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numbers, we keep the real and imaginary parts separated.  
One can consider the Clifford algebra ( ),V Q  as an 

enrichment (or more precisely, a quantization) of the exterior 
algebra ( )VΛ  on V  with a multiplication that depends on Q . 
For non-zero Q  there exists a canonical linear isomorphism 

between ( )VΛ  and ( ),V Q , whenever the ground field K  
does not have characteristic two. That is, they are naturally 
isomorphic as vector spaces, but with different multiplications.  

The -vectorsp  are charged with three attributes, or 
features: attitude, orientation, and magnitude. The second 
feature, taken singularly and combined with the first feature, 
gives rise to the two kinds of orientation in space, inner and 
outer orientations.  

A. Inner Orientation of Space Elements 
According to the definition given in Section II.B, the second 

feature of -vectorsp , the orientation, is, more properly, an 
inner orientation, because it does not depend on the 
embedding space. The term “inner” refers to the fact that the 
circulations are defined for the boundaries of the elements, by 
choosing an order for the vertexes. Therefore, we move and 
stay on the boundaries of the elements, without going out from 
the elements themselves.  

In GA, the inner orientation is the geometric interpretation 
of the exterior geometric product among vectors. In particular, 
the inner orientation of a plane surface can be viewed as the 
orientation of the exterior product between two vectors u  and 
v  (the bivector ∧u v ) of the plane on which the surface lies 
(Fig. 15). Analogously, the inner orientation of a volume can 
be viewed as the orientation of the exterior product between 

three vectors u , v , and w  (the trivector ∧ ∧u v w ) of the 
three-dimensional space containing the volume (Fig. 15).  

By extending the geometrical interpretation of the bivector 
provided in Fig. 13 and Fig. 14, we can view the trivector as 
the extension of a bivector along a vector (Fig. 16). Its 
magnitude is equal to the volume spanned by the bivector and 
the vector.  

The concept of inner orientation defined above did not 
apply to zero-dimensional vector spaces (points). However, 
since it is useful to be able to assign different inner 
orientations to a point, we extend the outer product to zero-
dimensional vectors:  

 
∧P Q u , (12) 
 

which has the geometrical meaning of point P  extended 
toward point Q . The extension of the outer product preserves 
the antisymmetric property of the product, since ∧Q P  (point 
Q  extended toward point P ) is the negation of ∧P Q :  

 
∧ = −Q P u . (13) 
 
Analogously, a point extended by a vector results in an 

oriented length (Fig. 16), which can be represented by the 
vector itself. Consequently, we can see a bound vector with 
origin in P  as the outer product between P  and the free 

 
 

 
Fig. 15 Geometric interpretation for the exterior product of p  

vectors to obtain a -vectorp , where 1,2,3p = . The “circulations” 
show the inner orientation 

 
 

 
Fig. 16 The inner orientation of a -spacep  element is induced by the 

( )1 -spacep −  elements on its boundary 
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vector u :  
 

P u u∧ = . (14) 
 
Then, since the bound vector ( ),P u  is often denoted by 

simply u , as its free vector, we can also write 
 
∧ =P u u . (15) 
 
For consistency, we must therefore define the outer product 

between the vector u  and the point P  as the negation of u :  
 
∧ −u P u . (16) 
 
This allows us to find the -vectorsk  and their inner 

orientations inductively, from the elements of the zero-
dimensional space to the elements of a space of any dimension 
(Fig. 16).  

In analogy to the direction of the vector product ×u v , 
which is orthogonal both to u  and v , the result of the 
operation ∧P Q , defined in 1

  on elements of 0
 , has the 

direction of a line that is orthogonal both to P  and Q . In 
three-dimensional space, where we can define infinite sub-
spaces of dimension 1, each provided with its own basis, this 
operation produces elements in the direction of any line of the 
three-dimensional space. Being orthogonal to each direction of 
the three-dimensional space, the point is orthogonal to the 
three-dimensional space itself and to each volume of the space.  

It is worth noting that the inner orientation of a surface is 
not positive or negative in itself. Neither choosing the sign of 
the inner orientation can be considered an arbitrary 
convention. Providing the inner orientation of a surface with a 
sign makes sense only when the surface is “watched” by an 
external observer, that is, only when the surface is studied in 
an embedding space of dimension greater than 2, the 
dimension of the surface. 

The six faces of the positive trivector ∧ ∧u v w  in Fig. 15 
have a negative inner orientation when they are watched by an 
external observer, whereas they have a positive inner 
orientation when they are watched by a local observer that is 
inside the volume. This happens since the inner volume of the 
trivector is the intersection of the six positive half-spaces, that 
is, the half-spaces of the six observers that watch the positive 
surfaces originated by the trivector. By relating the sign of the 
inner orientation to the external observer also in this second 
case, the positive inner orientation of a volume is the one 
watched by the external observer. As a consequence, the inner 
orientation of a volume is positive when the inner orientations 
of all its faces are negative, as in Fig. 15 and Fig. 9.  

Also for the point we can define two inner orientations, the 
outward and the inward orientations (Fig. 17). In the first case, 
the point is called a source, whereas, in the second case, is 
called a sink.  

By making use of the notion of observer in this latter case 

too, each incoming line can be viewed as the sense along 
which the external observer watches the point.  

In this sense, a sink is a point with a positive inner 
orientation, whereas a source is a point with a negative inner 
orientation (Fig. 17). This also explains why we have chosen 
as positive inner orientation of the point in Fig. 9 the inward 
orientation.  

In conclusion, the positive or negative inner orientation of a 
-spacep  element is induced by the positive or negative inner 

orientation of the ( )1 -spacep −  elements on its boundary. 
This allows us to extend the procedure for finding the inner 
orientation of the space elements to spaces of any dimension.  

B. Outer Orientation of Space Elements 
The attitude is part of the description of how -vectorsp  are 

placed in the space they are in. Thus, the notion of attitude is 
related to the notion of embedding of a -vectorp  in its space, 
or space immersion. In particular, a vector in three dimensions 
has an attitude given by the family of straight lines parallel to 
it (possibly specified by an unoriented ring around the vector), 
a bivector in three dimensions has an attitude given by the 
family of planes associated with it (possibly specified by one 
of the normal lines common to these planes), and a trivector in 
three dimensions has an attitude that depends on the arbitrary 
choice of which ordered bases are positively oriented and 
which are negatively oriented.  

Between a -vectorp  and its attitude there exists the same 
kind of relationship that exists between an element a  of a set 
X  and the equivalence class of a  in the quotient set of X  by 

a given equivalence relationship. In the special case of the 
attitude of a vector in the three-dimensional space, the set is 
that of the straight lines and the equivalence relationship is that 
of parallelism between lines. One of the invariants of the 
equivalence relation of parallelism is the family of planes that 
are normal to the lines in a given equivalence class. Since we 
can choose any of the parallel planes for representing the 
invariant, we can speak both in terms of family of parallel 
planes and in terms of one single plane.  

Similar considerations may also be applied to the 
relationship between bivectors and their attitudes, or trivectors 
and their attitudes. Thus, we can describe the attitude of a 

-vectorp  either in terms of its equivalence class (the family of 

 
Fig. 17 Positive and negative inner orientations of a point 
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parallel lines, when the -vectorp  is a vector), or in terms of 
its class invariant (the family of normal planes, when the 

-vectorp  is a vector), that is, the equivalence class of its 
orthogonal complement. In particular, the attitude of a vector 
u  can be viewed as a family of normal planes (Fig. 18), each 
one originated by the translation of a plane normal to u , along 
the direction of u  (the planes span the direction of u ). 
Equivalently, the attitude of u  can be represented by an 
arbitrary plane of the family of normal planes.  

Analogously, the attitude of a bivector ∧u v  can be viewed 
as two families of parallel planes (Fig. 18), the first family 
normal to u  and the second family normal to v  (the planes 
span both the directions of u  and v ). Since u  and v  are 
linearly independent in their common plane, the planes that 
span both the directions of u  and v  originate all the planes 
normal to ∧u v , that is, all the planes parallel to ×u v . These 
planes can be represented by the line of intersection between 
an arbitrary plane of the first family and an arbitrary plane of 
the second family (Fig. 18). The intersection line is parallel to 
all planes of the two families and to vector ×u v . Finally, the 
attitude of a trivector ∧ ∧u v w  can be viewed as three 
families of parallel planes (Fig. 18), provided that the three 
families are normal to u , v , and w , respectively (the planes 
span the three directions of u , v , and w ). If u , v , and w  
are linearly independent, then the three families originate all 
the plane of the three-dimensional space.  

A possible representation of all the planes of the three-
dimensional space, under the equivalence relation of 

parallelism, is achieved by choosing a point of the space and 
considering the set of all the planes that contain the point. 
Being common to all the planes, the point can be used for 
representing the whole set of planes, which, in turn, represents 
all the planes of the three-dimensional space.  

In conclusion, as for the inner orientation of the -vectorsp , 
also the attitude of the -vectorsp  is defined inductively, 
starting from the 1-vector . This allows us to define the attitude 
of the -vectorsp  even in dimension greater than 3.  

The same family of parallel planes represents both the set of 
planes that are normal to u  and the set of hyperplanes of *u , 
the dual vector of u . Consequently, the attitude of the class 
invariant of a vector u  equals the attitude of the covector *u .  

This is ultimately a consequence of the Riesz representation 
theorem, which allows us to represent a covector by its related 
vector [64]. Thus, there exists a bijective correspondence 
between the attitude of the orthogonal complement of a vector 
u  and the attitude of its covector, *u .  

The bijective correspondence extends also to the second 
feature, that is, the orientations of a vector and its covector, 
since the order of the hyperplanes is determined by the sense 
of u . This allows us to define a second type of orientation for 
the covector *u , which we call the outer orientation since it is 
induced by the (inner) orientation of u  and has the 
geometrical meaning of sense of traversal of the hyperplanes 
of *u . In doing so, we have established a bijective 
correspondence between the inner orientation of a vector and 
the outer orientation of its covector. On the other hand, since it 

 

 
Fig. 18 Geometric interpretation of the attitude of a -vectorp  in terms of class invariants 
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is always possible to define an inner orientation for *u  (by 
choosing a basis bivector for *u ), the duality between vectors 
and covectors will result in an outer orientation for u , induced 
by the inner orientation of *u .  

Therefore, the inner orientation of a covector induces an 
outer orientation on its vector. Moreover, since the 
equivalence classes of *u  are in bijective correspondence with 
the attitude of u , to fix the inner orientation of *u  is also 
equivalent to fixing an orientation, which is an inner 
orientation, for the attitude of u . In doing so, the attitude of u  
becomes an attitude vector and its inner orientation equals the 
outer orientation of u . Therefore, by providing the attitude 
with an orientation, we establish an isomorphism between the 
orthogonal complement and the dual vector space of any sub-
set of vectors. This means that the pairing between the 
geometric algebra and its dual can be described by the 
invariants of the equivalence relation of parallelism.  

In conclusion, we can define the orientation of a vector by 
providing either its inner orientation or the inner orientation of 
its attitude vector (which is also the outer orientation of the 
vector). The latter, in turn, is equal to the inner orientation of 
the covector.  

The relationship between the inner and outer orientations 
and the related notion of orthogonal complement (or dual 
element) are implicit, both in mathematics and physics. They 
are given by the right-hand rule, which is equivalent to the 
right-hand grip rule and the right-handed screw rule. We make 
them explicit in this paper because they are at the basis of the 
CM description of physics.  

The dual of a -dimensionalp  space element has dimension 
n p− , in the -dimensionaln  space. This means that the outer 
orientation depends on the dimension of the embedding space, 
whereas the inner orientation does not.  

C. Relationship between Cell Method and Geometric 

Algebra 
Due to the geometrical interpretation of -vectorsk  provided 

by the geometric algebra, we can associate the elements of a 
vector space and its dual space with the geometrical elements 
of two cell-complexes, where the elements of the second cell-
complex are the orthogonal complements of the corresponding 
elements in the first cell-complex (Fig. 19). As a consequence, 
by providing the elements of the first cell-complex with an 
inner (or an outer) orientation, we induce an outer (or an inner) 
orientation on the second cell-complex.  

It is true that the inner orientation of the elements of a 
vector space also induces an outer orientation on the elements 
of the same vector space and this may allow us to think that a 
single cell-complex would be sufficient. Nevertheless, the 
association between the two orientations of the same cell-
complex is not automatic. There are always two possible 
criteria for establishing the correspondence between the two 
orientations, which depend on the orientation of the 
embedding space. Conversely, the relationship between inner 
(or outer) orientation of a cell-complex and outer (or inner) 
orientation of its dual cell-complex is derived from the Riesz 
representation theorem and does not depend on the orientation 
of the embedding space. Therefore, choosing to use two cell-
complexes, the one the dual of the other, instead of one single 
cell-complex, is motivated by the need to provide a description 
of vector spaces that is independent of the orientation of the 
embedding space. This means that a proper description of a 
given physical phenomenon requires to use two cell-complexes 
in relation of duality, not just one, as usually was done in 
computational physics before the introduction of the CM.  

We will denote the first cell-complex as the primal cell-
complex, or primal complex, and the second cell-complex as 
the dual cell-complex, or dual complex.  

In algebraic topology, the cell-complexes are viewed as 
generalizations of the oriented graphs. Therefore, all the 
properties of the dual graphs naturally extend to the dual cell-
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Fig. 19 Association between the elements of a vector space and the elements of the dual space in 3-dimensional space 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 373



 

 

complexes. In particular, the dual graphs depend on a 
particular embedding. Since even the orthogonal complements 
(that is, the isomorphic dual vectors) and the outer orientation 
depend on the embedding, we will associate the outer 
orientation with the dual cell-complex and will retain the inner 
orientation for the primal cell-complex.  

The most natural way for building the two cell complexes is 
starting from a primal cell complex made of simplexes and 
providing this first cell-complex with an arbitrary inner 
orientation. The set of the dual elements can then be chosen as 
any arbitrary set of staggered elements whose outer 
orientations provide the (known) inner orientations of the 
primal -cellsp . In this sense, we can say that the outer 
orientations of the dual -cellsp  are induced by the inner 
orientations of the primal -cellsp .  

Moreover, the dimension of the dual of a -vectork  depends 
on the dimension n  of the space in which it is embedded and 
is equal to n k− . Thus, in a three-dimensional space the dual 
of a 0-vector has dimension 3, where the correspondence also 
extends to the inner and outer orientations due to the Riesz 
representation theorem (Fig. 19). Analogously, the dual of an 
1-vector has dimension 2, the dual of a 2-vector has dimension 
1, and the dual of a 3-vector has dimension 0.  

This is exactly the same correspondence we have in the 
classification diagram of the physical variables (Fig. 9). 
Therefore, now we are able to recognize in the classification 
diagram of the CM a structure of bialgebra.  

Moreover, since the global source variables require outer 
orientations, we have gained the mathematical explanation of 
why the global source variables must be associated with the 
dual -cellsp .  

In conclusion, by associating the global configuration 
variables of the CM with the primal -cellsp :  
• The set of topological equations between global 

configuration variables defines a geometric algebra on the 
space of global configuration variables, provided with a 
geometric product.  

• The operators of these topological equations are generated 
by the outer product of the geometric algebra, which is 
equal to the exterior product of the enclosed exterior 
algebra.  

• The dual algebra of the enclosed exterior algebra is the 
space of global source variables, associated with the dual 

-cellsp , and is provided with a dual product that is 
compatible with the exterior product of the exterior algebra.  

• The topological equations between global source variables 
arise from the adjoint operators of the primal operators.  

• The pairing between the exterior algebra and its dual gives 
rise to the energetic variables, by the interior product.  

• Since the reversible constitutive relations may be written in 
terms of energetic variables, because energy is the potential 
of the reversible constitutive relations, the reversible 
constitutive relations realize the pairing between the exterior 
algebra and its dual.  

V. INNER AND OUTER ORIENTATIONS OF TIME ELEMENTS IN 
THE CM 

When the physical phenomenon evolves in time, we have so 
many classification diagrams as the time instants are. Since it 
is not possible to draw a classification diagram for each time 
instant, we simply double the diagram and shift it to the rear, 
along the time axis (Fig. 20).  

Finding the orientations of the time elements could be 
viewed in the same way that finding the inner and outer 
orientations of the space elements in a one-dimensional space. 
In fact, the time axis defines a one-dimensional cell-complex 
(Fig. 21), where the time instants, I , are the primal nodes and 
the time intervals, T , are the primal sides (the time instants 
are the boundaries, or the faces, of the time intervals).  

Moreover, in a one-dimensional space the dual (orthogonal 
complement) of a point is a line segment and the dual of a line 
segment is a point. Consequently, the nodes of the dual cell-
complex are the middle points of the primal sides. They define 

 

 
Fig. 20 Space–time classification diagram of the physical variables 

 

 
Fig. 21 Time elements and their duals 
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the dual time instants and are the duals of the primal sides.  
As far as the inner orientation is concerned, all the time 

instants, both those along the positive semi-axis and those 
along the negative semi-axis, are sinks. Thus, they have an 
inward inner orientation (Fig. 21). Finally, we can decide that 
the inner orientation of the time intervals is the same as the 
orientation of the time axis.  

After a more detailed analysis, however, it is clear that 
building a cell-complex in time makes no sense in itself [65]. 
In fact, in physics time has not importance in itself. It is just a 
variable, useful for describing how a physical phenomenon 
evolves in space. Consequently, the time axis must always be 
related to one or more axes in space.  

The perception itself of time is linked to bodies. Therefore, 
a cell-complex in time must be two-dimensional, at least. In 
particular, for studying three-dimensional bodies in time, we 
have to add a time axis to a three-dimensional cell-complex 
where the cell of greater dimension has been originated by a 
trivector ∧ ∧u v w .  

The extension of a trivector along a forth direction gives 
rise to a 4-vector (Fig. 22), the tesseract, which is the basic 
unit for building a four-dimensional space/time cell-complex.  

In multi-linear algebra, the tesseract is a further element of 
the (graded) exterior algebra on a vector space. It is the four-
dimensional analog of the cube, in the sense that it is to the 
cube as the cube is to the square. Just as the surface of the 
cube consists of six square faces, the hyper-surface of the 
tesseract consists of eight cubical cells. Each edge of a 
tesseract is of the same length and there are three cubes folded 
together around every edge.  

For representing a tesseract in the plane, we can unfold the 
tesseract in its eight constituents cubes, use of one of its 
shadows in 2 dimensions, or employ one-point perspective for 

drawing the fourth dimension and axonometric projection for 
drawing the remaining three dimensions. In Fig. 23 we have 
shown the most commonly used representation of the tesseract 
in the plane, where the centre of projection is inside the 
tesseract. According to this representation, the attention of the 
observer is focused on the body, which changes dimension 
with time because the relative position between body and 
observer changes with time.  

In the following, we will adopt the representation shown in 
Fig. 23 but with a different association between types of 
projection and dimensions of the tesseract, since we will plot 
the fourth dimension of time along one of the three directions 
of axonometric projection. Specifically, we will associate the 
left cube of Fig. 23 with the previous time instant and the right 
cube with the following time instant (Fig. 24). Using one 
direction of axonometric projection for representing time 
means that we are focusing our attention on time rather than on 
the three space dimensions of the body.  

The -cellsp  of the space/time 4-vector are of different 
nature, since some -cellsp  are associated with a variation of 
the space variables, some other -cellsp  are associated with a 
variation of the time variables, and the remaining -cellsp  are 
associated with a variation of both the space and time 

   

 
Fig. 22 Inductive construction of a 4D hyperprism from dimension 0 

to dimension 4, by adding one dimension at a time 
 

 
Fig. 23 The 8 cubical cells of the tesseract folded, in threes, around 

the same edge 
 

 

  
Fig. 24 Different kinds of 1-cells in a space/time tesseract 
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variables.  
In particular, the points are associated with a variation of 

both the space and time variables. Consequently, we can say 
that there exists just one kind of 0-cells.  

As far as the others -cellsp  are concerned, on the contrary, 
we can define two different kinds of -cellsp  for each 

1, 2,3p = . Therefore, we have two kinds of 1-cells (Fig. 24):  
• 1-cells of the kind “space,” which connect points associated 

with the same time instant, that is, the edges of the cube (the 
trivector ∧ ∧u v w ) at the previous instant and the edges of 
the cube at the following instant.  

• 1-cells of the kind “time,” which connect points associated 
with two adjacent time instants, that is, the time intervals.  
Analogously, we have two kinds of 2-cells (Fig. 25):  

• 2-cells of the kind “space,” which connect edges associated 
with the same time instant, that is, the faces of the cubes at a 

given instant.  
• 2-cells of the kind “space/time,” which connect edges 

associated with two adjacent time instants. The area of one 
of these faces is given by the product between the time 
interval and one edge of the space trivector ∧ ∧u v w .  
Finally, we have two kinds of 3-cells (Fig. 26):  

• 3-cells of the kind “space,” which connect faces associated 
with the same time instant, that is, the volume of the 
trivector ∧ ∧u v w  at a given instant.  

• 3-cells of the kind “space/time,” which are enclosed within 
faces associated with two adjacent time instants. The 
volume of one of these 3-cells is given by the product 
between the time interval and two edges of the space 
trivector ∧ ∧u v w .  
Each cube of the tesseract has both an inner and an outer 

orientation. For the sake of simplicity, in Fig. 27 we have 
shown just the inner orientations of the eight cubes. In order to 
comply with the natural time sequence, from past to future, we 
will use the orientations of the tesseract just for the two cubes 
of the kind space and will not orientate the remaining six cubes 
(Fig. 28).  

Moreover, we will provide the eight edges of the kind 
“time” with the inner orientation from past to future (Fig. 28), 
in the same orientation of the time axis. Finally, since the same 
point of a four-dimensional space denotes both a point in space 
and a point in time (a time instant), it follows that the time 
instants have an inward inner orientation, that is, they are 
sinks.  

Thus, we will treat the time dimension differently from the 
three space dimensions. This is exactly the same thing that 
happens in spacetime, the four-dimensional Minkowski 
continuum, whose metric treats the time dimension differently 
from the three spatial dimensions. Consequently, spacetime is 
not an Euclidean space.  

In conclusion, by exploiting the geometrical associations 
provided by the Cell Method when we associate the global 

 
Fig. 25 Different kinds of 2-cells in a space/time tesseract 

 

 

 
Fig. 26 Different kinds of 3-cells in a space/time tesseract 
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space and time variables with the oriented elements of a 4-
vector, we have obtained the algebraic version of spacetime.  

VI. CONCLUSION 
In this paper, we have shown that the geometric 

interpretations of the operations on vectors, provided by both 
the exterior and geometric algebra, and the notions of 
extension of a vector by another vector, multi-vector (or 

-vectorp ), dual vector space, covector, and bialgebra are of 
special importance for understanding the mathematical 
foundations of the Cell Method (CM).  

The geometric approach allowed us to view the space 
elements and the time elements as -vectorsp  of a geometric 
algebra, all inductively generated by the outer product of the 
geometric algebra. From the attitude and orientation of 

-vectorsp , we have then derived the two kinds of orientation 

for -vectorsp , inner and outer orientations, which apply to 
both the space and the time elements. We have also discussed 
how the orientation of a -vectorp  is induced by the 

orientation of the ( )1 -vectorsp −  on its boundary and how the 
inner orientation of the attitude vector of a vector equals the 
outer orientation of its covector. This establishes an 
isomorphism between the orthogonal complement and the dual 
vector space of any sub-set of vectors.  

By exploiting the geometrical interpretations of -vectorsp , 
we have gained an insight into the mathematical foundations of 
the Cell Method. Specifically, we have seen that distinguishing 
between configuration and source variables, which is at the 
basis of the classification diagram, has an additional meaning 
beyond the mere classification of variables. Actually, the 
global configuration variables, with their topological 
equations, define a bialgebra on a vector space, which is 
denoted as the primal vector space, and the global source 
variables, with their topological equations, define a dual 
algebra on the dual vector space.  

The operators of the topological equations are generated by 
the outer product of the geometric algebra, for the primal 
vector space, and by the dual product of the dual algebra, for 
the dual vector space.  

Being expressed as topological equations in two different 
vector spaces, compatibility and balance can be enforced at the 
same time, with compatibility enforced on the primal cell-
complex and equilibrium enforced on the dual cell-complex.  

Moreover, choosing to use two cell-complexes, the one the 
dual of the other by the Riesz representation theorem, allows 
us to provide a description of vector spaces whose orientations 
are independent of the orientation of the embedding space.  

Finally, by extending the primal and dual cell-complexes 
along the fourth dimension of a time axis and treating the time 
dimension differently from the three spatial dimensions, we 
obtain the algebraic version of the four-dimensional 

 
Fig. 27 Inner orientations on the 2-cells of the 4-vector 

 

 

 
Fig. 28 The CM tesseract: inner orientations on the 3-cells of the 

kind space and the 1-cells of the kind time 
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Minkowski continuum, useful for studying spacetime.  
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