
1

A Recurrence Equation-Based Solution for the
Cubic Spline Interpolation Problem

Peter Z. Revesz

Abstract—This paper presents a simple and fast recurrence
equation-based method for solving the cubic spline interpola-
tion problem. The computational complexity of the method is
O(n), where n is the number of measurements. The recurrence
equation-based method is illustrated by an example that estimates
the movement of a moving object. The paper also describes a
MATLAB implementation of the new method and the use of
cubic spline interpolation within the MLPQ database system.

Index Terms—cubic spline, interpolation, recurrence equation,
tridiagonal matrix.

I. INTRODUCTION

Cubic spline interpolation is a widely-used polynomial
interpolation method for functions of one variable [3]. Cubic
splines can be described as follows. Let f be a function from
R to R. Suppose we know about f only its value at locations
x0 < . . . < xn. Let f(xi) = ai. Piecewise cubic spline
interpolation of f is the problem of finding the bi, ci and di
coefficients of the cubic polynomials Si for 0 ≤ i ≤ n − 1
written in the form:

Si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3 (1)

where each piece Si interpolates the interval [xi, xi+1] and
fits the adjacent pieces by satisfying certain smoothness con-
ditions. Taking once and twice the derivative of Equation (1)
yields, respectively the equations:

S′i(x) = bi + 2ci(x− xi) + 3di(x− xi)2 (2)

S′′i (x) = 2ci + 6di(x− xi) (3)

Equations (1-3) imply that Si(xi) = ai, S′i(xi) = bi
and S′′i (xi) = 2ci. For a smooth fit between the adjacent
pieces the cubic spline interpolation requires that the following
conditions hold for 0 ≤ i ≤ n− 2:

Si(xi+1) = Si+1(xi+1) = ai+1, (4)

S′i(xi+1) = S′i+1(xi+1) = bi+1 (5)

S′′i (xi+1) = S′′i+1(xi+1) = 2ci+1 (6)

This paper is organized as follows. Section II review the
usual solution for cubic splines by solving a tridiagonal matrix.

Peter Z. Revesz is with the Department of Computer Science and Engi-
neering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0115.
E-mail: revesz@cse.unl.edu, Phone: (1+) 402 472–3488

Section III presents a new recurrence equation-based solution.
Section IV illustrates the use of the recurrence equation by giv-
ing an example of interpolating the motion of a moving object.
Section V gives another recurrence equation that eliminates the
use of the hi variables. Section VI presents the implementation
of the cubic spline interpolation in the MATLAB system and
the MLPQ constraint database system. Finally, Section VII
presents some conclusions.

II. THE TRIDIAGONAL MATRIX-BASED SOLUTION

In this section we review the usual tridiagonal matrix-based
solution for cubic splines. Let hi = xi+1 − xi. Substituting
Equations (1-3) into Equations (4-6), respectively, yields:

ai + bihi + cih
2
i + dih

3
i = ai+1 (7)

bi + 2cihi + 3dih
2
i = bi+1 (8)

ci + 3dihi = ci+1 (9)

Equation (9) yields a value for di, which we can substitute
into Equations (7-8). Equation (9) is equivalent to:

di =
1

3hi
(ci+1 − ci). (10)

Substituting the above value for di into Equations (8-9) we
get:

ai + bihi +
2ci + ci+1

3
h2i = ai+1 (11)

bi + (ci + ci+1)hi = bi+1 (12)

The latter two equations can be simplified as:

ai+1 − ai = bihi +
2ci + ci+1

3
h2i (13)

bi+1 − bi = (ci + ci+1)hi (14)

Solving Equation (13) for bi yields:

bi = (ai+1 − ai)
1

hi
− 2ci + ci+1

3
hi (15)

which implies for j ≤ n− 3 the condition:

bi+1 = (ai+2 − ai+1)
1

hi+1
− 2ci+1 + ci+2

3
hi+1 (16)

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 446



2

Substituting into Equation (14) the values for bi and bi+1

from Equations (15-16) yields:

(ai+1 − ai)
1

hi
− (2ci + ci+1)

hi
3

+ (ci + ci+1)hi =

(ai+2 − ai+1)
1

hi+1
− (2ci+1 + ci+2)

hi+1

3

The above can be rewritten as:

hici + 2(hi + hi+1)ci+1 + hi+1ci+2 =

3

hi
ai −

(
3

hi
+

3

hi+1

)
ai+1 +

3

hi+1
ai+2

The above holds for 0 ≤ i ≤ n− 3. However, changing the
index downward by one the following holds for 1 ≤ j ≤ n−2:

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 =
3

hi
(ai+1 − ai)−

3

hi−1
(ai − ai−1) (17)

which can be simplified as:

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 =

3

hi−1
ai−1 −

(
3

hi−1
+

3

hi

)
ai +

3

hi
ai+1 (18)

The above is a system of n − 1 linear equations for the
unknowns ci for 0 ≤ i ≤ n. By Equation (3) S′′0 (x0) = 2c0
and by extending Equation (6) to i = n−1, S′′n−1(xn) = 2cn.

The cubic spline interpolation allows us to specify several
possible boundary conditions regarding the values of c0, cn.
A commonly used boundary condition called a natural cubic
spline assumes that c0 = cn = 0, which is equivalent to
setting the second derivative of the splines at the ends to zero.
Alternatively, in the clamped cubic spline interpolation, the
assumed boundary condition is b0 = f ′(x0) and bn = f ′(xn)
where the derivatives of the f at x0 and xn are known
constants.

In addition, in solving a cubic spline a uniform sampling
is also commonly assumed and available, that is, each hi has
the same constant value h. Then dividing Equation (18) by h
yields:

ci−1 + 4ci + ci+1 =
3

h2
(ai−1 − 2ai + ai+1) (19)

Since the values of ai are known, the values of ci can be
found by solving the tridiagonal matrix-vector equation Ax =
B. Under the natural cubic spline interpolation, we have:

A =



1 0 0 0 . . . 0 0 0 0
1 4 1 0 . . . 0 0 0 0
0 1 4 1 . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 1 4 1 0
0 0 0 0 . . . 0 1 4 1
0 0 0 0 . . . 0 0 0 1


the vector of unknowns is:

x =


c0
c1
...
cn


and the vector of constants is:

B =


0

3
h2 (a0 − 2a1 + a2)

...
3
h2 (an−2 − 2an−1 + an)

0

.

Similarly, under the clamped spline interpolation we have:

A =



2 1 0 0 . . . 0 0 0 0
1 4 1 0 . . . 0 0 0 0
0 1 4 1 . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 1 4 1 0
0 0 0 0 . . . 0 1 4 1
0 0 0 0 . . . 0 0 1 2


the same vector of unknowns:

x =


c0
c1
...
cn


and the following vector of constants:

B =


3
h2 (a1 − a0)− 3

hf
′(x0)

3
h2 (a0 − 2a1 + a2)

...
3
h2 (an−2 − 2an−1 + an)

3
hf
′(xn)− 3

h2 (an − an−1)

.

Both the natural cubic spline and the clamped cubic spline
boundary conditions yield a system of n+ 1 linear equations
with only n + 1 unknowns. Such a system normally yields
a unique solution except in some special cases. Moreover,
either system is a tridiagonal matrix system that can be solved
in O(n) time. Once the ci values are found, the di and the
bi values also can be found by Equations (10) and (15),
respectively. Computing the bi and di coefficients can be done
also within O(n) time.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 447



3

III. A NEW RECURRENCE EQUATION-BASED SOLUTION

In our solution to the cubic spline interpolation problem, we
chose a boundary condition that requires solving the following
tridiagonal system where xi are rational variables, ei are
rational constants and r 6= 0 is a rational constant, and A
is:

A =



r 1 0 0 . . . 0 0 0 0
1 4 1 0 . . . 0 0 0 0
0 1 4 1 . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 1 4 1 0
0 0 0 0 . . . 0 1 4 1
0 0 0 0 . . . 0 0 0 1


.

Furthermore,

x =


x1
x2
...

xn−1
xn

 and b =


e1
e2
...

en−1
en

.

A. Relationship to Clamped and Natural Cubic Splines

Our new matrix is closely related to clamped cubic splines.
Consider the first equation for the clamped cubic spline, which
can be written as:

2c0 + c1 =
3

h

(
(a1 − a0)

h
− f ′(x0)

)

The above equation becomes the following after multiplying
by r/2:

rc0 +
r

2
c1 =

3r

2h

(
(a1 − a0)

h
− f ′(x0)

)

Adding (1− r/2)c1 yields:

rc0 + c1 =
3r

2h

(
(a1 − a0)

h
− f ′(x0)

)
+

(
1− r

2

)
c1

Hence the first row of our new matrix A is equivalent to
first row of the clamped cubic spline for any r 6= 0 if e1 is:

e1 =
3r

2h

(
(a1 − a0)

h
− f ′(x0)

)
+

(
1− r

2

)
c̃1.

where c̃1 is an estimate for the value of c1.
The last row of the new matrix allows fixing the value of

cn. This is a generalization of natural cubic spline which fixes
the value to be 0.

B. A Recurrence Equation-Based Solution

In this section, we solve the new system using the value
r = 2 +

√
3 ≈ 3.732. This value of r has several interesting

properties that can be summarized in the following theorems.
Theorem 1: Let r = 2+

√
3. Then the following properties

hold:

1)
4r − 1

r
= r

2)
1

rk
= sk − sk−1r

where s0 = 1, s1 = 4, sn = 4sn−1 − sn−2

Proof: To show the first identity, simply substitute the value
r = 2 +

√
3 to get:

4r − 1

r
=

4(2 +
√
3)− 1

2 +
√
3

=
4
√
3 + 7

2 +
√
3

=

=
(2 +

√
3)(2 +

√
3)

2 +
√
3

= 2 +
√
3 = r

From Condition (1) follows by multiplying by r that:

4r − 1 = r2

which is equivalent to:

1 = 4r − r2

Dividing the above by r gives:

1

r
= 4− r

which is exactly the base case of Condition (2) when k = 1.
Suppose now that Condition (2) holds for k − 1 prove for k.
Then we have that:

1

rk
=

1

r

1

rk−1
=

1

r
(sk−1 − sk−2r) =

1

r
sk−1 − sk−2

= (4− r)sk−1 − sk−2 = (4sk−1 − sk−2)− sk−1r
= sk − sk−1r

Therefore, Condition (2) holds for all k ≥ 1.

The first three equations can be written as:

rx1 + x2 = e1

x1 + 4x2 + x3 = e2

x2 + 4x3 + x4 = e3

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 448



4

Multiplying the second row by r, subtracting from it the
first row, and then dividing it by r and using Condition (1) of
Theorem 1 gives:

rx1 + x2 = e1

rx2 + x3 = e2 −
e1
r

x2 + 4x3 + x4 = e3

Multiplying now the third row by r, subtracting from it
the second row, and then dividing it by r and again using
Condition (1) of Theorem 1 gives:

rx1 + x2 = e1

rx2 + x3 = e2 −
e1
r

rx3 + x4 = e3 −
e2
r

+
e1
r2

Continuing this process until the last row, we get:

rxn−3 + xn−2 = en−3 − en−4

r + en−5

r2 − . . .+ (−1)n−4 e1
rn−4

rxn−2 + xn−1 = en−2 − en−3

r + en−4

r2 − . . .+ (−1)n−3 e1
rn−3

rxn−1 + xn = en−1 − en−2

r + en−3

r2 − . . .+ (−1)n−2 e1
rn−2

xn = en

Dividing each row except the last one by r yields:

xn−3 +
xn−2

r = en−3

r − en−4

r2 + . . .+ (−1)n−4 e1
rn−3

xn−2 +
xn−1

r = en−2

r − en−3

r2 + en−4

r3 − . . .+ (−1)n−3 e1
rn−2

xn−1 +
xn

r = en−1

r − en−2

r2 + en−3

r3 − . . .+ (−1)n−2 e1
rn−1

xn = en

Note that each row 1 ≤ i ≤ n− 1 will be the following:

xi +
xi−1
r

=
∑

0≤k≤(i−1)

(−1)k ei−k
rk+1

We define the values for α0, αi for 1 < i ≤ n− 1, and αn,
respectively, as follows:

α0 = 0

αi =
ei − αi−1

r
=

∑
0≤k≤(i−1)

(−1)k ei−k
rk+1

αn = en (20)

The solution to the linear equation system can be described
in terms of the α constants as follows:

...

xn−3 = αn−3 −
αn−2

r
+
αn−1

r2
− αn

r3

xn−2 = αn−2 −
αn−1

r
+
αn

r2

xn−1 = αn−1 −
αn

r

xn = αn

Therefore, xi for each row 1 ≤ i ≤ n will be:

xn = αn

(21)

xi = αi−1 −
xi+1

r

The above can be solved in closed form as follows:

xi =
∑

0≤k≤(n−i)

(
−1
r

)k

αi+k (22)

Note that no matter what exactly are the initial values for
e, we have pre-solved the system. This can lead to a faster
evaluation of the cubic spline than solving the tridiagonal
system each time. We need only O(n) multiplications and sub-
tractions to compute the values of all the xi. Moreover, when
any new measurement is made, the conventional tridiagonal
matrix-based algorithm requires a complete redo of the entire
computation in O(n) time. In contrast, Equation (21) leads to
a faster update because to each xi for i ≤ n we need to add
only the term: (

−1
r

)n+1−i

αn+1.

We also need to make xn+1 = αn+1.. Afterward updating
the other αi constants can be done also similarly efficiently
by adding a single term that contains en+1.

IV. A MOVING OBJECT EXAMPLE

Suppose that an object is released from a height of 400
feet with zero initial velocity. Suppose also that we measure
the object’s position to be 384, 336 and 256 feet from earth
at one, two and three seconds after release. We also suspect
that the object is in free fall with a gravitational acceleration
of 32ft/sec2 at one second after release and at three seconds
after release. Find a cubic spline approximation for the object’s
position at all times from the release to three seconds after.

We will measure the distance traveled from the release
point. The cubic polynomials we need to find for the intervals
[0, 1], [1, 2] and [2, 3] can be expressed as follows:

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 449



5

S0(x) = a0 + b0x+ c0x
2 + d0x

3

S1(x) = a1 + b1(x− 1) + c1(x− 1)2 + d1(x− 1)3

S2(x) = a2 + b2(x− 2) + c2(x− 2)2 + d2(x− 2)3

We have n = 4, a0 = 400, a1 = 384, a2 = 336, a3 = 256
and the uniform step size is h = 1. By our assumptions of
zero initial velocity f ′(0) = 0 and free fall at one second
c1 = −16 and free fall at four seconds c3 = −16, which
implies e4 = −16. The matrix A and the vectors x and B are:

A =


r 1 0 0
1 4 1 0
0 1 4 1
0 0 0 1

, x =


c0
c1
c2
c3


and

B =


−16r − 16
−96
−96
−16


because

B =



e1

e2

e3

e4


=



3r
2 (−16) +

(
1− r

2

)
(−16)

3(400− (2× 384) + 336)

3(384− (2× 336) + 256)

−16



By Equation (20), we have:

α1 =
e1
r

= −16− 16

r

α2 =
e2 − α1

r
= −16− 16

r

α3 =
e3 − α2

r
= −16− 16

r

α4 = e4 = −16

By Equation (21) we also have when calculating in reverse
order:

c3 = α4 = −16

c2 = α3 −
c3
r

= −16

c1 = α2 −
c2
r

= −16

c0 = α1 −
c1
r

= −16

Solving for the bi coefficients by Equation (15) gives:

b0 = 1
1 (384− 400)− 1

3 (−16− 32) = 0

b1 = 1
1 (336− 384)− 1

3 (−16− 32) = −32

b2 = 1
1 (256− 336)− 1

3 (−16− 32) = −64

Solving for the di coefficients by Equation (10) gives:

d0 =
1

3
(−16− (−16)) = 0

d1 =
1

3
(−16− (−16)) = 0

d2 =
1

3
(−16− (−16)) = 0

The above values show that an object in free fall has
an increasing velocity but its acceleration remains constant.
Using the above values, the cubic spine interpolation can be
described as:

S0(x) = 400− 16x2

S1(x) = 384− 32(x− 1)− 16(x− 1)2 = 400− 16x2

S2(x) = 336− 64(x− 2)− 16(x− 2)2 = 400− 16x2

Hence in each piece the cubic spline interpolation gives
400− 16x2, which agrees with the expected physics equation
for the position of a moving object that starts with zero veloc-
ity from an elevation of 400 feet and freely falls downward
with an acceleration of 32ft/sec2.

V. AN ALTERNATIVE RECURRENCE EQUATION

In this section we give an alternative recurrence equation
that can be calculated directly using xis instead of indirectly
using the his. First note that Equation (18) can be rewritten
as:

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 =

3

hi−1
ai−1 −

3(hi−1 + hi)

hi−1hi
ai +

3

hi
ai+1 (23)

Note also that hi = xi+1−xi and hi−1 = xi−xi−1 implies
that:

hi−1 + hi = xi+1 − xi−1

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 450



6

function[X] = CubicSpline(B)
N = length(B);
r = sqrt(3) + 2;
alpha = zeros(1, N);
X = zeros(1, N);

% Calculate the alpha values.
alpha(1) = 0;
alpha(N) = B(N);
for i = 1:(N-1)

for k = 1:i
alpha(i) = alpha(i) +

(-1)ˆ(k-1) * B(i-k+1)/(rˆk);
end

end

% Solve for X.
for i = 1:N

for k = 1:(N-i+1)
X(i) = X(i) +

(-1/r)ˆ(k-1) * alpha(i+k-1);
end

end

Fig. 1: The MATLAB implementation.

Substituting the above into Equation (23) yields:

(xi − xi−1)ci−1 + 2(xi+1 − xi−1)ci + (xi+1 − xi)ci+1 =

3

(xi − xi−1)
ai−1 −

3(xi+1 − xi−1)
(xi − xi−1)(xi+1 − xi)

ai +

3

(xi+1 − xi)
ai+1

Unlike Equation (19), the above does not assume a uniform
spacing of the xi values.

VI. IMPLEMENTATIONS OF THE CUBIC SPLINE
ALGORITHM

We implemented the cubic spline interpolation algorithm
in both MATLAB and the MLPQ database system in order
to provide ready-to-use versions to potential users. These
implementations are described separately below in subsections
A and B, respectively.

A. The MATLAB Implementation

The MATLAB is a high-level programming language and a
interactive environment for numerical computation. MATLAB
is a popular system that by 2004 already had over a million
users. The user is expected to provide only the constant array B
as input to the function CubicSpline, which was implemented
in MATLAB as shown in Figure 1. The implementation is
simple and runs fast in MATLAB.

B. The MLPQ Implementation

The MLPQ (Management of Linear Programming Queries)
database system is built at the University of Nebraska-Lincoln
under the author’s direction [10]. The MLPQ database system
allows querying of relational databases, geographic databases
and constraint databases [7]. In the current version of MLPQ
only linear constraints over the rational numbers are imple-
mented, but there is a plan to extend the implementation to
polynomial constraints over the real numbers.

The goal of the MLPQ implementation is to allow users
to conveniently retrieve the interpolated value rather than to
find the coefficients of Equation (1). Suppose that we already
found the coefficients ai, bi, ci, di of Equation (1). Note that
Equation (1) can be written as:

Si(x) = ai + bi(x− xi) + ci(x
2 − 2xxi + x2i ) +

di(x
3 − 3x2xi + 3xx2i − x3i )

The above can be rewritten as follows:

Si(x) = (ai − bixi + cix
2
i − dix3i ) +

(bi + 2cixi + 3dix
2
i )x+

(ci + 3dixi)x
2 +

dix
3

Define the constant coefficients âi = ai−bixi+cix2i−dix3i ,
b̂i = bi + 2cixi + 3dix

2
i , ĉi = ci + 3dixi and d̂i = di. Then

Si is simply a polynomial of x with these coefficients.

Si(x) = âi + b̂ix+ ĉix
2 + d̂ix

3

In the MLPQ constraint representation, the interpolated cu-
bic spline value at location x is a cubic polynomial constraint,
which can be viewed as a linear constraint of x, x2 and x3.
Therefore, we represent Si(x) over the interval [xi, xi+1] by
the linear constraint tuple:

S X Xto2 Xto3
s x y z xi ≤ x, x ≤ xi+1,

s = âi + b̂ix+ ĉiy + d̂iz

To specify the entire cubic spline interpolation, we need to
create a constraint relation that contains a separate constraint
tuple for each interval. For example, the moving object cubic
spline interpolation of Section IV can be represented by the
following constraint relation with three constraint tuples:

Spline

S X Xto2 Xto3
s x y z 0 ≤ x, x ≤ 1, s = 400− 16y
s x y z 1 ≤ x, x ≤ 2, s = 400− 16y
s x y z 2 ≤ x, x ≤ 3, s = 400− 16y

From the entire relation, MLPQ users can retrieve the
interpolated value at any desired x by specifying the values
of x, x2 and x3. For example, to retrieve the cubic spline
interpolation value at location x = 2, the query would be the
following:

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 451



7

SELECT S
FROM Spline
WHERE X = 2 AND Xto2 = 4 AND Xto3 = 8

For the above query, the MLPQ system would return the
answer of S = 336. The need to give also the values of
x2 and x3 is only a present inconvenience to the users.
This inconvenience can be eliminated in the future when
polynomial constraints over the real numbers will be fully
implemented within the MLPQ database system.

The ability to represent a cubic spline interpolation within a
database system enables many applications because database
queries are more flexible than just calculating single interpola-
tion values. For example, suppose that in another application
the Internet relation describes the monthly volume of Internet
traffic through a network node. Then a user can find the
increase in the Internet traffic from the first month to the fifth
month by the following query:

SELECT Traffic Increase
FROM Internet AS I1, Internet AS I2
WHERE I1.X = 1 AND I2.X = 5 AND

I1.Xto2 = 1 AND I2.Xto2 = 25 AND
I1.Xto3 = 1 AND I2.Xto3 = 125 AND
Traffic Increase = I1.S - I2.S

VII. CONCLUSION

The general method described in this paper can be used
in a wide variety of applications which require interpolation
of a function of one variable, for example, in data mining,
data classification and efficient data encryption and trans-
mission [2], [9], [11], [12], [13], [8], [14]. Interpolation of
measurement data can generate constraint databases that can
be efficiently queried using constraint query languages [6], [7].

The simple one-variable function interpolation can be also
extended to higher dimensions yielding interpolations of
higher-dimensional functions that describe surfaces [5] and
three-dimensional spatio-temporal or moving objects [1], [4].
This extension remains an interesting future work.

REFERENCES

[1] A. Anderson, P. Z. Revesz, Efficient MaxCount and threshold operators
of moving objects, Geoinformatica, 13 (4), 2009, pp. 355–396.

[2] Z. Brahimi, H. Bessalah, A. Tarabet, M. K. Kholladi, Selective encryption
techniques of jpeg2000 code stream for medical images transmission,
WSEAS Transactions on Circuits and Systems, 7, 2008.

[3] R. L. Burden, J. D. Faires, Numerical Analysis, 9 Edn., Springer, New
York, USA, 2014.

[4] J. Chomicki, P. Z. Revesz, Constraint-based interoperability of spatiotem-
poral databases, Geoinformatica, 3 (3), 1999, pp. 211–243.

[5] L. Li, and P. Z. Revesz, Interpolation methods for spatio-temporal
geographic data, Computers, Environment and Urban Systems, 28 (3),
2004, pp. 201–227.

[6] P. C. Kanellakis, G. M. Kuper, P. Z. Revesz, Constraint query languages,
Journal of Computer and System Sciences, 51 (1), 1995, pp. 26–52.

[7] P. Z. Revesz, Introduction to Databases: From Biological to Spatio-
Temporal, Springer, New York, USA, 2010.

[8] P. Z. Revesz, A method for predicting the citations to the scientific
publications of individual researchers, 18th International Database Engi-
neering and Applications Symposium, ACM Press, 2014, pp. 9–18.

[9] P. Z. Revesz, C. Assi, Data mining the functional characterizations
of proteins to predict their cancer-relatedness, International Journal of
Biology and Biomedical Engineering, 7 (1), 2013, pp. 7–14.

[10] P. Z. Revesz, R. Chen, P. Kanjamala, Y. Li, Y. Liu, Y. Wang, The
MLPQ/GIS constraint database system, ACM SIGMOD International
Conference on Management of Data, ACM Press, 2000.

[11] P. Z. Revesz, T. Triplet, Classification integration and reclassification
using constraint databases, Artificial Intelligence in Medicine, 49 (2),
2010, pp. 79–91.

[12] P. Z. Revesz, T. Triplet, Temporal data classification using linear
classifiers, Information Systems, 36 (1), 2011, pp. 30–41.

[13] P. Z. Revesz, R. Woodward, Variable bounds analysis of a climate
model using software verification techniques, in J. Balicki et. al (Eds),
Applications of Information Systems in Engineering and Bioscience,
WSEAS Press, 2014, pp. 31–36.

[14] V. Skala, Fast interpolation and approximation of scattered multidimen-
sional and dynamic data using radial basis functions, WSEAS Transactions
on Mathematics, 12, 2013.

Peter Z. Revesz holds a Ph.D. degree in Computer
Science from Brown University. He was a post-
doctoral fellow at the University of Toronto be-
fore joining the University of Nebraska-Lincoln,
where he is a professor in the Department of
Computer Science and Engineering. Dr. Revesz
is an expert in databases, data mining, big data
analytics and bioinformatics. He is the author
of Introduction to Databases: From Biological to
Spatio-Temporal (Springer, 2010) and Introduc-
tion to Constraint Databases (Springer, 2002). Dr.

Revesz held visiting appointments at the IBM T. J. Watson Research
Center, INRIA, the Max Planck Institute for Computer Science, the
University of Athens, the University of Hasselt, the U.S. Air Force Office
of Scientific Research and the U.S. Department of State. He is a recipient
of an AAAS Science and Technology Policy Fellowship, a J. William
Fulbright Scholarship, an Alexander von Humboldt Research Fellowship,
a Jefferson Science Fellowship, a National Science Foundation CAREER
award, and a Faculty International Scholar of the Year award by Phi
Beta Delta, the Honor Society for International Scholars.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 452




