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Abstract—The progress of numerical techniques for scalar and 

one dimensional Euler equation has been a great interest of 

researchers in the field of computational fluid dynamics for decades. 

In 1983, Harten worked on non-oscillatory first order accurate 

scheme and modified its flux function to obtain a second order 

accurate total variation diminishing (TVD) explicit difference 

schemes for scalar and one dimensional Euler equation. Although, 

TVD schemes are low dissipative and high resolution schemes, but 

for explicit formulation they are bounded by stability criterion 

CFL<1. Stability criteria for explicit formulation limits time stepping 

and thus increase computational cost. Research in the field of 

efficient low dissipative high resolution scheme is an active ground. 

In 1986, Harten enhanced his TVD scheme and presented (2K+3) 

point explicit second order accurate schemes for scalar and one 

dimensional Euler equation which are TVD under CFL restriction K. 

Numerical experiments were made to demonstrate the performance of 

the schemes for several choices of K. His results depict that for 

increasing values of CFL total number of time steps are decreased 

which eventually decrease computational time. Computation of scalar 

problems depicts that Harten’s large time step (LTS) scheme is a high 

resolution and efficient scheme. However, computations of 

hyperbolic conservation laws show some spurious oscillations in the 

vicinities of discontinuities for larger values of CFL. Zhan Sen Qian 

noticed that these spurious oscillations are due to the numerical 

formulation of the characteristic transformation used by Harten for 

extending the method for hyperbolic conservation laws. He suggested 

performing the inverse characteristic transformations by using the 

local right eigenvector matrix at each cell interface location to 

overcome these spurious oscillations. Large time step schemes 

developed by Harten and Qian have been tested with minmod limiter 

which is very dissipative. In present work, Qian MLTS TVD scheme 

is tested with more compressive limiters, namely, centralized MC and 

superbee. Shock tube problem for SOD boundary conditions is solved 

to understand the performance of MLTS TVD scheme with 

compressive limiters in the regions of discontinuities and strong 

shock waves. 

 

Keywords—CFL, Explicit scheme, Large time step, Shock tube 

problem, TVD scheme, 1D Euler equation. 

I. INTRODUCTION 

HEsystem of equation is called hyperbolic if it has all real 

and distinct Eigen values. Flow fields which are governed 

by hyperbolic equations are computed using marching 
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solutions. A scheme for hyperbolic system of equations is 

started with the given initial conditions and successively 

computes the flow field in marching direction [1] [2]. 

Transient 1D Euler equation is hyperbolic, no matter whether 

the flow is locally subsonic or supersonic. The marching 

direction for 1D Euler equation is the time direction. Methods 

to solve hyperbolic system of equations are primarily derived 

for non-linear wave equation and then implemented on 

hyperbolic system of equations. 

Lax in 1954, modified Euler’s Forward Time Central Space 

(FTCS) method and presented first-order accurate method to 

solve nonlinear wave equation. Lax method is stable for 

Courant-Friedrichs-Lewy condition (CFL) less than 1 and 

predicts the location of moving discontinuity correctly [1] [3]. 

This method is very dissipative and smears discontinuities 

over several mesh points and become worse as CFL decreases. 

Lax-Wendroff proposed a second-order accurate method for 

non-linear wave equation. His method sharply defined 

discontinuity and also stable for CFL less than 1 but produce 

undesirable oscillations when discontinuities are encountered. 

Similar to Lax method quality of results computed by Lax-

Wendroff method degrade as CFL decrease [1]. 

Lax and Lax-Wendroff central finite difference schemes are 

stable and converge if flow field is sufficiently smooth but 

produce unwanted oscillations when discontinuities are met. It 

is due to the fact that series expansion for obtaining a 

difference approximation is only valid for continuous 

functions and has continuous derivatives at least through the 

order of difference approximation [4] [5]. Godunov 

recognized this deficiency and proposed a finite volume 

scheme instead of a finite difference scheme to avoid the need 

of differentiability. He used exact Riemann problem solution 

for evaluating the flux term at the cell interface. Computation 

of nonlinear wave equation is easily accomplished by using 

Godunov method but this method is very inefficient and take 

long time when applied to system of equations [1] [6].To 

overcome this problem Roe suggested solving linear problem 

instead of actual nonlinear problem. Roe’s approximate 

Riemann solver is efficient but cannot distinguish between 

expansion shock and compression shock. This is due to the 

violation of entropy condition and hence expansion shocks 

that are nonphysical may occur in computed results [7] [8]. A 

number of entropy fix have been recommended in literature to 

overcome this problem. Roe’s  upwind approximate Riemann 

solver capture physics in more appropriate way than Lax and 

Lax-Wendroff central schemes but is only first order accurate. 

Like second order central methods, higher order upwind 
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methods have the same deficiencies and produce undesirable 

oscillations when discontinuities are encountered [9] [10]. 

Harten introduced the concept of Total Variation 

Diminishing (TVD) scheme. TVD schemes are monotonicity 

preserving schemes and therefore it must not create local 

extrema and the value of an existing local minimum must be 

non-decreasing and that of a local maximum must be non-

increasing [1] [11] [12] [13]. He worked on non-oscillatory 

first order accurate scheme and modified its flux function to 

obtain a second order accurate total variation diminishing 

(TVD) explicit difference schemes for scalar and system of 

hyperbolic conservation laws. Numerical dissipation terms in 

TVD methods are nonlinear. The quantity varies from one grid 

point to another and usually consists of automatic feedback 

mechanisms to control the amount of numerical dissipation. 

After this break through a number of TVD scheme have been 

proposed and discussed in literature [14] [15] [16] [17] [18]. 

Stability criteria for explicit formulation limits time 

stepping and thus increase computational cost. Similar to 

previously discussed schemes, explicit formulation of Harten 

and other TVD schemes are also stable only for Courant-

Friedrichs-Lewy condition (CFL) less than 1. It is a 

challenging task to develop an explicit scheme which is stable 

for higher values of CFL number. In literature this kind of 

schemes are known as large time step (LTS) schemes and an 

active field of research for last three decades. Leveque 

described a method for approximating nonlinear interactions 

linearly which allows Godunov’s method to be applied with 

arbitrarily large time steps [18] [19]. Harten extended Leveque 

work and proposed second-order accurate total variation 

diminishing large time step explicit schemes for the 

computation of hyperbolic conservation laws. Computation of 

nonlinear wave equation depicts that Harten’s LTS scheme is 

a high resolution and efficient scheme [21]. However, 

computation of system of hyperbolic conservation laws show 

some spurious oscillations in the vicinities of discontinuities 

when CFL > 1. Zhan Sen Qian worked on Harten LTS TVD 

scheme and observed that these spurious oscillations are due 

to the numerical formulation of the characteristic 

transformation used by Harten for extending the method for 

hyperbolic conservation laws [22] [23] [24]. Zhan Sen Qian 

showed that if the inverse characteristic transformations are 

performed by using the local right eigenvector matrix at each 

cell interface location then these spurious oscillations are 

eliminated. His computations for shock tube problem confirm 

that the modified large time step total variation diminishing 

(MLTS TVD) scheme eliminate spurious oscillations for 

system of hyperbolic conservation laws without increasing the 

entropy fixing parameter.  

Harten and Qian developed large time step schemes have 

been tested with minmod limiter which is very dissipative. In 

present work, Qian MLTS TVD scheme is tested with more 

compressive limiters, namely, centralized MC [25] and 

superbee [8]. Shock tube problem for SOD boundary 

conditions [26] is solved to understand the performance of 

MLTS TVD scheme with compressive limiters in regions of 

discontinuities and strong shock waves. Shock tube problem is 

often used by researcher to evaluate the performance of 

different schemes. Reasons of attraction in this test case are 

availability of analytical solution and at the same time 

presence of complex flow feature namely, expansion, shock 

wave, and contact discontinuities. 

II. NUMERICAL METHOD 

In this paper 1D transient Euler equation in a conservation 

form is used: 
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equation (1) in numerical flux form can be written as: 
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Harten used Leveque’s scheme [19] [20] and proposed large 

time step TVD scheme which is second order accurate using 

(    )  points explicit discretization for hyperbolic 

conservation laws and increasing the CFL restriction upto K 

[21]. The numerical flux for Harten’s LTS TVD is given by: 
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the limiter function gi can be expressed as 

Minmod: 
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Centralized MC:    
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Superbee: 
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The extreme limiting is permissible in minmod limiter 

within the TVD region. Therefore it is reasonably dissipative 

and smears out discontinuities. Least limiting and maximum 

steepening is applied in superbee limiter within the TVD 

region. Therefore it is very compressive and in some cases 

suffers from excessive sharpening of slopes as a result. The 

centralized MC limiter is a compromise between Superbee and 

minmod limiters.  

Computation of scalar problems depicts that Harten’s LTS 

scheme is a high resolution and efficient scheme. However, 

computations of hyperbolic conservation laws show some 

spurious oscillations in the vicinities of discontinuities for 

larger values of CFL. Qian modified Harten’s LTS TVD 

scheme to eliminate spurious oscillations [22] [23]. He 

suggested performing the inverse characteristic 

transformations by using the local right eigenvector matrix at 

each cell interface location to overcome these spurious 

oscillations. The numerical flux for Qian’s MLTS TVD is 

given by: 
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III. TEST CASE DESCRIPTION 

Shock tube is one of the few 1D problem for which 

analytical solution is possible to obtain and hence it is often 

used as a test case for validation of numerical schemes. SOD 

shock tube problems are used for present study and analysis. 

SOD boundary conditions used in present computation are 

described in Table 2.The size of computational domain is 

      and number of grids are 1000. CFL is taken 0.8, 

1.8, 2.8, and 3.8 for 1, 2, 3, 4 values of K respectively. 

Simulations are run for 0.15 physical time while entropy fix 

parameter ε is taken 0.1 for all computations. Initial 

discontinuity is centered on             has following 

conditions: 

 (   )  {
       
       

 

where,   xo=0.5. 

 

Table 2: SOD Boundary Condition 

 

 

 

 

 

IV. RESULT AND DISCUSSION 

In present work, Qian MLTS TVD scheme [22] [23] is 

tested with more compressive limiters, namely, centralized 

MC [25] and superbee [8]. Shock tube problem for SOD 

boundary conditions [26] are solved to understand the 

performance of MLTS TVD scheme with compressive limiters 

in regions of expansion fan, discontinuities and strong shock 

waves. 

Figure 1-16 depicts the comparison of computed results of 

density profile after 0.15 physical time at shock, contact and 

expansion fan regions along with analytical results for SOD 

case taking K = 1, 2, 3, and 4 for 0.8, 1.8, 2.8, and 3.8 values 

of CFL, respectively. Oscillation free results near shock are 

observed with all three limiters for different values of K and 

pR ρR uR pR ρR uR 

0.1 0.125 0.0 1.0 1.0 0.0 

Table 1: Cl(x) at different K 

K          

2      
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Courant number. Slight oscillation is present near contact 

discontinuity for centralized MC and superbee limiters. 

Oscillations become worse as Courant number increases. 

Extant of spurious oscillation is greater for centralized MC 

limiter results as compare to super bee limiter.  For smaller 

values of Courant number (CFL ≦ 2) minmod limiter 

produces oscillation free results across shock and contact 

discontinuity. Although for larger values of Courant number 

(CFL > 2) minmod limiter also produces oscillation near 

contact discontinuity but the extant of oscillation produces by 

minmod limiter is not as much as compare to other two 

limiters. Results computed using centralized MC and superbee 

limiters near shock and contact discontinuities are less 

dissipative as compare to minmod limiter.  

Higher pressure side of expansion fan is found oscillation 

free with all three limiters for different values of K and 

Courant number. Slight oscillation is present near lower 

pressure side of expansion fan. Oscillations become worse as 

Courant number increases. Extant of spurious oscillation is 

greater for centralized MC limiter results as compare to super 

bee limiter. Minmod limiter produces minimum oscillatory 

results near lower pressure side of expansion fan. 

Results for super bee limiter taking K = 1, 2, 3, and 4 for 

0.8, 1.8, 2.8, and 3.8 values of Courant number respectively 

are also compared and analyzed in Figure 17-20. Computed 

results of density profile are plotted at shock, contact and 

expansion fan regions along with analytical results.  Results 

near shock discontinuity are oscillation free for all values of 

Courant number. For K=1, predicted shock discontinuity is 

behind the analytically calculated shock discontinuity.  

Predicted shock discontinuity travel in the direction of shock 

as K increases. For K=4, predicted shock discontinuity 

surpasses analytically calculated shock discontinuity and it is 

in front of it. Spurious oscillation is noticed near contact 

discontinuity. Oscillation is found to be a function of Courant 

number and it increases as Courant number increases. Results 

also depict that dissipation across expansion fan widen as 

Courant number increases.  

Computed results near shock wave region for a particular 

limiter with a specific value of Courant number are superior to 

contact discontinuity. This is due to the fact that characteristic 

lines near shock wave are convergent while near contact 

discontinuity they are parallel to each other.  Convergent 

nature of characteristic lines minimizes dissipation near shock 

region. The computed results are in good agreement with 

analytical results with all three limiters for different values of 

K and Courant number apart from slight oscillations near 

contact discontinuity for large values of K. 

Computed results depict that the difference between 

analytical and numerical results near expansion fan, contact 

and shock discontinuities increase for larger values of Courant 

number. Increase in discrepancy might be due to the increase 

in truncation error. Sine truncation error strongly depends on 

step size and time step size increase as Courant number 

increase. 

 

 

 
Figure 1: NearShock Region, K=1, CFL=0.8 

 

 

 

 
Figure 2: Near Shock Region, K=2, CFL=1.8 

 

 

 

 
Figure 3: Near Shock Region, K=3, CFL=2.8 
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Figure 4: Near Shock Region, K=4, CFL=3.8 

 

 

 

 
Figure 5: Near Contact Region, K=1, CFL=0.8 

 

 

 

 
Figure 6: Near Contact Region, K=2, CFL=1.8 

 

 

 

 
Figure 7: Near Contact Region, K=3, CFL=2.8 

 

 

 

 
Figure 8: Near Contact Region, K=4, CFL=3.8 

 

 

 

 
Figure 9: Near Start of Expansion Wave Region, K=1, CFL=0.8 
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Figure 10: Near End of Expansion Wave Region, K=1, CFL=0.8 

 

 

 

 
Figure 11: Near Start of Expansion Wave Region, K=2, CFL=1.8 

 

 

 

 
Figure 12: Near End of Expansion Wave Region, K=2, CFL=1.8 

 

 

 

 
Figure 13: Near Start of Expansion Wave Region, K=3, CFL=2.8 

 

 

 

 
Figure 14: Near End of Expansion Wave Region, K=3, CFL=2.8 

 

 

 

Figure 15: Near Start of Expansion Wave Region, K=4, CFL=3.8 
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Figure 16: Near End of Expansion Wave Region, K=4, CFL=3.8 

 

 

 

 

Figure 17: Near Shock Region, superbee limiter 

 

 

 

 

Figure 18: Near Contact Region, superbee limiter 

 

 

 

 
Figure 19: Near Start of Expansion Wave Region, superbee limiter 

 

 

 

 

Figure 20: Near End of Expansion Wave Region, superbee limiter 

 

 

V. CONCLUSION 

In present work Qian MLTS TVD scheme is tested with 

more compressive limiters, namely, centralized MC and 

superbee. Shock tube problem for SOD boundary conditions is 

solved to understand the performance of MLTS TVD scheme 

with compressive limiters in the regions of discontinuities and 

strong shock waves. Recent results suggested that MLTS TVD 

scheme is remain stable for compressive limiter. For all three 

limiters some oscillations are found near contact and lower 

pressure side of expansion fan. As expected, it is noticed that 

minmod limiter produces least oscillation while oscillations 

are larger for centralized MC limiter as compare to super bee 

limiter. Results also depicts that centralized MC and super bee 

limiters are less dissipative as compare to minmod limiter, 

which is due to the compressive nature of former two limiters. 
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