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On Left Integro-Differential Splines and Cauchy
Problem

Burova I. G.

Abstract—In the case of integro-differential splines we use the
values of integrals over net intervals. Integro-differential polyno-
mial splines were first used in the works of Kireev V.I. Integro-
differential nonpolynomial splines were used by the author of the
paper. The error of approximation and results of approximation
by the left integro-differential splines are represented in the
paper. We construct implicit numerical methods for solving
Cauchy problems by using polynomial and nonpolynomial left
integro-differential splines. Here we compare the quality of
approximation of different methods used for solving differential
equations.

Index Terms—Splines,
splines, Cauchy problem

Interpolation, Integro-differential

I. INTRODUCTION

A large part of scientific computing is concerned with the
solution of differential equations ( [1]-[3]). Polynomial inter-
polation is quite useful for constructing numerical methods
for both ordinary and partial differential equations, especially
boundary-value problems ( [4]-[6]).

As is well known, approximation by splines, in many
cases.is preferable to polynomial approximation. Nowadays,
there are many different splines for solving different problems
( [71-[16]).

Minimal interpolation polynomial splines were investigated
in detail in ( [17], [18], [20]). The distinctive feature of these
splines is the existence of interpolation basis. The support
of the basis spline contains one or several net intervals.
These splines are convenient for approximation functions and
their derivatives with given error of approximation. Minimal
interpolation splines are suitable for solving the interpolation
problems of Lagrange, Hermit, and Hermit-Birkhoff. The
solution is constructed as the sum of products of the values
of the function in the points of interpolation and the values of
basic functions (and maybe the values of their derivatives) on
every net interval separately.

Integro-differential polynomial splines were suggested in
the works of Kireev V. I. These case splines contain the values
of integrals over net intervals. Integro-differential nonpolyno-
mial splines were used by the author of the paper. Some results
were presented in ( [19], [21]).

Here we construct numerical methods for solving Cauchy
problem by using polynomial and polynomial integro-
differential splines. Numerical methods for solving Cauchy
problems by using minimal splines without values of integrals
were suggested by the author in ( [18]).
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II. ON NON-POLYNOMIAL INTEGRO-DIFFERENTIAL SPLINE
CONSTRUCTION

Let a, m, my, o, Sa, M, P, ¢ — be integer nonnegative num-
bers, lo > 1,84 > 1, mq = Sq +1la, mo+...+mg+p=m,
{z1} be a net of ordered nodes, a < ... < xp_1 < x <
ZTk41... < b. Further it will be considered the grid of
equidistant points xx = a + kh, h > 0. Let function u be
such that u € C™([a, b]).

Suppose that ¢;, 7 = 1,...,m, is a Chebyshev system
on [a,b], in which case the functions ¢; € C™([a,b]), j =
1,...,m, are nonzero on [a,b]. We construct:

q k+sa

ZOEDIEDY

a=0 j=k—lo+1

+0 Z (/ | u(t)dt) we T (),

for approximating the function u(x) on the interval [z, Tx41]-
Here § = 1 or 6 = 0. If § = 0 then we put p = 0.
Functions wy (), wy *”(x) are such that suppwy o

[Th—s0s Thtlo]s @ =0,1,...,q, sSuppwi,o C suppwy,p, B <
o, suppwy 7 = [z), Tg41]. Functions wy, o (), wy =" (),
x € [k, Tk11], are determined from the system of equations,
which are called the approximation identities:

u (27) wj o)+

u(x) = u(x), for u(x)=¢,(x), v=1,...,m.
We introduce the notations:
O(z) = (p1(2),.. ., om(@)",
Da() = (A7 (@), 0l (@)

Uia = (Pa(Thtnt1) - Pa(Trrs,)),

5%, = ( [ e, [ @(t)dt) |

p

Then the system determinant takes the form:
A= det(\Ilk@ ey \I/k’q, S(I)p)

Sometimes a numerical quantity of determinant (if h #
const) may be approximately equal to 0. Suppose that for the
chosen values of parameters, the determinant is nonzero. Then
the basis functions w; (), wi *“() can be determined by
Cramer’s formulas. In particular, for finding the basis function
wi,o(x) on the interval [z, z,11] the following relation can

be used:

wkﬂ(az) = det(\I/k-’o, ey (pa(xk—l(,—i-l)y ey
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‘I)a(xk—l)7 ‘I)(x)a ¢a('xk+1)7 oo
. 7¢)a(mk}+sa) e ,\I/k,q,S‘I) )/A

Then the constructed splines wy, o(z), wi *~(x) and the
approximation @ (z) have the following properties:
1) at the ends of each interval [z, 24 11] we have u(®) (z;)=

) (zp), ' (zp) = W (2p1), @ = 0,1,...,q, U €
C4([a, bl);
Z)IM :fil?kz u(t)dt,i=1,...,p;

3) for polynomlal and trigonometrical system {p;} on
equidistant set of nodes with step h, we have |w " (z)| <

K;/h, lwg,a(z)| < Cuh®, here K; > 0,C, > 0 are certain
constants.

In general we assume that a nonpolynomial system of
functions {;} is chosen in such a way that property 3 is
fulfilled.

Let system equations matrix consists of the units:
(X, XV, X)), j=1,...,m, where
X =(Lp(t),..., " ()",

27 = (0, (p(0) Dozt - -, (0" (1) Do=i,) T
Lemma. Let P, be such that P, = 2P,_1 — Ps_o + 1,
Py =0, Py = 1. Then the following assertion is true:

det(Xy, X, X)) =

[

1<j<i<m

X9 X,

geeey

=(112...

sh™

Proof. Let us differentiate the Vandermonde determinant:

det(Xl, Xg, ceey X5+1, ceey Xm(s+1))

as follows: once on x3; twice on x3; ...; S times on z4j.
After that we put 1 =292 = ... = 2441, etc.

Example 1. Let us take X = (1 el e?t 3T, Now &y =
(1, et e2te, e316)T, X1 = (0, e, 2205, 3¢30)T, | = j, j+ 1.
So we have: det(X;, X, Xj 1, X)) = edelitt (el —elit)h,

III. THE ERROR OF APPROXIMATION

First we find the relation for u(x) for computing the approx-
imation error. Construct a homogeneous linear equation, which
has a fundamental system of solutions ¢1 (), ..., pm(z). Let
us find the function u(z) in the form convenient for obtaining
error estimation. First construct a homogeneous linear equation
Lu, which has a fundamental system of functions ;. Let us

construct the next equation for x € [z, zk4+1] C [a, b]:
901(37)7 (PZ(‘r)7 (Pm(w)a u($>
| e, eh(e), O(x), () |
Lu = =0.
AP, @), e ), W)
Here the Wronskian
e1(x), ©a (), ©Om ()
Wo| A ) o (e)
m—1 m— 1 m—1
A"V (@), oD (@), o ()

does not equal zero. Expanding the determinant according to
the elements of the last column and dividing all terms of the
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obtained equation by W (z), one can obtain the desired equa-
tion Lu = u(™ (2)4+Q1 (x)u™ "V (z)+. . .+Qum(x)u(z) = 0.
Now construct a general solution of nonhomogeneous equation
Lu = F by the method of variation of the constants. Suppose:

2) =Y Cila)pila)

/ W77 1T

where c¢; are arbitrary constants. Since F' = Lu, one has:

- ;%(aﬁ) /x: Wdt + ;Ci%(x)

where W,,,;(x) are algebraic complements (signed minor) of
the element of i-th column of m-th row of determinant W (x).
Let us estimate |r| = |u(z) — u(x)|.

It is easy to show that the following relations

Then:
dt + ¢,

q k+sa

Z (Z > o)) wyale)+

i=1 a=0j=k—1,+1

p Tk . m

+6) (/ @(t)df> wljl>(x)> = cipi(x)

i=1 \" Trk—i i=1
ngia)(ac)W )=0, a=0,...,m—2,
i=1

are valid. One has:

ml L
o / W, u( dt+Zcq<pl

Representing gol(m) by the Taylor formula

u(a)( )=

1
t)m 1 @Em )(Ti)
(m—1)!"
where 7; is between x and ¢, taking into account the similar

relations for the derivatives ;(x) and the previous identities,
one obtains:

7(37 ) (-

q k+sa
() —ulw) = u(®) (@) wjalz)+
a=0 j=k—lq+1
+ " u(2)dz w7 (x) —u(x) =
q k+sq m (m 1)
EJ) T m—a—1
aZO] k— la+1;/ _1_0‘)'(3 g g
Wini(t) Lu(t)
W dt wjo(x)+
m P i z (m—l) ) )
Y [ [ e
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Wini(t) Lu(t _
s Wonsll) L) gy e () = 2 [7 (4u"(r) — /(7)) ((exp(a/2 = 7/2) = 1) +
W(t) (exp(t/? - x/?S - 1 dT +c1 + caexp(x/2) + czexp(—x/2),
(m 1) Wni(t) Lu(t) where ¢; are arbltrary constants.
—Z/ - t)mflwi(t)dt , ) If o1 =1, p1 = x, o = exp(x), p3 = exp(—x), then
we have:
&; is between xj, and x;, £ is between x, and z, (; is between Lu =" —wu””,
x1, and z. We use the theorem of the mean of integrals. In view u(z) = ka(u/’(T) —u"(7))(2T — 22 + exp(z — T) —
of [wi 7 ()] < Ko/h, |wja(2)] < K1oh® Ko > 0,K; 4> €2p(—2+7))dT + ¢1 + cox + czeaxp(x) + caexp(—x), where
0, and with the notation: ¢; are arbitrary constants.
q k+sq

K= Z Z ZK1a|k—z|1<pia)'(nJ) Example 3

T Let us take p = 1, ¢ = 0, Iy = sg = 1. Integro-differential
I= = left spline has the form:

Wi (1) i
% telzr,zrp] | WI(t) ’ ’Lb(xi ‘: u(xj)wj (z) + u(xj+1)wj+1(x)+
m | (me1) | " u(t)dt S (@), @ € o, 0] (1)
$5 g~ el ) W) [T a0 of @), 2 € gl
747[( i1
+i=17:1 mon R+ D), max 1= /

while in polynomial case (¢; = 2°~1) we have:
Wini(t)
W(t)

m (m—1)
Y lei ()l

(m — 1)' t€zk, Try1]

| (@) =
wi(z) =
! (xj — zj1)(wj — 341 + 2251) (25 — T)— 1)’

7, is between x and x;, 7 is between x and Tj4q, fiy 1S
between x5~ and 441, we have: Ay = (—zj41+2)(Bzj 12+ 3z2; — 62417 — 277 _ij 1™
_ ZZ‘jJUj_l +3.13j+1.73j_1 +3ﬂi‘j+1l‘])
[u(z) —u(z)| < R K| Lul|, z € [zy, zp1].
Here = max x)|. ) —
I7= e G @) =
So, if ; = 271, i =1,2,...m, then:

(—zj +2)Bz —x; — 2x;_1)
(=xj1 +25) (25 — 33541 + 225-1)
(—2jp1 +o)(—25 + )

[u(z) — u(z)| < K™K u™)|, K1 >0, & € [k, Tpi1] wj<71>(x) = —6 2 :
= 1 5 1 5 ks Lhk+1]- (Z‘j — xj—l) (.23]' — 337j+1 + 233‘]'_1)
Tji+1 A2
(tdt = =—————
A. Examples /mj wj(t) Bay(zj —xj 1)
Example 2 ) 5
Here there are some applications of the results representing Ay = (%x] 1T x]+1% 20 1T 1 — Tiq
above. 931+1x 1t Q%H% 1)s
a) If o1 =1, o = sin(x), w3 = cos(x), then we have: By = (x] = 3Tj11 + 25-1),
Lu = u( )+u”’( ) f fwipi(Odt = —(zrjo1 — Tjr; — BT +
ZIM )+ u” (1)) sin?(z/2 — 7/2)dr + ¢1 + j+1)/( — 341+ 225-1),
o sm( ) + c3 cos(x ) where ¢; are arbitrary constants. i1 A
b) If p; = 2~ 1, i = 1,2, 3, then we have: / o.)j<71>(t)dt = ——32.
Lu = u///(x) x; (l‘j - l‘j_l) B3
= 3 , _ 3 3 ) 2 2 )
u(x) = 5 [ (u"(7))(x — 7)%dr + Y ¢;x', where ¢; are Az = (=xj + 27 = 3wjn2f + 305,,75),
T !
i=1 B3 = (xj - 3:L‘j+1 + 2(Ej,1),

arbitrary constants. . . o —2j=2;—xj_y=h>0,z=x;+th, t €[0,1],
©) If 1 =1, g2 = sin(z), 3 = cos(x), pa = sin(2z), (pep:
5 = cos(2x), then we have:
Lu—4u()+5u’”() uV (1),

= I a(r) + “Sur) b u¥ (1) sin (22 — (s 4 th) = (9t +5)(t— 1)/5, /IM w;(@)dz = 4h)5,

T/2)d’7’ +e1te Sln( ) + ¢3 cos(x) + ¢4 sin(2z) + ¢5 cos(2z), i

where ¢; are arbitrary constants. Tit1
d) If ; =271, 4 =1,2,3,4,5, then we have: wi1(z; +th) = (3t +2)t/5, wjt1(z)dz = 2h/5,
Lu =u"(z), mJ

) 5 ) _ 6 Tj+1 B
w(x) = 55 [5 (@¥(7))(z = 7)*dr + 3 c;a’, where ¢; are wi T (24 th) = 5h(t_1) / wy T (x)de = ~1/5.
i=1 zj
arbitrary constants.

e) If p1 = 1, o = exp(x/2), 3 = exp(—x/2), then we
have:
Lu = 4u""(z) — u/(z), [u(x) — w(@)| < KhPu" w; 0,00), K >0, @ € [zj,241].
ISSN: 1998-0140 685

Representing w(x), u(z;11), u(xj_1) using the Taylor
formula in x;, we obtain in polynomial case:
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In trigonometrical case (p; =
cos(z),) we have:

wi(z) = (—cos(=zjp1 + zj-1) + cos(—zjp1 + ;) +
zjsin(z — xj41) — xj_1sin(x — x;41) + cos(x — xj_1) —
cos(z — x;))/(— cos(—zj1 + xj—1) + cos(—zjt1 + ;) +
T; sin(—a:j+1—|—xj)—mj_1 Sin(—.l‘j+1+l‘j)+COS(l‘j—$j_1)—
1,

S wi()dt = (—aj+ a1 — cos(—ajan +aj-1)Tj41 +
cos(—xjp1 + @)z + cos(—wip1 + wj1)r; —
Tj1 COS(—l‘j+1 + Ij) + sin(—a:j_H + xj) — sin(xj —
zj-1) — sin(—zjp1 + z5-1))/(—cos(—zjp1 + xj1) +
cos(—x 11 + ;) + xjsin(—xzj41 + ;) — xj—1 sin(—xj41 +
;) + cos(z; —xj1) — 1),

wjt1(x) = (cos(x —x;_1) —cos(x —x;) +x;sin(z —x;) —
zj_qsin(x—xj)—cos(xj—x;j—1)+1)/(cos(—xj41+xj—1)—
cos(—xjq41 + ;) — jsin(—zjp1 + ;) + xj_1 sin(—zj11 +
xj) —cos(z; —xj—1) + 1),

[ wis (t)dt = (=1 a1+ cos(z; — 2j-1)aj41 —
cos(xj; —xj_1)x; +cos(—x 1 +a;)x; — -1 cos(—x 41+
xj) — sin(—z;41 + x;) + sin(x; — xj_1) + sin(—z;41 +
zj1))/(=cos(=zjp1 + xj1) + cos(—zjp1 + ;) +
xjsin(—xj11+x;)—xj_1sin(—z,41+x;)+cos(z;—x,-1)—
1

1, o = sin(x), @3 =

wj<71>(a?) = (sin(x — z;41) — sin(—z;41 + ;) —sin(z —
x))/(cos(—zjp1+xj—1)—cos(—z 41+x;)—x;sin(—zj41+
;) + xjasin(—zj41 + ;) — cos(z; — 1) + 1),

fi”l wj<_1>(t)dt = (2cos(—zjq41+x;)+x;sin(—zj1q1 +
wj) = 2 = sin(—zjp1 + 25)7541)/(cos(—aj41 + 7j-1) —
cos(—xjt1 + x;) — @ sin(—xjpq + x5) +
Tj—1 Sin(—$j+1 + .Ij) — COS(Ij — Ij—l) + 1)

Iij_H —Tj =Xj —Tj-1 = h>0,x :xj—‘rth, te [0,1],
then:

w;(x; + th) = (cos(h + th) — cos(2h) + hsin(th — h) +
cos(h) — cos(th))/(—=1 — hsin(h) — cos(2h) + 2 cos(h)),

aina@de = 2((cos(h))? + hsin(h)cos(h) —
1)/(2 cos(h) sin(h) — hcos(h) — h),

wjt1(z; +th) = (—cos(h +th) + cos(th) 4+ cos(h) — 1 —
sin(th)h)/(—1 — hsin(h) — cos(2h) + 2 cos(h)),

Fain@de = —2((cos(h))? + hsin(h) —
1)/(12 ccl)s(h) sin(h) — hcos(h) — h),

ws "7 (wj+th) = (= sin(th—h)+sin(th) —sin(h)) /(~1—
hsir_l(h) — cos(2h) + 2 cos(h)).

J+1
[ owi P (@)de = —(hcos(h) —
1)/ (2 cos(h) sin(h) — h cos(h) — h),
It can be shown, that next relations are fullfilled:
wj(xz; +th) = —(9t+5)(t —1)/5+ O(h),
wjt1(xj +th) =t(2+3t)/5+ O(h),
w7 (2 + th) = (6/5)t(t — 1)/h + O(1).
Tjt1

[ wi T (@)de = —1/5 4+ O(h?),

2sin(h) +

T reate)ds = @/5)h + 0(19),
s (@) = (4/5)h + O,

Tj
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Volume 9, 2015

The relations above determine correlations between the
trigonometrical and the polynomial splines.
We have in the trigonometrical case:

[u(z)—u(z)| < Kh3||u’—|—u”/||[mj, K >0,z € [z;,z41)

zjt2]s

In exponential case (p1 = 1, o = exp(x/2), 3 =
exp(—x/2)), if zj1—x; =xj—x;1 =h >0, =x,;+th,
t € [0, 1], then we have:

wi(z; + th) = (2 exp(2h) — 2 exp(3h/2) + 2 —
2 exp(h/2) + h exp(h/2 + th/2) — 2 exp(3h/2 + th/2) +
2 exp(h + th/2) — 2 exp(h/2 — th/2) + 2exp(h — th/2) —
h exp(3h/2 — th/2))/(2exp(2h) — 4dexp(3h/2) + 2 —
dexp(h/2) + h exp(h/2) + 4exp(h) — h exp(3h/2)),

wit1(x; + th) = (2exp(3h/2 + th/2) — 2exp(h +
th/2) + 2exp(h/2 — th/2) — 2exp(h — th/2) + hexp(h —
th/2) — 2exp(3h/2) + dexp(h) — 2exp(h/2) — h exp(h +
th/2))/(2exp(2h) — dexp(3h/2) + 2 — dexp(h/2) +
h exp(h/2) + 4exp(h) — h exp(3h/2)),

w17 (@ + th) = —(—exp(3h/2 — th/2) + exp(h/2 +
th/2) — exp(h/2) + exp(h — th/2) — exp(h + th/2) +
exp(3h/2))/(2exp(2h) — 4dexp(3h/2) + 2 — dexp(h/2) +
h exp(h/2) + 4exp(h) — h exp(3h/2)).

It can be shown, that:

wj(xj + th) = —(9t + 5)(t — 1)/5 + O(h),

wjt1(z; +th) =t(2+ 3t)/5+ O(h),

w17 (@ + th) = (6/5)t(t —1)/h 4 O(h),

We have in the exponential case:

a(z)—u(z)| < Kh? |0 40" ||z, o, 01, K > 0, € [25,2541].

Let us take u(z) = 1/(1+2522). We calculate: u(x) —u(z)
on [—1,1], n = 10, h = 0.5. The error of the approximation by
the polynomial integro-differential splines (1) is represented on
Figure la. The error of the approximation of 1/(1+ 25z%) by
the trigonometric integro-differential splines (1) is represented
on Figure 1b.

(a) (b)

Fig. 1. Plots of the error of approximation 1/(1 + 25z2) by polynomial
integro-differential splines (a), and trigonometric integro-differential splines

(b)

Let us take u(z) = sin(x) + sin(3z). We calculate: u(z) —
u(z) on [—1,1], n = 10, h = 0.5. The error of approximation
by the polynomial integro-differential splines (1) is represented
on Figure 2a. The error of approximation of sin(z) sin(3z) by
the trigonometric integro-differential splines (1) is represented
on Figure 2b.

Table 1 shows the actual errors R = max(@ — u) of
approximation of the functions. Here R” is the actual error of
approximation by the polynomial splines (1); R” is the actual
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(a) (b)

0.001
P 0.0005

S92 | o2 o fﬂg\;

Fig. 2. Plots of the error of approximation sin(z) sin(3z) by polynomial
integro-differential splines (a), and trigonometric integro-differential splines

(b)

error of the approximation by the trigonometrical splines (1),
RF is the actual error of the approximation by the exponential
splines (1), when h = 0.1. Calculations were done in Maple,
Digits=15.

Table 1. Actual error of the approximation by the trigono-
metrical spline (1), the polynomial spline (1) and the expo-
nential spline (1).

u(z) RT RT RE

1/(1 + 2527%) 0.0253 | 0.0251 | 0.0253
sin(z) + sin(3z) 0.00145 | 0.00124 | 0.00150
exp(z/2) + exp(3z) | 0.0224 | 0.0250 | 0.0222

IV. SOLUTION OF A CAUCHY PROBLEM FOR ONE
EQUATION

We shall solve a Cauchy problem:
y' = [ (z,y(2)), y(xo) = yo, = € [0, X].

Consider the integral identity:

Tjt1

y(zj1) = y(x;) + / y'(z)dz.

;
We replace 3/ (z) by the integro-differential spline u(x). Now
we have:

Tjt1

y(2j01) = 9(z;) + / a(x)dz + R,

Tj

where R = [*"(u(x) — u(x))da, taking into account the
J,

error of approximation by the integro-differential spline, we

have:

IR| < WU K| Lull, Ks > 0.

V. NUMERICAL METHODS FOR ¢ = 0

We have for ¢ = 0 and z € [z}, 2,41] (here wy(z) =
wi,0(z)):

Jj+s D

u(z) = Z u(zg) wk(x)—i—z (/£7 u(t)dt) wj<7i>(a:).

k=j—i+1 i=1 i-

ISSN: 1998-0140
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A. Numerical method 1

Let us take p = 1. We put u(z) = y'(z). We replace the
integrand in

Tj+1

y(e541) = ylz;) + /  (@)da

with 4(z), = € [z, xj41]:
w(z) = u(z;)w;(r) + u(zj1)wjp(z)+

+ (/:Jl u(x)dx) wj<_1>(x).

j—

We have:
Tj4+1
y(zjp) = ylz;) + / a(z)dx + R.
z;
‘We obtain:
Tjt1
i) = ylay) +uley) [ wyla)dat

Tjt+1
u(epn) [ wpa(e)det

J

T Tj4+1
+ (/ u(m)daz) / wj<71>(x)da: + R.

J J

Now we have the next implicit method:
Yir =y (L+T15717) —y o (I5717)+
+f(xj,y5)lo + f(xj41,y541) 11,

where

<> = Ij+1w<_1>(m)dx Iy = v (z)d
= ; ; Jo= wj(w)dz,

J J

Now we construct I<~'>, Iy, I; for polynomial and non-
polynomial cases.

a) Let us take ¢y (z) = 1, po(z) = e/ p3(z) = e(=2/2),
h = const.

We easily receive: Iy = —2(2hexp(h/2) + dexp(h/2) +
2hexp(3h/2) —4exp(3h/2) — h—exp(2h)h —2 —2hexp(h) +
2exp(2h))/(2exp(2h) — dexp(3h/2) + 2 — dexp(h/2) +
hexp(h/2) + 4exp(h) — hexp(3h/2)),

I, = —4(2exp(3h/2) —2hexp(h) —2exp(h/2) — exp(2h) +
14+ hexp(h/2)+hexp(3h/2))/(2exp(2h) — dexp(3h/2)+2—
dexp(h/2) 4+ hexp(h/2) + 4exp(h) — hexp(3h/2)),

I<71> = (4exp(3h/2) + dexp(h/2) — 8exp(h) —
hexp(3h/2) + hexp(h/2))/(2exp(2h) — dexp(3h/2) + 2 —
dexp(h/2) + hexp(h/2) + 4exp(h) — hexp(3h/2)),

We have:

IRl < Kh*[4y"™ =y, 10,000, K >0

b) In case ¢1(7) = 1, p2(z) = 2, ¢3(x) = 2%, we have:

41 ah  2h
Yir1r = Y5+ 2y + f(2g05) = + (@4, 9540,
5 5 5 5
|R| < Kh’4||ylv||[wj—1:1j+1]’ K >0.
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¢) In case ¢1(x) = 1, p2(x) = sin(z), p3(x) = cos(x), we
have:

Volume 9, 2015
Let us solve the problem:

(cos?(R) + hsin(h) cos(h) — 1) y' = —2(y — sin(z)) + cos(x),y(0) = 0,z € [0,100].
(2sin(h) cos(h) — hcos(h) — h)’

Ih=2
‘ The errors of the solution of the Cauchy problem by the

(cos2(h) + hsin(h) — 1) method 1 are represented in Figures 5, 6.

I =-2

(2 Sln(h) COS(h) — hCOS(h) — h)’ ] ! ! I I Q
) 1e-08 | ﬂ A
[<-1> _ (—=hcos(h)+ 2sin(h) — h) . 1
(2sin(h) cos(h) — hcos(h) — h) 56-09 -
Let us solve the problem:
o 1 A ; T T T
y' = —150(y — cos(z)),y(0) = 0,z € [0, 1]. s 10 ix 8 100
—5e-09
The exact solution is the following: ]
e ARRRRRRRRNNNE
22500 150 22500 ]
— ; — i — —150x).
Y(®) = 2501 (@) + 5a507 $(@) — 5507 xP(~1502)
Let us take h = 0.001. The errors of the solution of the
C.auChy problem by methods (b) and (c) are represented in Fig. 5. Graph of the error of the solution of the problem y’ = —2(y —
Figures 3 and 4. sin(x)) + cos(z),y(0) = 0, h = 0.01, method b.
2e-17
o |- T
2605 1 -
15605 0 oo |11l |16 S HIELY
1605 - ~1e-17
] RERRRRARRRRAR
] ) —2e-17
0 002 004 006 008 0.1
Fig. 3. Graph of the error of the solution of the problem y’ = —150(y —
cos(z)) by the method (b), h=0.001
Fig. 6. Graph of the error of the solution of the problem y' = —2(y —
) sin(z)) + cos(x),y(0) = 0, h = 0.01, method c.
2.5e-05 * v
2605 |
] B. Numerical method 2
15605 - Now let us approximate function u(x) by
e i(e) = ule;)w; (@) + uleg)wy @)+
5e-06 | o
] S (/ u(m)dm) o,)j<*1>(;[;)+
0 0.02 0.04 006 0.08 0.1 Zi-1

Fig. 4. Graph of the error of the solution of the problem y’ = —150(y —
cos(z)) by the method (c), h=0.001

on [zj,x;41]. Here w;(z), wjy1(x), wi 7 (z), wi 27 ()

J

Table 2 shows the actual errors R = |y, — y(kh)|, h = we determine from the equations:
0.001. Calculations were done in Maple, Digits=25. 5
Table 2. P & U(I) = u(x), U(Z) = 901(1‘)7 @2('73)7 @3('1:)3 4104('7?)
k method b method ¢ method a So we have:
10 0.29408 -10~* | 0.29409 -10~% | 0.29405 -10~* _ <—1> <—2> <—1>
Yji+1 =y (1+1 +1 —yj—l
20 | 0.13693 -10~* | 0.13694 -10~% | 0.13692 -10~* AR (2 ) =
100 | 0.43470 -10~° | 0.43490 -10~9 | 0.43529 -10~° —yj—2I =72 + fxj,y5) Do + f(@j41,y01) 1

ISSN: 1998-0140
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a) In the polynomial case p1(x) = 1,¢pa(z) = z,¢3(x) =
22, p4(7) = 23, we have:

I<7%> = /Ij+1 w2 (x)de = 1/17
— ; - ,

J

Tjt1 .
I<-1> :/ ws T (v)dx
x

J

—9/17,

Tjt1
Iy = / wj(z)dr = 18h/17,

J

Tji+1
L= / wjt1(x)dz = 6h/17,

J

9 -9 1
Yj+1 = Y5 17 —Yj—1 17 —Yj—2 17 +

h h
+f(x5,v5) <1187> + (@41, Yj41) (?7) :

The error has the form:

IRl < KPPy ||, s, K >0.

Tjp1]

Let us solve the problem:
y' = —150(y — cos(x)),y(0) = 0,z € [0,1].

The errors of the solution of the Cauchy problem by the

method 2 are represented in Figures 7 and 8.
002 004
0 R
2607 § !
—4e-07
—6e-07
-8e-07 1
-1e-061"
-1.2e-06 1
~1.4e-06
-16e067 + -
18006 §

0.96 0.08 0.1

Fig. 7. Graph of the error of the solution of the problem 3y’ = —150(y —
cos(x)) (h = 0.001)
0.91

0 I
—Be-11
-1e-10

~1.5e-10 1

—2e-10

Fig. 8. Graph of the error of the solution of the problem y’ = —150(y —
cos(z)) (h = 0.0001)

b) In the case ¢1(x) = 1, wo(z) = z, p3(x) = exp(x),
pa(x) = exp(—x), we have:
I<=%> = f;jj“ wj<_2>(x)dx = (—hexp(5h)+2exp(5h)—
2hexp(4h) — 13exp(3h)h — 2exp(3h) + 6Gexp(3h)h? +
13hexp(2h) — 2exp(2h) + 6exp(2h)h? + 2hexp(h) + h +
2)/(hexp(5h) — 6hexp(4h) + 2exp(4h) + 2exp(3h)h? +

ISSN: 1998-0140
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S5exp(3h)h — 2exp(3h) — Shexp(2h) + 2exp(2h)h? —
2exp(2h) + 2exp(h) + 6hexp(h) — h),

<> = fzj+1wf71>($)dx = —(—exp(3h)h +
2exp(3h) — 2exp(2h) — 5Shexp(2h) + 2exp(2h)h? +
Shexp(h)—2exp(h)+2exp(h)h?+h+2)exp(h)/(hexp(5h)—
6hexp(4h) + 2exp(4h) + 2exp(3h)h? + Sexp(3h)h —
2exp(3h) —5hexp(2h) +2exp(2h)h? —2exp(2h) +2exp(h) +
6hexp(h) — h),

Iy = [FPwj(z)de = —(3exp(5h) — 2hexp(5h) —
9exp(4h)—|—4;wxp(4h)—2656p(3h)h—|—6€xp(3h)—|—2hexp(2h)+
6exp(2h) — 9exp(h) — 4hexp(h) + 3 + 2h)h/(hexp(5h) —
6hexp(4h) + 2exp(4h) + 2exp(3h)h? + Sexp(3h)h —
2exp(3h) —5hexp(2h) +2exp(2h)h? —2exp(2h) +2exp(h) +
6hexp(h) — h),

I = [T wipi(z)de = —(—exp(5h) + 3exp(4h) +
2hexp(4h)—]269:p(3h)—6exp(3h)h+6hexp(2h)—2exp(2h)+
3exp(h) — 2hexp(h) — 1)h/(hexp(bh) — 6hexp(4dh) +
2exp(4h) + 2exp(3h)h? + bexp(3h)h — 2exp(3h) —
5hexp(2h)+2exp(2h)h? —2exp(2h) +2exp(h)+6hexp(h) —
h’)a

The error has the form:

IRl < Kho|y™ — yv||[03j—2»1j+1]’ K >0.

We solve the problem: y' = —150(y — cos(z)),y(0) = 0,
z €[0,1], h < 0.001.

Table 3 shows the actual errors R = |y — y(kh)|, h =
0.001. Calculations were done in Maple, Digits = 45.

Table 3.

k method a method b

h =0.001 h =0.001
10 0.186087 -10~° | 0.186079 -10—°
20 0.191919 1076 | 0.919144 -10~6
1000 | 0.69494 -10~'6 | 0.13899 -10—15

Table 4 shows the actual errors R = |y, — y(kh)|, h =

0.0001. Calculations were done in Maple, Digits = 45.

Table 4.
k method a method b
h = 0.0001 h = 0.0001
10 0.678129 -10~19 | 0.678099 -10~1°
20 0.129152 109 | 0.129146 -10~?
10000 | 0.69511 -10—20 0.13738 -10~19

Now let us solve the next problem:

y' = —2(y — sin(z)) + cos(x), y(0) = 0.

The exact solution is y = sin(z). The error of solution of
the Cauchy problem by the method a is represented on Figure
9. The error of solution of the Cauchy problem by the method
b is represented on Figure 10.

VI. CONCLUSION

The results explained in the previous sections show that the
numerical methods for a Cauchy problem could be used on
practical calculations. The approximation by the nonpolyno-
mial splines and numerical methods for Cauchy problem by
the nonpolynomial splines may be better then by polynomial
splines, but the values of Digits must be large enough.
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18 AR B A i 1A
4e-11 1 W 5 ﬁ ]
2e-11 1
0 0111140 | |16 80! | 1§ 160
—2e-11 1
—4e-11 -
] V g 8 f Py !
Fig. 9. Graph of the error of the solution of the problem y' = —2(y —

sin(x)) 4 cos(z), y(0) = 0 (h = 0.01) method a

1e_1oillll!§l§g!laﬁlg!!
5e-11
0] 01111401 {116 B0/ 11100
—5e-11
—1e-10 7 V g V ! ' I
Fig. 10. Graph of the error of the solution of the problem y' = —2(y —

sin(z)) + cos(z), y(0) = 0 (h = 0.01), method b
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