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Abstract— This paper presents a dual method: 1) to specify both 

dynamic properties, such as operational requirements, and static 

properties, such as safety requirements, of IoT systems, whose 

services are distributed over a geographical space and are mobile over 

the space in time, and 2) verify the validation of the static properties 

over the dynamic properties. Firstly, the dynamic properties are 

specified with a process algebra, called δ-Calculus, and the static 

properties are specified a first-order logic, called GTS Logic. Secondly, 

once specifications are done, the static properties are verified for its 

validity over the dynamic properties. For example, safety requirements 

are verified to see its validity over operational requirements by 

checking whether or not the safety requirements are satisfied for all the 

possible simulation cases of the operational requirements. In order to 

demonstrate the feasibility of the method, a tool, namely SAVE, is 

developed on a meta-modeling platform, namely ADOxx. The method 

and the tool can be considered one of the most innovative approaches 

to model the IoT systems. 
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I. INTRODUCTION 

There are strong needs for formal methods to model IoT 

systems [1]. However the most of methods provide capability 

to model either static properties or dynamic properties, not both. 

Therefore it is desirable to model both dynamic and static 

properties, and to verify the validity of the static properties over 

the dynamic properties for IoT [2]. 

This paper presents a new method to specify IoT systems 

with both dynamic properties, such as, operational 

requirements, and static properties, such as, safety requirements, 

and to verify the validity of the static properties over the 

dynamic properties, such as, the validity of safety requirements 

over the operational requirements, as follows: 

 

1) Specifications:  

i) Operational requirements as dynamic properties: These 

requirements are specified with a process algebra, 

called δ-Calculus [3]. The calculus is designed to 

specify DMRTS, applicable to IoT systems.  

ii) Safety requirements as static properties: These 

requirements are specified with a first order logic, 

called GTS(Geo-Temporal Space) Logic [4]. The logic 

is designed to reason geo-temporal properties of 
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processes and their interactions on a specific 

geographical space for DMRTS, applicable to IoT. 

2) Verification: In order to verify the safety requirements 

for the dynamic requirements, it is necessary to generate 

all the possible execution cases for simulation. It is 

accomplished as follows: 

i) Simulation:  

i. Execution model: A visual execution model is 

generated for the operational specification. It contains 

all the possible cases for execution. 

ii. Simulation: It simulates each individual case in the 

execution model. It represents the results of the 

simulation in a GTS block diagram, which will be 

input to Verifier for verification. 

ii) Verification: It verifies visually on the GTS block 

diagrams for the safety requirements in GTS Logic. The 

results of the verification will be displayed directly and 

visually on the diagrams. 

The approach will be demonstrated in a tool, called, SAVE 

(Specification, Analysis, Verification and Evaluation) [4], 

which is developed on the ADOxx meta-modeling platform [5], 

with an example, for the feasibility of the method. 

The method can be considered as one of the innovative 

methods to model IoT systems to specify both static and 

dynamic properties of the systems, as well as to verify the 

validity of static properties over the dynamic properties. 

The organization of the paper is as follows. Section 2, 3 and 4 

describes δ-Calculus, Execution Model and GTS Logic, 

respectively. Section 5 demonstrates the method on SAVE with 

a PBC (Producer-Buffer-Consumer) example. Finally 

conclusions will be made with future research.  

II. OPERATIONAL SPECIFICATION 

A. δ-Calculus 

δ-Calculus is a process algebra to model the behavior of 

processes by defining distribution of processes on a 

geographical space and their actions, especially movements in 

time and with priority.  

 

[Definition 1] (δ-Calculus) 

δ-Calculus is defined as a tuple   (𝑆𝑦  𝑆     𝑤) , 

where 𝑆𝑦 , 𝑆   and   𝑤 are defined in Def. 2, 3 and 4, 

respectively. 
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[Definition 2] (   : Syntax of δ-Calculus) 

P ∷ nil  //Inaction 

| A  //Action 

| P(n)  //Priority 

| P,Q-  //Nesting 

| P〈𝑟𝑡〉  //Channel 

| P + Q  //Choice 

| P | Q  //Parallel 

| A ∙ P  //Sequence 

A ∷ ∅  //Empty Action 

| rt( 𝑠𝑔̅̅ ̅̅ ̅̅ )  //Send 

| rt( 𝑠𝑔)  //Receive 

| M  //Movement 

M ∷ mt
p(𝑘) 𝑃  //Request 

| P m(k)t
p

  //Permission 

m ∷ in  //In Movement 

| out  //Out Movement 

| get  //Get Movement 

| put  //Put Movement 

 

 

 [Definition 3] (   : Semantics of δ-Calculus) 

1) 𝑆   : Communicaiton 

Action 
−

r(a) ∙ P
r(a)
→  P

 

ChoiceL 
P
𝐴
→ 𝑃′

P + Q
A
→P′

 

ChoiceR 
Q
𝐴
→𝑄′

P + Q
A
→Q′

 

ParlL 
P
𝐴
→ 𝑃′

P | Q
A
→𝑃′ | 𝑄

 

ParlR 
Q
𝐴
→𝑄′

P | Q
A
→𝑃 | 𝑄′

 

ParCom 
P
𝐴
→ 𝑃′ Q

𝐴̅
→𝑄′

P | Q
τ
→𝑃′ | 𝑄′

 

NestO 
P
𝐴
→ 𝑃′

P,Q-
A
→𝑃′,𝑄-

 

NestI 
Q
𝐴
→𝑄′

P,Q-
A
→𝑃,𝑄′-

 

NestCom 
P
𝐴
→ 𝑃′ Q

𝐴̅
→𝑄′

P,Q-
τ
→𝑃′,𝑄′-

 

2) 𝑆   : Movements 

In 
P
int(k) Q
→     P′ Q

P in(k)
→    Q′

P ∥ Q
δ
→Q′,P′-

 

Out 
P
outt(k) Q
→      P′ Q

P out(k)
→     Q′

Q,P-
δ
→ P′ ∥ Q′

 

Get 
P
gett(k) Q
→      P′ Q

P get(k)
→     Q′

P ∥ Q
δ
→ P′,Q′-

 

Put 
P
putt(k) Q
→      P′ Q

P put(k)
→     Q′

P,Q-
δ
→ P′ ∥ Q′

 

InP 
P(n)

int
p(k) Q(m)
→        P(n)

′

P(n) ∥ Q(m)
δ
→Q(m)[P(n)′]

(n ≥ m) 

OutP 
P(n)

outt
p
(k) Q(m)

→         P(n)
′

Q(m)[P(n)]
δ
→ P(n)

′ ∥ Q(m)

(n ≥ m) 

GetP 
P(n)

gett
p(k) Q(m)

→         P(n)
′

P(n) ∥ Q(m)
δ
→ P(n)

′ [Q(m)]
(n ≥ m) 

PutP 
P(n)

putt
p(k) Q(m)

→         P(n)
′

P(n)[Q(m)]
δ
→ P(n)

′ ∥ Q(m)

(n ≥ m) 

InN 
P
int(k) Q
→     P′ Q

P in(k)
→    Q′

P ∥ Q,R-
δ
→Q′,P′ ∥ R-

 

GetN 
P
gett(k) Q
→      P′ Q

P get(k)
→     Q′

P,R- ∥ Q
δ
→ P′,R ∥ Q′-

 

 

[Definition 4] (   : Algebraic Laws) 

P + P  P Choice(1) 

P + Q  Q + P Choice(2) 

(P + Q) + R  P + (Q + R) Choice(3) 

P ∥ ∅  P Parallel(1) 

P ∥ Q  Q ∥ P Parallel(2) 

(P ∥ Q) ∥ R  P ∥ (Q ∥ R) Parallel(3) 

P,∅-  P Nesting(1) 

R,P- + R,Q-  R,P + Q- Nesting(2) 

P ∥ (Q + R)  (P ∥ Q) + (P ∥ R) Distributive(1) 

(a1 + a2). P  a1. P + a2. P Distributive(2) 

 

[Example 1] (PBC Example) 

A Producer-Buffer-Consumer(PBC) Example is shown in 

Fig. 1. There are five parallel processes, where R1 and R2 

are in P. Here P sends non-deterministically the send R1 or 

the send R2 message to B through the PB channel to inform 

B to put R1 or R2 first, and puts R1 or R2 out of its space in 

order. After receiving the message, B gets R1 or R2 

nondeterministically, then B puts R1 and R2 out of its space 

in order. Finally C gets R1 and R2 in order. 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 211



 

 

 
 

: [ 1, 2] | | ;

: (  1)  1  2 (  2)  2  1 ;

: (  1)  1  2 (  2)  2  1

    1  2 ;

:  1  2 ;

1:    

PBC P R R B C

P PB send R put R put R PB send R put R put R exit

B PB send R get R get R PB send R get R get R

put R put R exit

C get R get R exit

R P put B get B put C



 

 



  ;

2 :     ;

get exit

R P put B get B put C get exit

Fig. 1 PBC Example in δ-Calculus 

 

B. Execution Model for δ-Calculus 

The execution model for δ-Calculus is based on the notion of 

system state and its transition. Since the system consists of 

processes, its state is defined as a set of states of its processes 

with the two additional state variables: a set of inclusion 

relations among processes and a global clock. In order to 

control temporal synchrony of actions, two types of clocks are 

defined: 1) the global clock for the system and 2) the local 

clocks for each processes. The former is named as the global 

clock (T) and the latter is named as local clocks (ti) for each 

process Pi. 

 

[Definition 4] (Process State) 

Process state is  ,i i ip t , where 
i
 is the position just 

after 
ia  in the sequence of actions in P and 

it  is the time of 

the local clock. There are two special states: start and final. 

 

[Definition 5] (Process State Transition) 

Process state transition is 
( , )

1

t
j j ja a t

j jp p


  , where a 

transition occurs from 
1jp 
 to 

jp  by an action 
ja , which 

takes the time 
it . 

The transition is based on the rules defined in Def. 3. For 

example, if 
0 (0,0)p   and the first action of sending a 

message on the channel c in P occurs in the time 2, then 

1 (1,2)p   by 
( ),2

0 1

c mp p . 

 

[Definition 6] (Execution Model for Process) 

Execution model for processes in δ-calculus is 
1 2

1 2

0 1 2

t t
a a

fp p p p    , where each ip  is 

a process state, which is transited to the next state after 

performing an action ia  in the time it . There are two 

special states, 0s  and fs , for the start and final states, 

respectively.  

It is possible not only to have multiple transitions from one 

process state, but also to one process state. And it is 

possible not only to have no final state, but also to have 

multiple final states. However there should be a single start 

state. 

 

[Definition 7] (System State) 

System state is  1, 2, ,( , , , ), , ,i i i n i i i is p p p I C T , where each 

,j ip , 
iI , 

iC  and 
it  represent the state of each process 

iP , a 

set of the inclusion relations among processes, a set of 

channels and the global time, respectively. 

 

[Definition 8] (System State Transition) 

System state transition between one system state to another 

state is 
1

t
ji

j js s  , where  ( : , : ),j a a ji P a P a t . Here js  

and 1js   are system states, t

ji  is a synchronous interaction 

between processes 
aP  and 

aP  with the action a  of 
aP  and 

the action a  of 
aP  in the time jt . The transition is based on 

the rules defined in the semantics of δ-calculus.  

 

[Definition 9] (System State Transition) 

System execution model for δ-calculus is the labelled 

transition system: 1 2

0 1 2

i i

fs s s s    . 

Each js  represents a system state, and 
ki  does a system 

state transition. There are two special states, 
0s  and fs , for 

first and final states, respectively.  

 

It is possible not only to have multiple transitions from one 

system state, but also to one system state. And it is possible not 

only to have no final state, but also to have multiple final states. 

However there should be a single start state. 

Fig. 2 Execution Model for PBC Example 

 

[Example 2] (Execution Model for PBC Example) 

Execution Model for PBC example is shown in Fig 2. 

 

III. NON-FUNCTIONAL SPECIFICATION  

A. GTS 

Geo-Temporal Space (GTS) is the two-dimensional space for 

processes running over time. It can be represented as the 

composition of one-dimensional process inclusion relations on 

a geo-graphical area and one-dimensional temporal space.  
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[Definition 10] (Temporal Dimension (DD)) 

Time space is represented as 1-dimensional space of 

integers.  

 

[Example 2]  

TS for 100 time units can be represented as 𝑇𝑆  
,           -. 

 

[Definition 11] (Geographical Dimension (PD)) 

The logical boundary of processes in a system on a 

geographical area can be represented linearly in 

1-dimensional space as follows: 

 

1) Base case: Process P can be represented with a pair of 

logical lower (l) and upper (u) boundaries: 𝑃  ,     -, 
where      .  

2) Induction case: There are two possible geographical 

relations between any two processes P and Q: 

i) Parallel (𝑃||𝑄): ,     -||,     -   

,           -  ,           -  
ii) Inclusion (𝑃,𝑄-  𝑄,𝑃-):  

,   ,     -   -  ,   ,     -   - 
 ,           -  ,           -  

Note that P and Q can be inductively defined. 

 

[Example 3]  

The PBC System that consists of 3 processes Producer with 

2 Resources, Buffer and Consumer can be represented 

as P  ,𝑃,𝑅1 𝑅2-    -   

 ,        𝑟   𝑟   𝑟   𝑟                     -. 
 

[Proposition 1] (GS No Partiality (GS-PG) Law) 

There is no partial geographical intersection among 

processes. 

(Proof):  

By the definition of δ-Calculus, for any process P and Q, 

there are three possible inclusion relations: 𝑃,𝑄-, 𝑄,𝑃- or 

𝑃||𝑄. 

 

[Proposition 2] (GS Linear Order (GS-LO) Law) 

All logical boundaries of the processes in a system can be 

linearly ordered in PS. 

(Proof):  

By Def. 11, all the possible compositions of the logical 

boundaries of a system are ordered linearly as follows: 

1) Base case: 𝑃  ,     -, where      .  

2) Induction case:  

i) Parallel (𝑃||𝑄): ,     -||,     - 
 ,           -  ,           - , 

where              for ,           - , and 

            for ,           -. 
ii) Inclusion ( 𝑃,𝑄-  𝑄,𝑃- ): ,   ,     -   -  

,   ,     -   -  ,           -  ,           -,  
where             for ,           - , and 

            for ,           -. 
Note that P and Q can be inductively defined. 

 

[Definition 12] (Interval) 

Interval   ,   -  is defined as a distance between two 

discrete values, a and b,    , in an ordered discrete value 

domain, such as Integer or Alphabets. For GTS, there are 

two types of intervals: 

1) Time Interval (TI). 

2) Geographical Interval (GI). 

 

[Definition 13] (Relations/Operations for Intervals) 

Interval relations and operations are defined as follows for 

 1  , 1  1-,  2  , 2  2-: 
1) Relations 

i)   (Equal):  1   2, if  1   2    1   2. 

ii)   (No-overlap):  1   2, if  1   2. 

iii)   (Contingent):  1   2, if  1   2. 

iv)   (In-overlap):  1   2, if  1   2    1   2. 

v)   (Overlap):   1   2 , if  1   2     1   2     2  
 1. 

2) Operations:  

i)   (Union): 

 1  2  , 1  1  2  2-, if   1   2     1   2; •
     2, if   1   2; 

   3  , 1  2-, if   1   2. 

ii)   (Intersection): 

 1  2  ∅, if   1   2     1   2; •
       1, if   1   2; 

  3  , 2  1-, if   1   2. 

iii)   (Complement) :  

   ,   -   •
 ,             - − ,   -   
 ,         -,  
where 𝑃    ,     -. 

iv) − (Difference) :  

i.  1   2 (No-overlap):  1 −  2   1. 

ii.  1   2 (Contingent):  1 −  2   1. 

iii.  1   2 (In-overlap): 

 1 2 −  1  , 2 , 1  1-  2- − , 1  1-  •
 , 2  2-   2. 

iv.  1   2 (Overlap):   1 3 −  3 2  , 1 , 3  1-  1- −
, 2 , 2  3-  2-  , 1  3-, where  3   1  2. 

 

[Definition 14] (Functions for Intervals) 

Interval functions are defined as follows: 

1)   𝑔  (𝑇 )  𝑡  if 𝑇  ,𝑡  𝑡 -. 
2)    (𝑇 )  𝑡  if 𝑇  ,𝑡  𝑡 -. 
3)    𝑔𝑡 (𝑇 )  𝑡 − 𝑡  if 𝑇  ,𝑡  𝑡 -. 
4)   𝑤 𝑟(  )  𝑔  if 𝑇  ,𝑔  𝑔 -. 
5) 𝑢   𝑟(  )  𝑔  if 𝑇  ,𝑔  𝑔 -. 

 

[Proposition 3] (GT Relations and Operations) 

1) Base case: 𝑃  ,     -, where      .  

i) Relations: 𝑃  𝑃 

ii) Functions:  

i.   (Union): 𝑃 𝑃  𝑃 

ii.   (Intersection): 𝑃 𝑃  𝑃 

iii.  (Complement): 

 𝑃  ,𝑠            𝑠 - − ,     -  
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 ,𝑠      𝑠 -, where 𝑃  𝑆. 

iv. − (Difference) : 𝑃 − 𝑃  , -   ∅ 

2) Induction case (Parallel (𝑃||𝑄)): 

 𝑃||𝑄  ,     -||,     -  ,           -  
,           - 

i) Relations: 𝑃  𝑄 ⋁ 𝑃  𝑄 

ii)  Functions:  

i.  (Union):  𝑃 𝑄  ,           -  ,           - 
ii.   (Intersection): 𝑃 𝑄  ∅ 

iii. − (Difference) : 𝑃 − 𝑄  𝑃 

3) Induction case (Inclusion ( 𝑃,𝑄- )): 𝑃,𝑄-  
,   ,     -   -  ,           - 

i) Relations: 𝑄  𝑃 

ii) Functions:  

i.   (Union): 𝑃,𝑄- 𝑄  𝑃 

ii.   (Intersection): 𝑃,𝑄- 𝑄  𝑄 

iii. − (Difference) : 𝑃,𝑄- − 𝑄  𝑃 

4) Induction case (Inclusion (𝑄,𝑃-)): Similar to Case 3). 

(Proof):  

By Def. 13. 

 
[Definition 15] (GTS (Geo-Temporal Space)) 

GTS is defined as 𝑆  〈  𝑇〉 , where   ,𝑔  𝑔 - , 

𝑇  ,𝑡  𝑡 -. It implies that GTS is the composition of the 

geo-space G of the size ,𝑔  𝑔 -, where 𝑔   𝑔 , and the 

temporal space of T of the size ,𝑡  𝑡 -, where 𝑡  𝑡 .   

 
[Definition 16] (GTS Block) 

Any GTS can be defined as a GTS Block (GTSB). 

 
[Definition 17] (Types of Blocks in GTS) 

There are 4 types of blocks in GTS as follows: 

1) System block (SB): This is the GTS block to represent a 

system in δ-Calculus. It consists of process blocks and 

their interactions in GTS. 

2) Process block (PB): This is the GTS block to represent a 

process in a system. It consists of actions or interacts.  

3) Action block (AB): This is the GTS block to represent an 

action in a process. An action can interact synchronously 

with another action in another process for 

communication and movements. 

4) Interaction block (IB): This is the GTS block to 

represent a synchronous interaction between a process 

and another process.  

 
[Definition 18] (Relations/Operations for Block) 

The block relations an operations are defined as follows for 

 1  〈 1 𝑇1〉  〈[𝑔  1 𝑔  1] [𝑡  1 𝑡  1]〉  and  2  

〈 2 𝑇2〉  〈[𝑔  2 𝑔  2] [𝑡  2 𝑡  2]〉: 

1) Relations:  

i)  (Equal):  1   2, if  1   2  𝑇1  𝑇2.  

ii)  (No-overlap):  1   2, if  1   2  𝑇1  𝑇2.  

iii)  (Geo-Contingent):  1   2, if  1   2  𝑇1  𝑇2. 

iv)  (In-overlap):  1   2, if  1   2  𝑇1  𝑇2. 

v)  (Overlap):  1   2, if  1   2  𝑇1  𝑇2. 

 

2) Operations:  

i)   (Union): 

 1  2  ∅, if   1   2     1   2; •
  2, if   1   2; 

  3  〈 2 𝑇3〉 if   1   2,  

where 𝑇3  𝑇1 𝑇2. 

ii)   (Intersection): 

 1  2  ∅, if   1   2     1   2; •
  1, if   1   2; 

  3  〈 1 𝑇3〉 if   1   2,  

where 𝑇3  𝑇1 𝑇2 
iii) − (Difference) :  

i.  1   2 (No-overlap):  1 −  2   1 

ii.  1   2 (Contingent):  1 −  2   1 

iii.  1   2 (In-overlap): No possible by the definition 

of GTS Block. 

iv.   (Overlap): Not possible by the definition of GTS 

Block. 

 
[Definition 19] ] (GTS Sub-Block) 

For  1  〈 1 𝑇1〉 and  2  〈 2 𝑇2〉,  1  is a sub-block of 

 2 if  1   2. 

 
[Definition 20] (Functions for Blocks) 

1) General 

id(B), name(B), time(B), geo(B): Return the •
identifier, name, time interval and the geo interval 
of Block B, respectively. 

2) System Block: 

process(S), process(S,t), process(S,T), •
process(S,G) : Return a set of processes in System 
Block S, at the time t, at the time interval T, and in 
the geo interval, respectively. 

3) Process Block: 

action(P), action(P,t), action(P,T) : Return a set of •
actions in Process Block P, at the time t, and in the 
time interval, respectively. 
parent(P), child(P), ancestor(P), descendent(P), •
system(P): Return the parent, child, ancestor, 
descendent process(es), and the system process 
block of Process Block P. 

4) Action Block: 

i) type(A) : Returns the type of Action Block, i.e.,      . 
ii) process(A), system(A): Return the owner process and 

the system block of Action Block A. 

iii) Precedence: 

next(A), previous(A), alternative: Return the next, •
previous and the alternative action block of Action 
Block A. 

5) Interaction Block: 

i) type(I) : Returns the type of Interaction Block A, i.e., 

     . 
ii) mode(I) : Returns the mode of Interaction Block A, i.e., 

Synch, Asynch. 

6) Movement Interaction Block: 

i) type( δ) : Returns the type of Interaction Block A, i.e., 

Active, Passive. 
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ii) mode(I) : Returns the mode of Interaction Block A, i.e., 

Synch, Asynch. 

 

[Definition 21] (Block Set Relations/Operations) 

Block Set Relations and Operations are defined as follows 

for  1  { 1 1    1  }  2  { 2 1    2  }: 

1) Relations:         

2) Operations:    ,   − 

 

[Notation 1] (‘.’ Infix Notation for Inclusion) 

For simplicity, the following notations will be used to 

indicate each type of entities in δ-Calculus based on 

inclusion relations: 

1) System: 𝑆  
2) Process: 𝑆 . 𝑃  

3) Action: 𝑆 . 𝑃 .    

4) Interaction: 𝑆 .    〈𝑃  1.    1 𝑃  2    2〉 

There are a number of propositions that are restricted by the 

syntax and semantic rules of δ-Calculus. 

 
[Proposition 4] (Syntax Restrictions) 

1) All       𝑃,       ∅. 

2) If 𝑃||𝑄, 𝑔  (𝑃)  𝑔  (𝑄)  𝑡   (𝑃)  𝑡   (𝑃). 
3) If 𝑃,𝑄-, 𝑄  𝑃. 

(Proof):  

1) Actions in P cannot be overlapped in any space in any 

time. 

2) If P || Q, there is no overlap in space, but in time. 

3) If P[Q], there is an overlap of Q over P in space during a 

period of time. 

 
[Proposition 5] Semantic Restrictions 

1) τ : Communication: 

i) If    〈𝑃.    𝑄.   〉  and 𝑃  𝑄 , then     𝑘(  )  
〈  𝑇〉   

⟨[  𝑤 𝑟(    𝑘(  )) 𝑢   𝑟(    𝑘(  ))]   

𝑡   (  )  𝑡   (  )⟩  

   

⟨[  𝑤 𝑟(    𝑘(  )) 𝑢   𝑟(    𝑘(  ))]   

𝑡   (  )  𝑡   (  )⟩  

2) δ : movements 

i) If    𝑡       〈𝑃.    𝑄 𝑄. 𝑃   〉  and 𝑃  𝑄 , then 

    𝑘(   𝑡      )  〈  𝑇〉   

⟨[  𝑤 𝑟(    𝑘(   𝑄)) 𝑢   𝑟(    𝑘(𝑃   ))]   

𝑡   (   𝑄)  𝑡   (𝑃   )⟩   

    𝑘 . 𝑟   𝑠𝑠(    𝑘(   𝑄))/  

     𝑘 . 𝑟   𝑠𝑠(    𝑘(𝑄   ))/  

  𝑟   𝑠𝑠 .  𝑥𝑡(    𝑘(   𝑄))/  

  𝑟   𝑠𝑠 .  𝑥𝑡(    𝑘(𝑄   ))/  

  𝑟   𝑠𝑠 .  𝑥𝑡(    𝑘(   𝑄))/  

ii) If             〈𝑃. 𝑄 𝑔 𝑡 𝑄. 𝑔 𝑡 𝑃〉  and 𝑃  𝑄 , then 

    𝑘(           )  〈  𝑇〉   

⟨,  𝑤 𝑟(    𝑘(𝑄 𝑔 𝑡)) 𝑢   𝑟(    𝑘(𝑔 𝑡 𝑃))-   
𝑡   (𝑄 𝑔 𝑡)  𝑡   (𝑔 𝑡 𝑃)⟩   

     𝑘 . 𝑟   𝑠𝑠(    𝑘(𝑄 𝑔 𝑡))/  

     𝑘 . 𝑟   𝑠𝑠(    𝑘(𝑔 𝑡 𝑃))/  

  𝑟   𝑠𝑠 .  𝑥𝑡(    𝑘(𝑄 𝑔 𝑡))/  

  𝑟   𝑠𝑠 .  𝑥𝑡(    𝑘(𝑔 𝑡 𝑃))/  

  𝑟   𝑠𝑠 .  𝑥𝑡(    𝑘(𝑄 𝑔 𝑡))/  

iii) If    𝑡      𝑡  〈𝑃.  𝑢𝑡 𝑄 𝑄. 𝑃  𝑢𝑡〉  and 𝑃  𝑄 , then 

    𝑘(   𝑡      𝑡)  〈  𝑇〉   

⟨,  𝑤 𝑟(    𝑘( 𝑢𝑡 𝑄)) 𝑢   𝑟(    𝑘(𝑃  𝑢𝑡))-    
𝑡   ( 𝑢𝑡 𝑄)  𝑡   (𝑃  𝑢𝑡)⟩   

    𝑘 . 𝑟   𝑠𝑠(    𝑘( 𝑢𝑡 𝑄))/ 

     𝑘 . 𝑟   𝑠𝑠(    𝑘(𝑃  𝑢𝑡))/  

   𝑟   𝑠𝑠 .  𝑥𝑡(    𝑘( 𝑢𝑡 𝑄))/ 

  𝑟   𝑠𝑠 .  𝑥𝑡(    𝑘(𝑃  𝑢𝑡))/  

iv) If            𝑡  〈𝑃. 𝑄  𝑢𝑡 𝑄.  𝑢𝑡 𝑃〉  and 𝑃  𝑄 , then 

    𝑘(           𝑡)  〈  𝑇〉   

       ⟨,  𝑤 𝑟(    𝑘(𝑄  𝑢𝑡)) 𝑢   𝑟(    𝑘( 𝑢𝑡 𝑃))-   
𝑡   (𝑄  𝑢𝑡)  𝑡   ( 𝑢𝑡 𝑃)⟩   

    𝑘 . 𝑟   𝑠𝑠(    𝑘(𝑄  𝑢𝑡))/  

     𝑘 . 𝑟   𝑠𝑠(    𝑘( 𝑢𝑡 𝑃))/   

  𝑟   𝑠𝑠 .  𝑥𝑡(    𝑘(𝑄  𝑢𝑡))/  

  𝑟   𝑠𝑠 .  𝑥𝑡(    𝑘( 𝑢𝑡 𝑃))/  

3) ρ : process control (Omitted Intentionally). 

(Proof):  

1) For communication (τ), Q and P must be in the same 

time period. 

2) For movements (δ),  

For active in movement, Q and P must be in the •

same space at the same time period.  

For active out movement, Q must be in P or P must •

be in Q at the same time period. 

For passive in movement, Q and P must be in the •

same space at the same time period.  

For passive out movement, Q must be in P or P •

must be in Q at the same time period. 

3) For control,  

For terminate, suspend and wake, Q must be in P or •

P must be in Q at the same time period. 

In δ-Calculus, a system S can be represented as a tuple 

that consists of a set of processes, a set of inclusion 

relations among processes and a global clock, where each 

process consists of a sequence of timed actions and a 

local clock.  

 
[Example 4] GTS Diagram for PBC Example 

A GTS diagram for PBC example is shown in Fig. 3. It is 

generated from simulating the left-most path from the 

execution model from Fig. 2, which is the case for the  1 

communication.  
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Fig. 3 GTS Diagram for PBC Example 

 

B.  GTS Logic 

A) Syntax 

GTS Logic is a first-order logic that deals with relationships 

among blocks in GTS.  

 
[Definition 22] (Alphabet for GTS Logic) 

1) Logical symbols: 

i) Quantitative symbols:      

ii) Logical connectives:     →     

iii) Parenthesis, brackets, other punctuation symbols. 

iv) An infinite set of variables: x, y, z 

v) An equality symbol:   

2) Non-logical symbols 

i) Predicate symbols: 𝑃 𝑄 𝑅 (𝑃 
 ) 

ii) Function symbols:   𝑔   (  
 ) 

iii) Constants:       
i. Integer: 0, 1, 2, … 

ii. String: ―a‖, ―aa‖, …, ―abc‖, … . 

 
[Definition 23] (Formulation Rules for GTS Logic) 

1) Terms: Inductively defined by the following rules: 

i) Variables: Any variable is a term, such as, x, y, z. 

ii) Functions: Any expression  (𝑡1   𝑡 )  of 

n-arguments is a term and f is a function symbol of 

valence n is a term. 

2) Formulas: Inductively defined by the following rules: 

i) Predicate symbols: It P is an n-ary predicate symbol 

and 𝑡1   𝑡  are terms, then 𝑃(𝑡1   𝑡 ) is a formula. 

ii) Equality: If 𝑡1 𝑡2 are terms, then 𝑡1  𝑡2 is a term. 

iii) Negation: If   is a formula, then    is a formula. 

iv) Binary connectives: If  ,   are formulas, then     

is a formula, where   can be     → or  . 

v) Quantifier: If   is a formula and 𝑥 is a variable, then 

   ( )    ( ) are formulas. 

B) Predicates 

[Definition 24] (Predicates for GTS Logic) 

There are a number of predicates for GTS Logic as follows: 

1) Membership:   𝑥.     𝑟(  𝑥) 
2) Block Relation:   𝑥. 𝑅   𝑡   (  𝑥) 

i) Process:   𝑥. 𝑃𝑟   𝑠𝑠(𝑆 𝑥) 
ii) Action:  𝑥.   𝑡   (𝑃 𝑥) 
iii) Interaction:  𝑥.   𝑡 𝑟  𝑡   (𝑆 𝑥) ; 

 𝑥.   𝑡 𝑟  𝑡   (𝑃 𝑥);  𝑥.   𝑡 𝑟  𝑡   (  𝑥) 
3) Precedency Relation:  𝑟. Relation(    𝑟)  

i) Process:  𝑥. 𝑅   𝑡   (𝑃 𝑄 𝑥) 
: parallel; choice; parent; child; anc; desc 

ii) Actions:   𝑥. 𝑅   𝑡   (      𝑥) 

: next; previous; alternative;  interaction 

iii) Interaction:  𝑥.   𝑡 𝑟  𝑡   (      𝑥) 

: communication, movement, control 

iv) Interaction:  𝑥.  𝑣    𝑡(      𝑥) 

: active-in, passive-in, active-out, passive-Out. 

C) Secure Property 

[Definition 25] (Security Property) 

Security is defined as the property that a system is free from 

unauthorized access. 

 

[Definition 26] (Safety Property) 

Safety is defined as the property that a system is free from 

unexpected behavior. 

 

[Definition 27] (Secure System) 

A system with security and safety properties is defined as a 

secure system. 

D) Verifiability 

[Proposition 6] Verification for Secure System 

GTS Logic can be used to verify secure system. 

(Proof):  

All the secure requirements of a system can be represented 

with GTS Logic formulas, which can be proved to be true or 

false. 

 

[Example 5] Interactions in PBC Example 

There are two sets of interaction from the execution model 

of the PBC example in Fig. 2, as follows: 

1) Communication (τ): 

i)  1  (𝑃. 𝑃 (𝑆    𝑅1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  . 𝑃 (𝑆    𝑅1)) in 𝑇1. 

ii)  2  (𝑃. 𝑃 (𝑆    𝑅2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  . 𝑃 (𝑆    𝑅2)) in 𝑇6. 

2) Movements(δ): 

i)  1 1  (𝑃.  𝑢𝑡 𝑅  𝑅 . 𝑃  𝑢𝑡) in 𝑇2 and 𝑇8. 

ii)  1 2  (𝑃.  𝑢𝑡 𝑅  𝑅 . 𝑃  𝑢𝑡) in 𝑇3 and 𝑇7. 

iii)  2 1  ( . 𝑔 𝑡 𝑅  𝑅 .   𝑔 𝑡) in 𝑇4 and 𝑇1 . 

iv)  2 2  ( . 𝑔 𝑡 𝑅  𝑅 .   𝑔 𝑡) in 𝑇5 and 𝑇9. 

v)  3 1  ( .  𝑢𝑡 𝑅  𝑅 .    𝑢𝑡) in 𝑇11. 
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vi)  3 2  ( .  𝑢𝑡 𝑅  𝑅 .    𝑢𝑡) in 𝑇12. 

vii)  4 1  ( . 𝑔 𝑡 𝑅  𝑅 .   𝑔 𝑡) in 𝑇13. 

viii)  4 2  ( . 𝑔 𝑡 𝑅  𝑅 .   𝑔 𝑡) in 𝑇14. 

 

[Example 6] (Requirements for PBC Example) 

There is a list of safety requirements for the PBC example 

as follows: 

 

1) 𝑅    1 →      (   1     2) ,  *       +- 

After  1, 𝑅  must move ahead of 𝑅  all the time. •

2) 𝑅    2 → .    (   2     2)   𝑘  

  (   1     2)/  ,  *   +   *   +- 

After  2, 𝑅  must move ahead of 𝑅  out of P and •
in of B, and 𝑅  must move ahead of 𝑅  afterward, 
all the way to C. 

3) 𝑅    1   2 →      (   1     2) ,  *   +- 

After  1 or  2, once both 𝑅  and 𝑅  move to B, 𝑅  •
must move ahead of 𝑅  afterward, all the way to C. 

 

Notice that 𝑅   is derived from 𝑅   and 𝑅  . 

 

[Example 7] (Verification of Requirements) 

All the requirements in Example 6 are satisfied for the first 

normal case of the  1 communication, shown in Example 5 

with Fig. 3. It is clear that the requirements are satisfied for 

the second normal case of the  2 communication, shown in 

the right-most path of the execution model for the PBC 

example, shown in Fig. 2. The other two abnormal cases are 

not applicable. Therefore it can be concluded that the 

requirements for the example are satisfied for all the cases 

of the execution. 

IV. IMPLEMENTATION 

 

A.  SAVE Tool 

A tool, called SAVE (Specification, Analysis, Verification 

Environment), for δ-calculus has been developed on ADOxx 

[5], as shown in Fig. 2. It consists of four basic components as 

follows: 

 

1)   Modeler: It provides capability to specify System and 

Process Views. 

2)  EM Generator: It generates an execution model, in 

Execution Tree (ET), for the views and makes each path 

of the model to be selected for simulation.  

3)  Simulator: It generates a model for the selected 

simulation, in a GTS diagram. 

4)  Verifier: It verifies the secure requirements of the 

system by model-checking on the diagrams. 

 

The graphical representations of the models in SAVE are 

designed by the ADOxx Development Tool, and the procedures 

of its components are built from the ADOxx libraries. The 

detailed logics of the procedures are programmed in the 

ADOScript language. ADOxx provides three layers to 

implement mechanisms and algorithms for SAVE: 

 

1)  First layer: The pre-defined functionality, a basic set of 

features most commonly used by modeling tools.  

2)  Second Layer: Approximately 400 APIs for the 

generation of objects, editing of their properties, etc. 

3)  Third layer: Ways of interaction to outside of ADOxx. 

The simple interaction is by exporting and importing 

XML files. 

 

SAVE uses the functionalities of the first layer to implement 

the graphical elements and attributes of the graphic models, and 

it uses those of the second layer to implement Modeler, EM 

Generator, Simulator and Verifier.  

B. Example 

The PBC example from the previous sections are 

demonstrated in SAVE. The source code for the example is 

shown in Fig. 1.  

 

1) System View 

The system view for the PBC example is shown in Fig. 4. As 

stated, there are five processes running, namely, P, B, C, R1 and 

R2, in parallel. Notice that R1 and R2 are running in P. 

 

2) Process View 

The process views for the PBC example are shown in Fig. 5. As 

stated, each process view specifies visually the detailed 

operational requirements of the individual process in the PBC 

example.  

 

3) Execution View 

The execution view of the PBC example is shown in Fig. 6. It 

shows four possible execution cases: two for normal 

termination and two for abnormal termination. The cases for 

normal termination are the ones for safe communication based 

on synchronization between P and B: Send R1 and Send R2. 

The cases for abnormal termination are the ones for unsafe 

communication, that is, deadlock, based on unexpected 

synchronization between P and B: Send R1 for Send R2, and 

Send R2 for Send R1. 

 

4) Simulation View 

In order to generate the simulation view for each execution case, 

the execution path can be selected from the dialog box from the 

execution view, as shown in Fig. 6. Once the path is selected, 

the processes from the process view are simulated under the 

condition for the selected path. Fig. 7 shows the simulation 

view for the first normal case shown as the right-most path in 

the execution view. 

 

5) Verification View 

The verification view for the simulation view in Fig. 7 is shown 

in Fig. 8. This is a result of verification for the validity of safety 

requirements for the PBC example. As stated, there are a 

number of dependencies and restrictions that the PBC example 

must follow. For example, the movement of R1 must be 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 217



 

 

performed after the communication between P and B, and the 

movement of R1 must be ahead of the movement of R2. 

 
Fig. 4 System View for PBC Example in SAVE 

 
Fig. 5 Process View for PBC Example in SAVE 

 
Fig. 6 Execution View for PBC Example 

 
Fig. 7 Simulation View for a Path from Execution 

 
Fig. 8 Verification View for Simulation View 

 

In the figure, the resources R1 and R2 are passed to B by P in 

order after communicating with B to determine which resource 

to be passed first. If R1 is determined to be passed first (
1 ), R1 

must be passed first to B by P ( 1,1 for R1), followed by R2 

being passed to B by P next ( 1,2 for R2). And R1 and R2 must 

be passed to C by B, in that order, that is, 3,1  (for R1) is 

followed by 3,2  (for R2). This is one of the requirements, that 

is,  1 1,2 1,2 3,1 3,2         in GTS Logic, which is visually 

specified in Fig. 8 with the icons for the   and   dependency 

relations. If the requirements are satisfied, they are colored in 

blue. If not, in red. In the figure, the requirement is known to be 

satisfied, since its color is determined to be blue after verifying 

all the requirements to be true. 

V. CONCLUSION 

This paper presented a dual method to specify and verify IoT 

systems. There were three basic phases of the approach: 1) 

specifications of both dynamic properties, such as, operational 

requirements, in δ-Calculus and the static properties, such as, 

safety requirements, in GTS Logic, 2) and the execution model 

and simulations, and 3) verifications. The method was realized 

in a visual environment, namely SAVE, and its efficiency and 

effectiveness were demonstrated with the PBC example on 

SAVE. Five views were provided in SAVE to show the 

consistency of the methods for visualization: System, Process, 

Execution, Simulation and Verification Views. It can be 

considered to be one of the most innovative dual methods and 

tools to model IoT systems in terms of specification and 

verification. 

 

Future research will include the application of the real 

industrial examples to demonstrate the feasibility of the method 

on SAVE. For example, SAVE must have capability to handle 

modularization and scalability of extensive size of the 

execution models, similar to the EMS example showed in Fig. 

14 [6]. The example handles more than 17,000 execution paths 

in the model. 
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