



Abstract— This paper presents a dual method: 1) to specify both

dynamic properties, such as operational requirements, and static

properties, such as safety requirements, of IoT systems, whose

services are distributed over a geographical space and are mobile over

the space in time, and 2) verify the validation of the static properties

over the dynamic properties. Firstly, the dynamic properties are

specified with a process algebra, called δ-Calculus, and the static

properties are specified a first-order logic, called GTS Logic. Secondly,

once specifications are done, the static properties are verified for its

validity over the dynamic properties. For example, safety requirements

are verified to see its validity over operational requirements by

checking whether or not the safety requirements are satisfied for all the

possible simulation cases of the operational requirements. In order to

demonstrate the feasibility of the method, a tool, namely SAVE, is

developed on a meta-modeling platform, namely ADOxx. The method

and the tool can be considered one of the most innovative approaches

to model the IoT systems.

Keywords— Dual Method; Visualization; SAVE; δ-Calculus;

GTS Logic; Specification; Verification; ADOxx

I. INTRODUCTION

There are strong needs for formal methods to model IoT

systems [1]. However the most of methods provide capability

to model either static properties or dynamic properties, not both.

Therefore it is desirable to model both dynamic and static

properties, and to verify the validity of the static properties over

the dynamic properties for IoT [2].

This paper presents a new method to specify IoT systems

with both dynamic properties, such as, operational

requirements, and static properties, such as, safety requirements,

and to verify the validity of the static properties over the

dynamic properties, such as, the validity of safety requirements

over the operational requirements, as follows:

1) Specifications:

i) Operational requirements as dynamic properties: These

requirements are specified with a process algebra,

called δ-Calculus [3]. The calculus is designed to

specify DMRTS, applicable to IoT systems.

ii) Safety requirements as static properties: These

requirements are specified with a first order logic,

called GTS(Geo-Temporal Space) Logic [4]. The logic

is designed to reason geo-temporal properties of

* Corresponding Author

processes and their interactions on a specific

geographical space for DMRTS, applicable to IoT.

2) Verification: In order to verify the safety requirements

for the dynamic requirements, it is necessary to generate

all the possible execution cases for simulation. It is

accomplished as follows:

i) Simulation:

i. Execution model: A visual execution model is

generated for the operational specification. It contains

all the possible cases for execution.

ii. Simulation: It simulates each individual case in the

execution model. It represents the results of the

simulation in a GTS block diagram, which will be

input to Verifier for verification.

ii) Verification: It verifies visually on the GTS block

diagrams for the safety requirements in GTS Logic. The

results of the verification will be displayed directly and

visually on the diagrams.

The approach will be demonstrated in a tool, called, SAVE

(Specification, Analysis, Verification and Evaluation) [4],

which is developed on the ADOxx meta-modeling platform [5],

with an example, for the feasibility of the method.

The method can be considered as one of the innovative

methods to model IoT systems to specify both static and

dynamic properties of the systems, as well as to verify the

validity of static properties over the dynamic properties.

The organization of the paper is as follows. Section 2, 3 and 4

describes δ-Calculus, Execution Model and GTS Logic,

respectively. Section 5 demonstrates the method on SAVE with

a PBC (Producer-Buffer-Consumer) example. Finally

conclusions will be made with future research.

II. OPERATIONAL SPECIFICATION

A. δ-Calculus

δ-Calculus is a process algebra to model the behavior of

processes by defining distribution of processes on a

geographical space and their actions, especially movements in

time and with priority.

[Definition 1] (δ-Calculus)

δ-Calculus is defined as a tuple (𝑆𝑦 𝑆 𝑤) ,

where 𝑆𝑦 , 𝑆 and 𝑤 are defined in Def. 2, 3 and 4,

respectively.

A Dual Method to Model IoT Systems

Sunghyeon Lee, Yeongbok Choe, Moonkun Lee*

The Chonbuk National University

Jeonju

Republic of Korea

moonkun@jbnu.ac.kr

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 210

[Definition 2] (: Syntax of δ-Calculus)

P ∷ nil //Inaction

| A //Action

| P(n) //Priority

| P,Q- //Nesting

| P〈𝑟𝑡〉 //Channel

| P + Q //Choice

| P | Q //Parallel

| A ∙ P //Sequence

A ∷ ∅ //Empty Action

| rt(𝑠𝑔̅̅ ̅̅ ̅̅) //Send

| rt(𝑠𝑔) //Receive

| M //Movement

M ∷ mt
p(𝑘) 𝑃 //Request

| P m(k)t
p

 //Permission

m ∷ in //In Movement

| out //Out Movement

| get //Get Movement

| put //Put Movement

 [Definition 3] (: Semantics of δ-Calculus)

1) 𝑆 : Communicaiton

Action
−

r(a) ∙ P
r(a)
→ P

ChoiceL
P
𝐴
→ 𝑃′

P + Q
A
→P′

ChoiceR
Q
𝐴
→𝑄′

P + Q
A
→Q′

ParlL
P
𝐴
→ 𝑃′

P | Q
A
→𝑃′ | 𝑄

ParlR
Q
𝐴
→𝑄′

P | Q
A
→𝑃 | 𝑄′

ParCom
P
𝐴
→ 𝑃′ Q

𝐴̅
→𝑄′

P | Q
τ
→𝑃′ | 𝑄′

NestO
P
𝐴
→ 𝑃′

P,Q-
A
→𝑃′,𝑄-

NestI
Q
𝐴
→𝑄′

P,Q-
A
→𝑃,𝑄′-

NestCom
P
𝐴
→ 𝑃′ Q

𝐴̅
→𝑄′

P,Q-
τ
→𝑃′,𝑄′-

2) 𝑆 : Movements

In
P
int(k) Q
→ P′ Q

P in(k)
→ Q′

P ∥ Q
δ
→Q′,P′-

Out
P
outt(k) Q
→ P′ Q

P out(k)
→ Q′

Q,P-
δ
→ P′ ∥ Q′

Get
P
gett(k) Q
→ P′ Q

P get(k)
→ Q′

P ∥ Q
δ
→ P′,Q′-

Put
P
putt(k) Q
→ P′ Q

P put(k)
→ Q′

P,Q-
δ
→ P′ ∥ Q′

InP
P(n)

int
p(k) Q(m)
→ P(n)

′

P(n) ∥ Q(m)
δ
→Q(m)[P(n)′]

(n ≥ m)

OutP
P(n)

outt
p
(k) Q(m)

→ P(n)
′

Q(m)[P(n)]
δ
→ P(n)

′ ∥ Q(m)

(n ≥ m)

GetP
P(n)

gett
p(k) Q(m)

→ P(n)
′

P(n) ∥ Q(m)
δ
→ P(n)

′ [Q(m)]
(n ≥ m)

PutP
P(n)

putt
p(k) Q(m)

→ P(n)
′

P(n)[Q(m)]
δ
→ P(n)

′ ∥ Q(m)

(n ≥ m)

InN
P
int(k) Q
→ P′ Q

P in(k)
→ Q′

P ∥ Q,R-
δ
→Q′,P′ ∥ R-

GetN
P
gett(k) Q
→ P′ Q

P get(k)
→ Q′

P,R- ∥ Q
δ
→ P′,R ∥ Q′-

[Definition 4] (: Algebraic Laws)

P + P P Choice(1)

P + Q Q + P Choice(2)

(P + Q) + R P + (Q + R) Choice(3)

P ∥ ∅ P Parallel(1)

P ∥ Q Q ∥ P Parallel(2)

(P ∥ Q) ∥ R P ∥ (Q ∥ R) Parallel(3)

P,∅- P Nesting(1)

R,P- + R,Q- R,P + Q- Nesting(2)

P ∥ (Q + R) (P ∥ Q) + (P ∥ R) Distributive(1)

(a1 + a2). P a1. P + a2. P Distributive(2)

[Example 1] (PBC Example)

A Producer-Buffer-Consumer(PBC) Example is shown in

Fig. 1. There are five parallel processes, where R1 and R2

are in P. Here P sends non-deterministically the send R1 or

the send R2 message to B through the PB channel to inform

B to put R1 or R2 first, and puts R1 or R2 out of its space in

order. After receiving the message, B gets R1 or R2

nondeterministically, then B puts R1 and R2 out of its space

in order. Finally C gets R1 and R2 in order.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 211

 
 

: [1, 2] | | ;

: (1) 1 2 (2) 2 1 ;

: (1) 1 2 (2) 2 1

 1 2 ;

: 1 2 ;

1:

PBC P R R B C

P PB send R put R put R PB send R put R put R exit

B PB send R get R get R PB send R get R get R

put R put R exit

C get R get R exit

R P put B get B put C



 

 



 ;

2 : ;

get exit

R P put B get B put C get exit

Fig. 1 PBC Example in δ-Calculus

B. Execution Model for δ-Calculus

The execution model for δ-Calculus is based on the notion of

system state and its transition. Since the system consists of

processes, its state is defined as a set of states of its processes

with the two additional state variables: a set of inclusion

relations among processes and a global clock. In order to

control temporal synchrony of actions, two types of clocks are

defined: 1) the global clock for the system and 2) the local

clocks for each processes. The former is named as the global

clock (T) and the latter is named as local clocks (ti) for each

process Pi.

[Definition 4] (Process State)

Process state is  ,i i ip t , where
i
 is the position just

after
ia in the sequence of actions in P and

it is the time of

the local clock. There are two special states: start and final.

[Definition 5] (Process State Transition)

Process state transition is
(,)

1

t
j j ja a t

j jp p


  , where a

transition occurs from
1jp 
 to

jp by an action
ja , which

takes the time
it .

The transition is based on the rules defined in Def. 3. For

example, if
0 (0,0)p  and the first action of sending a

message on the channel c in P occurs in the time 2, then

1 (1,2)p  by
(),2

0 1

c mp p .

[Definition 6] (Execution Model for Process)

Execution model for processes in δ-calculus is
1 2

1 2

0 1 2

t t
a a

fp p p p    , where each ip is

a process state, which is transited to the next state after

performing an action ia in the time it . There are two

special states, 0s and fs , for the start and final states,

respectively.

It is possible not only to have multiple transitions from one

process state, but also to one process state. And it is

possible not only to have no final state, but also to have

multiple final states. However there should be a single start

state.

[Definition 7] (System State)

System state is  1, 2, ,(, , ,), , ,i i i n i i i is p p p I C T , where each

,j ip ,
iI ,

iC and
it represent the state of each process

iP , a

set of the inclusion relations among processes, a set of

channels and the global time, respectively.

[Definition 8] (System State Transition)

System state transition between one system state to another

state is
1

t
ji

j js s  , where  (: , :),j a a ji P a P a t . Here js

and 1js  are system states, t

ji is a synchronous interaction

between processes
aP and

aP with the action a of
aP and

the action a of
aP in the time jt . The transition is based on

the rules defined in the semantics of δ-calculus.

[Definition 9] (System State Transition)

System execution model for δ-calculus is the labelled

transition system: 1 2

0 1 2

i i

fs s s s    .

Each js represents a system state, and
ki does a system

state transition. There are two special states,
0s and fs , for

first and final states, respectively.

It is possible not only to have multiple transitions from one

system state, but also to one system state. And it is possible not

only to have no final state, but also to have multiple final states.

However there should be a single start state.

Fig. 2 Execution Model for PBC Example

[Example 2] (Execution Model for PBC Example)

Execution Model for PBC example is shown in Fig 2.

III. NON-FUNCTIONAL SPECIFICATION

A. GTS

Geo-Temporal Space (GTS) is the two-dimensional space for

processes running over time. It can be represented as the

composition of one-dimensional process inclusion relations on

a geo-graphical area and one-dimensional temporal space.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 212

[Definition 10] (Temporal Dimension (DD))

Time space is represented as 1-dimensional space of

integers.

[Example 2]

TS for 100 time units can be represented as 𝑇𝑆
, -.

[Definition 11] (Geographical Dimension (PD))

The logical boundary of processes in a system on a

geographical area can be represented linearly in

1-dimensional space as follows:

1) Base case: Process P can be represented with a pair of

logical lower (l) and upper (u) boundaries: 𝑃 , -,
where .

2) Induction case: There are two possible geographical

relations between any two processes P and Q:

i) Parallel (𝑃||𝑄): , -||, -

, - , -
ii) Inclusion (𝑃,𝑄- 𝑄,𝑃-):

, , - - , , - -
 , - , -

Note that P and Q can be inductively defined.

[Example 3]

The PBC System that consists of 3 processes Producer with

2 Resources, Buffer and Consumer can be represented

as P ,𝑃,𝑅1 𝑅2- -

 , 𝑟 𝑟 𝑟 𝑟 -.

[Proposition 1] (GS No Partiality (GS-PG) Law)

There is no partial geographical intersection among

processes.

(Proof):

By the definition of δ-Calculus, for any process P and Q,

there are three possible inclusion relations: 𝑃,𝑄-, 𝑄,𝑃- or

𝑃||𝑄.

[Proposition 2] (GS Linear Order (GS-LO) Law)

All logical boundaries of the processes in a system can be

linearly ordered in PS.

(Proof):

By Def. 11, all the possible compositions of the logical

boundaries of a system are ordered linearly as follows:

1) Base case: 𝑃 , -, where .

2) Induction case:

i) Parallel (𝑃||𝑄): , -||, -
 , - , - ,

where for , - , and

 for , -.
ii) Inclusion (𝑃,𝑄- 𝑄,𝑃-): , , - -

, , - - , - , -,
where for , - , and

 for , -.
Note that P and Q can be inductively defined.

[Definition 12] (Interval)

Interval , - is defined as a distance between two

discrete values, a and b, , in an ordered discrete value

domain, such as Integer or Alphabets. For GTS, there are

two types of intervals:

1) Time Interval (TI).

2) Geographical Interval (GI).

[Definition 13] (Relations/Operations for Intervals)

Interval relations and operations are defined as follows for

 1 , 1 1-, 2 , 2 2-:
1) Relations

i) (Equal): 1 2, if 1 2 1 2.

ii) (No-overlap): 1 2, if 1 2.

iii) (Contingent): 1 2, if 1 2.

iv) (In-overlap): 1 2, if 1 2 1 2.

v) (Overlap): 1 2 , if 1 2 1 2 2
 1.

2) Operations:

i) (Union):

 1 2 , 1 1 2 2-, if 1 2 1 2; •
 2, if 1 2;

 3 , 1 2-, if 1 2.

ii) (Intersection):

 1 2 ∅, if 1 2 1 2; •
 1, if 1 2;

 3 , 2 1-, if 1 2.

iii) (Complement) :

 , - •
 , - − , -
 , -,
where 𝑃 , -.

iv) − (Difference) :

i. 1 2 (No-overlap): 1 − 2 1.

ii. 1 2 (Contingent): 1 − 2 1.

iii. 1 2 (In-overlap):

 1 2 − 1 , 2 , 1 1- 2- − , 1 1- •
 , 2 2- 2.

iv. 1 2 (Overlap): 1 3 − 3 2 , 1 , 3 1- 1- −
, 2 , 2 3- 2- , 1 3-, where 3 1 2.

[Definition 14] (Functions for Intervals)

Interval functions are defined as follows:

1) 𝑔 (𝑇) 𝑡 if 𝑇 ,𝑡 𝑡 -.
2) (𝑇) 𝑡 if 𝑇 ,𝑡 𝑡 -.
3) 𝑔𝑡 (𝑇) 𝑡 − 𝑡 if 𝑇 ,𝑡 𝑡 -.
4) 𝑤 𝑟() 𝑔 if 𝑇 ,𝑔 𝑔 -.
5) 𝑢 𝑟() 𝑔 if 𝑇 ,𝑔 𝑔 -.

[Proposition 3] (GT Relations and Operations)

1) Base case: 𝑃 , -, where .

i) Relations: 𝑃 𝑃

ii) Functions:

i. (Union): 𝑃 𝑃 𝑃

ii. (Intersection): 𝑃 𝑃 𝑃

iii. (Complement):

 𝑃 ,𝑠 𝑠 - − , -

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 213

 ,𝑠 𝑠 -, where 𝑃 𝑆.

iv. − (Difference) : 𝑃 − 𝑃 , - ∅

2) Induction case (Parallel (𝑃||𝑄)):

 𝑃||𝑄 , -||, - , -
, -

i) Relations: 𝑃 𝑄 ⋁ 𝑃 𝑄

ii) Functions:

i. (Union): 𝑃 𝑄 , - , -
ii. (Intersection): 𝑃 𝑄 ∅

iii. − (Difference) : 𝑃 − 𝑄 𝑃

3) Induction case (Inclusion (𝑃,𝑄-)): 𝑃,𝑄-
, , - - , -

i) Relations: 𝑄 𝑃

ii) Functions:

i. (Union): 𝑃,𝑄- 𝑄 𝑃

ii. (Intersection): 𝑃,𝑄- 𝑄 𝑄

iii. − (Difference) : 𝑃,𝑄- − 𝑄 𝑃

4) Induction case (Inclusion (𝑄,𝑃-)): Similar to Case 3).

(Proof):

By Def. 13.

[Definition 15] (GTS (Geo-Temporal Space))

GTS is defined as 𝑆 〈 𝑇〉 , where ,𝑔 𝑔 - ,

𝑇 ,𝑡 𝑡 -. It implies that GTS is the composition of the

geo-space G of the size ,𝑔 𝑔 -, where 𝑔 𝑔 , and the

temporal space of T of the size ,𝑡 𝑡 -, where 𝑡 𝑡 .

[Definition 16] (GTS Block)

Any GTS can be defined as a GTS Block (GTSB).

[Definition 17] (Types of Blocks in GTS)

There are 4 types of blocks in GTS as follows:

1) System block (SB): This is the GTS block to represent a

system in δ-Calculus. It consists of process blocks and

their interactions in GTS.

2) Process block (PB): This is the GTS block to represent a

process in a system. It consists of actions or interacts.

3) Action block (AB): This is the GTS block to represent an

action in a process. An action can interact synchronously

with another action in another process for

communication and movements.

4) Interaction block (IB): This is the GTS block to

represent a synchronous interaction between a process

and another process.

[Definition 18] (Relations/Operations for Block)

The block relations an operations are defined as follows for

 1 〈 1 𝑇1〉 〈[𝑔 1 𝑔 1] [𝑡 1 𝑡 1]〉 and 2

〈 2 𝑇2〉 〈[𝑔 2 𝑔 2] [𝑡 2 𝑡 2]〉:

1) Relations:

i) (Equal): 1 2, if 1 2 𝑇1 𝑇2.

ii) (No-overlap): 1 2, if 1 2 𝑇1 𝑇2.

iii) (Geo-Contingent): 1 2, if 1 2 𝑇1 𝑇2.

iv) (In-overlap): 1 2, if 1 2 𝑇1 𝑇2.

v) (Overlap): 1 2, if 1 2 𝑇1 𝑇2.

2) Operations:

i) (Union):

 1 2 ∅, if 1 2 1 2; •
 2, if 1 2;

 3 〈 2 𝑇3〉 if 1 2,

where 𝑇3 𝑇1 𝑇2.

ii) (Intersection):

 1 2 ∅, if 1 2 1 2; •
 1, if 1 2;

 3 〈 1 𝑇3〉 if 1 2,

where 𝑇3 𝑇1 𝑇2
iii) − (Difference) :

i. 1 2 (No-overlap): 1 − 2 1

ii. 1 2 (Contingent): 1 − 2 1

iii. 1 2 (In-overlap): No possible by the definition

of GTS Block.

iv. (Overlap): Not possible by the definition of GTS

Block.

[Definition 19]] (GTS Sub-Block)

For 1 〈 1 𝑇1〉 and 2 〈 2 𝑇2〉, 1 is a sub-block of

 2 if 1 2.

[Definition 20] (Functions for Blocks)

1) General

id(B), name(B), time(B), geo(B): Return the •
identifier, name, time interval and the geo interval
of Block B, respectively.

2) System Block:

process(S), process(S,t), process(S,T), •
process(S,G) : Return a set of processes in System
Block S, at the time t, at the time interval T, and in
the geo interval, respectively.

3) Process Block:

action(P), action(P,t), action(P,T) : Return a set of •
actions in Process Block P, at the time t, and in the
time interval, respectively.
parent(P), child(P), ancestor(P), descendent(P), •
system(P): Return the parent, child, ancestor,
descendent process(es), and the system process
block of Process Block P.

4) Action Block:

i) type(A) : Returns the type of Action Block, i.e., .
ii) process(A), system(A): Return the owner process and

the system block of Action Block A.

iii) Precedence:

next(A), previous(A), alternative: Return the next, •
previous and the alternative action block of Action
Block A.

5) Interaction Block:

i) type(I) : Returns the type of Interaction Block A, i.e.,

 .
ii) mode(I) : Returns the mode of Interaction Block A, i.e.,

Synch, Asynch.

6) Movement Interaction Block:

i) type(δ) : Returns the type of Interaction Block A, i.e.,

Active, Passive.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 214

ii) mode(I) : Returns the mode of Interaction Block A, i.e.,

Synch, Asynch.

[Definition 21] (Block Set Relations/Operations)

Block Set Relations and Operations are defined as follows

for 1 { 1 1 1 } 2 { 2 1 2 }:

1) Relations:

2) Operations: , −

[Notation 1] (‘.’ Infix Notation for Inclusion)

For simplicity, the following notations will be used to

indicate each type of entities in δ-Calculus based on

inclusion relations:

1) System: 𝑆
2) Process: 𝑆 . 𝑃

3) Action: 𝑆 . 𝑃 .

4) Interaction: 𝑆 . 〈𝑃 1. 1 𝑃 2 2〉

There are a number of propositions that are restricted by the

syntax and semantic rules of δ-Calculus.

[Proposition 4] (Syntax Restrictions)

1) All 𝑃, ∅.

2) If 𝑃||𝑄, 𝑔 (𝑃) 𝑔 (𝑄) 𝑡 (𝑃) 𝑡 (𝑃).
3) If 𝑃,𝑄-, 𝑄 𝑃.

(Proof):

1) Actions in P cannot be overlapped in any space in any

time.

2) If P || Q, there is no overlap in space, but in time.

3) If P[Q], there is an overlap of Q over P in space during a

period of time.

[Proposition 5] Semantic Restrictions

1) τ : Communication:

i) If 〈𝑃. 𝑄. 〉 and 𝑃 𝑄 , then 𝑘()
〈 𝑇〉

⟨[𝑤 𝑟(𝑘()) 𝑢 𝑟(𝑘())]

𝑡 () 𝑡 ()⟩

⟨[𝑤 𝑟(𝑘()) 𝑢 𝑟(𝑘())]

𝑡 () 𝑡 ()⟩

2) δ : movements

i) If 𝑡 〈𝑃. 𝑄 𝑄. 𝑃 〉 and 𝑃 𝑄 , then

 𝑘(𝑡) 〈 𝑇〉

⟨[𝑤 𝑟(𝑘(𝑄)) 𝑢 𝑟(𝑘(𝑃))]

𝑡 (𝑄) 𝑡 (𝑃)⟩

 𝑘 . 𝑟 𝑠𝑠(𝑘(𝑄))/

 𝑘 . 𝑟 𝑠𝑠(𝑘(𝑄))/

 𝑟 𝑠𝑠 . 𝑥𝑡(𝑘(𝑄))/

 𝑟 𝑠𝑠 . 𝑥𝑡(𝑘(𝑄))/

 𝑟 𝑠𝑠 . 𝑥𝑡(𝑘(𝑄))/

ii) If 〈𝑃. 𝑄 𝑔 𝑡 𝑄. 𝑔 𝑡 𝑃〉 and 𝑃 𝑄 , then

 𝑘() 〈 𝑇〉

⟨, 𝑤 𝑟(𝑘(𝑄 𝑔 𝑡)) 𝑢 𝑟(𝑘(𝑔 𝑡 𝑃))-
𝑡 (𝑄 𝑔 𝑡) 𝑡 (𝑔 𝑡 𝑃)⟩

 𝑘 . 𝑟 𝑠𝑠(𝑘(𝑄 𝑔 𝑡))/

 𝑘 . 𝑟 𝑠𝑠(𝑘(𝑔 𝑡 𝑃))/

 𝑟 𝑠𝑠 . 𝑥𝑡(𝑘(𝑄 𝑔 𝑡))/

 𝑟 𝑠𝑠 . 𝑥𝑡(𝑘(𝑔 𝑡 𝑃))/

 𝑟 𝑠𝑠 . 𝑥𝑡(𝑘(𝑄 𝑔 𝑡))/

iii) If 𝑡 𝑡 〈𝑃. 𝑢𝑡 𝑄 𝑄. 𝑃 𝑢𝑡〉 and 𝑃 𝑄 , then

 𝑘(𝑡 𝑡) 〈 𝑇〉

⟨, 𝑤 𝑟(𝑘(𝑢𝑡 𝑄)) 𝑢 𝑟(𝑘(𝑃 𝑢𝑡))-
𝑡 (𝑢𝑡 𝑄) 𝑡 (𝑃 𝑢𝑡)⟩

 𝑘 . 𝑟 𝑠𝑠(𝑘(𝑢𝑡 𝑄))/

 𝑘 . 𝑟 𝑠𝑠(𝑘(𝑃 𝑢𝑡))/

 𝑟 𝑠𝑠 . 𝑥𝑡(𝑘(𝑢𝑡 𝑄))/

 𝑟 𝑠𝑠 . 𝑥𝑡(𝑘(𝑃 𝑢𝑡))/

iv) If 𝑡 〈𝑃. 𝑄 𝑢𝑡 𝑄. 𝑢𝑡 𝑃〉 and 𝑃 𝑄 , then

 𝑘(𝑡) 〈 𝑇〉

 ⟨, 𝑤 𝑟(𝑘(𝑄 𝑢𝑡)) 𝑢 𝑟(𝑘(𝑢𝑡 𝑃))-
𝑡 (𝑄 𝑢𝑡) 𝑡 (𝑢𝑡 𝑃)⟩

 𝑘 . 𝑟 𝑠𝑠(𝑘(𝑄 𝑢𝑡))/

 𝑘 . 𝑟 𝑠𝑠(𝑘(𝑢𝑡 𝑃))/

 𝑟 𝑠𝑠 . 𝑥𝑡(𝑘(𝑄 𝑢𝑡))/

 𝑟 𝑠𝑠 . 𝑥𝑡(𝑘(𝑢𝑡 𝑃))/

3) ρ : process control (Omitted Intentionally).

(Proof):

1) For communication (τ), Q and P must be in the same

time period.

2) For movements (δ),

For active in movement, Q and P must be in the •

same space at the same time period.

For active out movement, Q must be in P or P must •

be in Q at the same time period.

For passive in movement, Q and P must be in the •

same space at the same time period.

For passive out movement, Q must be in P or P •

must be in Q at the same time period.

3) For control,

For terminate, suspend and wake, Q must be in P or •

P must be in Q at the same time period.

In δ-Calculus, a system S can be represented as a tuple

that consists of a set of processes, a set of inclusion

relations among processes and a global clock, where each

process consists of a sequence of timed actions and a

local clock.

[Example 4] GTS Diagram for PBC Example

A GTS diagram for PBC example is shown in Fig. 3. It is

generated from simulating the left-most path from the

execution model from Fig. 2, which is the case for the 1

communication.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 215

Fig. 3 GTS Diagram for PBC Example

B. GTS Logic

A) Syntax

GTS Logic is a first-order logic that deals with relationships

among blocks in GTS.

[Definition 22] (Alphabet for GTS Logic)

1) Logical symbols:

i) Quantitative symbols:

ii) Logical connectives: →

iii) Parenthesis, brackets, other punctuation symbols.

iv) An infinite set of variables: x, y, z

v) An equality symbol:

2) Non-logical symbols

i) Predicate symbols: 𝑃 𝑄 𝑅 (𝑃
)

ii) Function symbols: 𝑔 (
)

iii) Constants:
i. Integer: 0, 1, 2, …

ii. String: ―a‖, ―aa‖, …, ―abc‖, … .

[Definition 23] (Formulation Rules for GTS Logic)

1) Terms: Inductively defined by the following rules:

i) Variables: Any variable is a term, such as, x, y, z.

ii) Functions: Any expression (𝑡1 𝑡) of

n-arguments is a term and f is a function symbol of

valence n is a term.

2) Formulas: Inductively defined by the following rules:

i) Predicate symbols: It P is an n-ary predicate symbol

and 𝑡1 𝑡 are terms, then 𝑃(𝑡1 𝑡) is a formula.

ii) Equality: If 𝑡1 𝑡2 are terms, then 𝑡1 𝑡2 is a term.

iii) Negation: If is a formula, then is a formula.

iv) Binary connectives: If , are formulas, then

is a formula, where can be → or .

v) Quantifier: If is a formula and 𝑥 is a variable, then

 () () are formulas.

B) Predicates

[Definition 24] (Predicates for GTS Logic)

There are a number of predicates for GTS Logic as follows:

1) Membership: 𝑥. 𝑟(𝑥)
2) Block Relation: 𝑥. 𝑅 𝑡 (𝑥)

i) Process: 𝑥. 𝑃𝑟 𝑠𝑠(𝑆 𝑥)
ii) Action: 𝑥. 𝑡 (𝑃 𝑥)
iii) Interaction: 𝑥. 𝑡 𝑟 𝑡 (𝑆 𝑥) ;

 𝑥. 𝑡 𝑟 𝑡 (𝑃 𝑥); 𝑥. 𝑡 𝑟 𝑡 (𝑥)
3) Precedency Relation: 𝑟. Relation(𝑟)

i) Process: 𝑥. 𝑅 𝑡 (𝑃 𝑄 𝑥)
: parallel; choice; parent; child; anc; desc

ii) Actions: 𝑥. 𝑅 𝑡 (𝑥)

: next; previous; alternative; interaction

iii) Interaction: 𝑥. 𝑡 𝑟 𝑡 (𝑥)

: communication, movement, control

iv) Interaction: 𝑥. 𝑣 𝑡(𝑥)

: active-in, passive-in, active-out, passive-Out.

C) Secure Property

[Definition 25] (Security Property)

Security is defined as the property that a system is free from

unauthorized access.

[Definition 26] (Safety Property)

Safety is defined as the property that a system is free from

unexpected behavior.

[Definition 27] (Secure System)

A system with security and safety properties is defined as a

secure system.

D) Verifiability

[Proposition 6] Verification for Secure System

GTS Logic can be used to verify secure system.

(Proof):

All the secure requirements of a system can be represented

with GTS Logic formulas, which can be proved to be true or

false.

[Example 5] Interactions in PBC Example

There are two sets of interaction from the execution model

of the PBC example in Fig. 2, as follows:

1) Communication (τ):

i) 1 (𝑃. 𝑃 (𝑆 𝑅1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) . 𝑃 (𝑆 𝑅1)) in 𝑇1.

ii) 2 (𝑃. 𝑃 (𝑆 𝑅2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) . 𝑃 (𝑆 𝑅2)) in 𝑇6.

2) Movements(δ):

i) 1 1 (𝑃. 𝑢𝑡 𝑅 𝑅 . 𝑃 𝑢𝑡) in 𝑇2 and 𝑇8.

ii) 1 2 (𝑃. 𝑢𝑡 𝑅 𝑅 . 𝑃 𝑢𝑡) in 𝑇3 and 𝑇7.

iii) 2 1 (. 𝑔 𝑡 𝑅 𝑅 . 𝑔 𝑡) in 𝑇4 and 𝑇1 .

iv) 2 2 (. 𝑔 𝑡 𝑅 𝑅 . 𝑔 𝑡) in 𝑇5 and 𝑇9.

v) 3 1 (. 𝑢𝑡 𝑅 𝑅 . 𝑢𝑡) in 𝑇11.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 216

vi) 3 2 (. 𝑢𝑡 𝑅 𝑅 . 𝑢𝑡) in 𝑇12.

vii) 4 1 (. 𝑔 𝑡 𝑅 𝑅 . 𝑔 𝑡) in 𝑇13.

viii) 4 2 (. 𝑔 𝑡 𝑅 𝑅 . 𝑔 𝑡) in 𝑇14.

[Example 6] (Requirements for PBC Example)

There is a list of safety requirements for the PBC example

as follows:

1) 𝑅 1 → (1 2) , * +-

After 1, 𝑅 must move ahead of 𝑅 all the time. •

2) 𝑅 2 → . (2 2) 𝑘

 (1 2)/ , * + * +-

After 2, 𝑅 must move ahead of 𝑅 out of P and •
in of B, and 𝑅 must move ahead of 𝑅 afterward,
all the way to C.

3) 𝑅 1 2 → (1 2) , * +-

After 1 or 2, once both 𝑅 and 𝑅 move to B, 𝑅 •
must move ahead of 𝑅 afterward, all the way to C.

Notice that 𝑅 is derived from 𝑅 and 𝑅 .

[Example 7] (Verification of Requirements)

All the requirements in Example 6 are satisfied for the first

normal case of the 1 communication, shown in Example 5

with Fig. 3. It is clear that the requirements are satisfied for

the second normal case of the 2 communication, shown in

the right-most path of the execution model for the PBC

example, shown in Fig. 2. The other two abnormal cases are

not applicable. Therefore it can be concluded that the

requirements for the example are satisfied for all the cases

of the execution.

IV. IMPLEMENTATION

A. SAVE Tool

A tool, called SAVE (Specification, Analysis, Verification

Environment), for δ-calculus has been developed on ADOxx

[5], as shown in Fig. 2. It consists of four basic components as

follows:

1) Modeler: It provides capability to specify System and

Process Views.

2) EM Generator: It generates an execution model, in

Execution Tree (ET), for the views and makes each path

of the model to be selected for simulation.

3) Simulator: It generates a model for the selected

simulation, in a GTS diagram.

4) Verifier: It verifies the secure requirements of the

system by model-checking on the diagrams.

The graphical representations of the models in SAVE are

designed by the ADOxx Development Tool, and the procedures

of its components are built from the ADOxx libraries. The

detailed logics of the procedures are programmed in the

ADOScript language. ADOxx provides three layers to

implement mechanisms and algorithms for SAVE:

1) First layer: The pre-defined functionality, a basic set of

features most commonly used by modeling tools.

2) Second Layer: Approximately 400 APIs for the

generation of objects, editing of their properties, etc.

3) Third layer: Ways of interaction to outside of ADOxx.

The simple interaction is by exporting and importing

XML files.

SAVE uses the functionalities of the first layer to implement

the graphical elements and attributes of the graphic models, and

it uses those of the second layer to implement Modeler, EM

Generator, Simulator and Verifier.

B. Example

The PBC example from the previous sections are

demonstrated in SAVE. The source code for the example is

shown in Fig. 1.

1) System View

The system view for the PBC example is shown in Fig. 4. As

stated, there are five processes running, namely, P, B, C, R1 and

R2, in parallel. Notice that R1 and R2 are running in P.

2) Process View

The process views for the PBC example are shown in Fig. 5. As

stated, each process view specifies visually the detailed

operational requirements of the individual process in the PBC

example.

3) Execution View

The execution view of the PBC example is shown in Fig. 6. It

shows four possible execution cases: two for normal

termination and two for abnormal termination. The cases for

normal termination are the ones for safe communication based

on synchronization between P and B: Send R1 and Send R2.

The cases for abnormal termination are the ones for unsafe

communication, that is, deadlock, based on unexpected

synchronization between P and B: Send R1 for Send R2, and

Send R2 for Send R1.

4) Simulation View

In order to generate the simulation view for each execution case,

the execution path can be selected from the dialog box from the

execution view, as shown in Fig. 6. Once the path is selected,

the processes from the process view are simulated under the

condition for the selected path. Fig. 7 shows the simulation

view for the first normal case shown as the right-most path in

the execution view.

5) Verification View

The verification view for the simulation view in Fig. 7 is shown

in Fig. 8. This is a result of verification for the validity of safety

requirements for the PBC example. As stated, there are a

number of dependencies and restrictions that the PBC example

must follow. For example, the movement of R1 must be

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 217

performed after the communication between P and B, and the

movement of R1 must be ahead of the movement of R2.

Fig. 4 System View for PBC Example in SAVE

Fig. 5 Process View for PBC Example in SAVE

Fig. 6 Execution View for PBC Example

Fig. 7 Simulation View for a Path from Execution

Fig. 8 Verification View for Simulation View

In the figure, the resources R1 and R2 are passed to B by P in

order after communicating with B to determine which resource

to be passed first. If R1 is determined to be passed first (
1), R1

must be passed first to B by P (1,1 for R1), followed by R2

being passed to B by P next (1,2 for R2). And R1 and R2 must

be passed to C by B, in that order, that is, 3,1 (for R1) is

followed by 3,2 (for R2). This is one of the requirements, that

is, 1 1,2 1,2 3,1 3,2        in GTS Logic, which is visually

specified in Fig. 8 with the icons for the  and  dependency

relations. If the requirements are satisfied, they are colored in

blue. If not, in red. In the figure, the requirement is known to be

satisfied, since its color is determined to be blue after verifying

all the requirements to be true.

V. CONCLUSION

This paper presented a dual method to specify and verify IoT

systems. There were three basic phases of the approach: 1)

specifications of both dynamic properties, such as, operational

requirements, in δ-Calculus and the static properties, such as,

safety requirements, in GTS Logic, 2) and the execution model

and simulations, and 3) verifications. The method was realized

in a visual environment, namely SAVE, and its efficiency and

effectiveness were demonstrated with the PBC example on

SAVE. Five views were provided in SAVE to show the

consistency of the methods for visualization: System, Process,

Execution, Simulation and Verification Views. It can be

considered to be one of the most innovative dual methods and

tools to model IoT systems in terms of specification and

verification.

Future research will include the application of the real

industrial examples to demonstrate the feasibility of the method

on SAVE. For example, SAVE must have capability to handle

modularization and scalability of extensive size of the

execution models, similar to the EMS example showed in Fig.

14 [6]. The example handles more than 17,000 execution paths

in the model.

ACKNOWLEDGMENT

This work was supported by Basic Science Research Programs

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 218

through the National Research Foundation of Korea (NRF)

funded by the Ministry of Education (2010-0023787), and the

MISP (Ministry of Science, ICT and Future Planning), Korea,

under the ITRC (Information Technology Research Center)

support program (IITP-2016-H85011610120001002)

supervised by the IITP (Institute for Information &

communications Technology Promotion), and Space Core

Technology Development Program through the NRF (National

Research Foundation of Korea) funded by the Ministry of

Science, ICT and Future Planning

(NRF-2014M1A3A3A02034792), and Basic Science Research

Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Education

(NRF-2015R1D1A3A01019282).

REFERENCES

[1] Rajeev Alur, Emery Berger, Ann W.Drobnis, Limor Fix, Kevin Fu,

Gregory D.Hager, Daniel Lopresti, Klara Nahrstedt, Elizabeth Mynnat,

Shwetak Patel, Jennifer Rexford, Jhon A.Stankovic, and Benjamin Zorn,

Systems Computing Challenges in the Internet of Things, A white paper
prepared for the Computing Community Consortium, 2015.

[2] A. Whitmore , A. Agarwal and Li Da Xu, The Internet of Things – A

survey of topics and trends, Information Systems Frontiers, vol 17, issue 2,
pp 261-274, Springer, April 2015.

[3] Y. Choe and M. Lee,  -Calculus: Process Algebra to Model Secure

Movements of Distributed Mobile Processes in Real-Time Business

Application, 23rd European Conference on Information Systems, 2015.
[4] Y. Choe, W. Choi, G. Jeon and M. Lee, A Tool for Visual Specification

and Verification for Secure Process Movements, eChallenges e-2015,

November 2015.
[5] H. Fill and D. Karagiannis, On the Conceptualisation of Modeling

Methods Using the ADOxx Meta Modeling Platform, Enterprise
Modeling and Information Systems Architectures 8(1), pp.4-25, 2013.

[6] W. Choi, Y. Choe and M. Lee, A Reduction Method for Process and

System Complexity with Conjunctive and Complement Choices in a

Process Algebra, IEEE 39th Annual International Computer, Software &

Applications Conference, 2015.

Sunghyeon Lee
Received Bachelor Degree of Engineering in Industrial and

Information Systems Engineering from Chonbuk National

University, Republic of Korea, February 2015. Currently

working for Master Degree of Division of Electronics and

Information Engineering at Chonbuk National University,

Korea.

Yeongbok Choe
Received Bachelor and Master Degrees of Computer Science

and Engineering from Chonbuk National University, Republic

of Korea, in 2013 and 2015, respectively. Currently working

for PhD Degree of Computer Science and Engineering at

Chonbuk National University.

Moonkun Lee
Received Bachelor Degree of Computer Science from

Pennsylvania State University, USA, in 1989, Master and PhD

Degrees from The University of Pennsylvania, USA, in 1992

and 1995, respectively. Developed SRE (SW

Re/reverse-engineering Environemnt) at CCCC, USA, between

1992 and 1996 as Computer Scientist. Currently Professor at

Chonbuk National University, Republic of Korea, since 1996.

Research areas include formal methods, SW

re/reverse-engineering, real-time systems, operating systems,

formal languages, parallel equational languages, compilers, etc.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 219

