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Magnetohydrodynamic convection of Cu-water
nanofluid in a square cavity with a circular cylinder

Canan Bozkaya

Abstract—The hydromagnetic free convection of a Cu-water There are many works on the numerical solution of the
nanofluid in a square cavity involving an adiabatic circular cylindefiatural convection in a nanofluid filled cavity under the
is numerically investigated in the presence of an inclined un'formfluence of an externally applied magnetic field with different

magnetic field. The left and right walls of the cavity are kept o .
constant hot and cold temperatures, respectively, while the horizoiﬁ%‘?rmal boundary conditions. Ghasemi et al. [1] and Teamah et

walls are assumed to be adiabatic. The coupled nonlinear equatighs[2] have investigated the effect of the horizontal magnetic
of mass, momentum and energy governing the present probléield on heat transfer in a square enclosure by using control

are discretized using the dual reciprocity boundary element methgglume (CV) based on Patankar's SIMPLE algorithm. A
which is a boundary only nature technique treating the no”"neﬁpmerical solution to magnetohydrodynamic (MHD) natural

terms by the use of radial basis functions. The flow and therma tion flow i itv b ing Lattice Bolt
fields are analyzed through streamline, isotherm, and average Nuggg[ivection Tlow in a square cavity by using Lattice Boltzmann

number plots for a wide range of controlling parameters, such B¥thod (LBM) has been analyzed in the works [3], [4]
Rayleigh and Hartmann numbers, the nanoparticle volume fractionder different thermal wall conditions. They found that heat
and the inclination angle of the magnetic field. The results reveghnsfer enhancement with the growth of solid volume fraction
that heat transfer and fluid flow are strongly affected by the presenggneands on Hartmann and Rayleigh numbers. Rahman et al.
of the circular cylinder and the inclined magnetic field. . . , .
[5] have studied Buongiorno’s model for hydrodynamic free
Keywords—MHD, natural convection, nanofluids, DRBEM. convection flow in a triangular cavity filled with nanofluid by
Galerkin weighted residual finite element method (FEM). The
results showed that the heat transfer rate can be decreased
|. INTRODUCTION with increasing Hartmann number but it can be increased

ONVECTION flow and heat transfer in enclosures ha\}%y increasing Rfayleigh number a_nd by reducing the diameter
been investigated by many researchers due to th(c_g{rthe nanoparticles. Tezer-Sezgin et al. [6] have solved the

. . ; . o natural convection nanofluid flow in a square enclosure in
importance in many engineering applications such as nu- q

clear reactors, design of solar collectors, thermal design f slernc? ?f {ij}[n 'Sdlzgdrma?nrﬁt'ﬁtf'rﬂdtﬁséng gﬁg;&M _?r?d
buildings, lakes and reservoirs, air conditioning and cooli ugrori(;pnzct:icy n;nuoflu?dy nea?urael c nse ctJi Sn(ﬂ W has). b en
of electronic devices, food processing, crystal growth a 9 onvection 1o ce

coating solidification. The fluids with small sized nanoparticlﬁrther solved numerically in different geometries. Ghasemi
i

suspended in them are called nanofluids. Due to small s Lhave studied the natural convection in Bhshaped en-

and large specific surface areas of the nanoparticles, nanofl |<5:mur|e t{"f%mtglﬁgfgu'? W:}Phrt:e_rlﬁ]se ofbco:'l\}rczjl t\;]oIE[thr;]e
have superior properties like long-term stability, homogenei prmuiatio aigo - 'hey observed that the

eat transfer rate increases as Rayleigh number increases while

and especially high thermal conductivity when compared .
conventional base fluids such as water and ethylene glyéwecregseg for hlghe_r values of Hartmann _nur_nber. Th_e nz_itural
%nvectlon in an inclined.-shaped nanofluid filled cavity in

. . C

Thus, recently nanofluids have been extensively analyzed ] L L

the heat transfer applications due to their potential in tiﬁge presence of inclined magnetic field has been solved by the
1

enhancement of heat transfer with minimum pressure dr ]'te %lff[ire'nce n;tethod (II:[zJMtZ] '? the V\(’jork hOf Elsheh?pe¥h
When the fluid is electrically conducting and the fluid flow i% » and their results reveaied that a good enhancement In the

due to convection under the influence of a magnetic field, t gat transer rate is obtained by adding cooper nanoparticles

fluid experiences a Lorentz force. This force affects the het tthe base fluid. Bondareva et al. [9] have also used FDM

transfer rate and reduces the velocity of the fluid particl r the solution of MHD natural convection in an inclined

which is the well-known retarding effect of magnetic field o avy porous cavity filled with a nanofluid to investigate

the convective flow. The free convection is under the effect g}e effects of Hartmann number, inclination angles of the

P o ; ity on the heat transfer and fluid flow. Sheikholeslami
a magnetic field in many applications such as fusion react§f". . . o
9 y app et’ al. [10] have investigated the heat transfer characteristics

thermal insulation systems, crystal growth and metal casting. . .
y y g unsteady nanofluid flow between parallel plates by using

Therefore, considering a combined effect of magnetic fie : . )
9 9 |{ferent|al transformation method. It is found that Nusselt

and addition of nanoparticles becomes crucial in the study : . :
convection flow of an electrically conducting fluid to contro[;um.ber Increase W'th Hartmann, Eckert and Schmidt numbers
ut it decreases with augment of squeeze number.

the heat transfer and fluid flow characteristics. : . .
In this study our focus is on the MHD natural convection
C. Bozkaya is with the Department of Mathematics, Middle East Technicgpw n .nanoﬂmd filled enclosures W'th a detached body pIaged
University, 06800, Ankara, Turkey e-mail: bcanan@metu.edu.tr inside it. The thermal boundary conditions, the shape, location
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and size of the body is of great interest in heat transfer Y
applications. In fact, the presence of a solid body has a direct
effect on the fluid flow and hence on the heat transfer. There adiabatic / Bo
have been studies considering the combined effect of the mag- -
netic field and internal solid bodies on the nanofluid natural

convection flow in cavities by using domain decomposition T, J
techniques such as FEM, FVM and LBM. Aminossadati [11] 9
have analyzed the cooling of a right triangular heat source in a
triangular cavity under the influence of a horizontal magnetic
field using CV formulation. The heat transfer enhancement of
nanofluid filled square cavity with a circular disk have been
investigated by Kobra et al. [12] with FEM. Selimefendigil and z
Ozturk [13] have worked on the impact of different shaped ¢

obstacles on the natural convection and entropy generat;L_q& 1
of nanofluid filled cavity with inclined magnetic field. They
employed Galerkin weighted residual FEM for the discretiza-
tion of the equations and it was found that the square sha gv

i | ity acts in the negativg-direction. The cavity is filled
bodies deteriorates the averaged heat transfer more than the - Newtonian Cu-water nanofiuid, and the flow generated

circular and diamond shape bodies compGared to the C§3&e the cavity is assumed to be steady, laminar and obeying
without obstacle at high Rayleigh numbe0®. Zhang and o poyssinesq approximation. The effects of joule heating,

Che [14] has developed a two-dimensional double multiplgyy,ceq magnetic field and viscous dissipation are neglected.
relaxation-time thermal LBM to simulate the MHD flow andrpe hage fiuid and the nanoparticles are assumed to be in
heat transfer of Cu—water.na.noﬂwds in an |ncl|_ned cavity Wit armal equilibrium and their thermo-physical properties are

four heat sources placed inside the cavity. Their results shOV\fsQen from Bansal et.al. [15].

that the average Nusselt number increases significantly WithThus, the steady governing equations of conservation of

the increase of nanoparticles volume fraction, but it decrea§ﬁ ss, momentum and energy in dimensionless form can be
in the presence of magnetic field at any Rayleigh number a\p\/étte’n as follows [1], [8], [12]:

inclination angles.

Geometry of the physical problem with boundary conditions.

We aim here to analyze numerically the natural convection Ou  Ov _ 0 L
flow and the heat transfer in a closed square cavity filled oxr Oy
with Cu-water nanofluid which involves an adiabatic circular
cylinder under the effect of an externally applied inclined u@ +,U@ — o + _Hni g2,
magnetic field. To the best of authors knowledge and based 9% 9y Ox — pprag )
on the above literature survey, no work has been reported +Ha?Prsin~y (vcosy — usiny)
on the dual reciprocity BEM solution, which reduces the
dimension of the problem by discretizing only the boundary u@ + U@ _ o 4 Mt g2, 4 RGPTMQ
of the problem, to the specified MHD natural convection O dy 5?/2 Pnfaf PnfPf
problem which may be encountered in the area of coating, +Ha"Prcos~y (usiny — vcosy) 3
food processing, cooling systems, nuclear and s_olar react.ors 50 50 N 520 9%
and many more. The present study focuses on incorporating Wy = 2ot ( ) (4)
this issue with the effect of controlling parameters including O Ay ap \0z*  Oy?
Rayleigh gnd_Ha_rtmann numbers, nanopart_icle_volume fractig defining the dimensionless parameters as
and the inclination angle of the magnetic field. The hea ~
transfer enhancement is also analyzed through average Nusselt ~z ¢ al ol pl?
number at various combination of aforementioned controlling *~ ¢* Y~ o0 “ 7 ay’ v ay’ b= puyat’
parameters along the hot left wall of the cavity both in the T_—T b v

f the i ircul lind 0= °  Ha= Byl nf o opp= 2L (5)
presence and absence of the inner circular cylinder. T, —1T, sy ay’
o 55T~ To)
1. MATHEMATICAL FORMULATION vioy

The schematic view of the problem of a two-dimensionalhere the overline in equation (5) indicates the quantities
square cavity of height with a circular cylinder of diameter are dimensional. The parametefs g, o, v and B, are
d placed at the center of the cavity is illustrated in Figurthe characteristic length, gravitational acceleration, electrical
1. The left and right walls are maintained at isothermal habnductivity, kinematic viscosity and the magnetic field inten-
Ty, and coldT, temperatures, respectively. On the horizontality, respectively. In equations (1)-(4), v, p and # denote
walls and on the cylinder surface adiabatic boundary condititime dimensionlessc- and y-velocity components, pressure
is assumed. A uniform inclined magnetic field of strengthnd temperature of the fluid, respectively. Héte, Ra and
By is applied forming an angles with the z-axis and the Ha represent, respectively, Prandtl, Rayleigh and Hartmann
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numbers. The thermo-physical properties of nanofluids are I1l. M ETHOD OF SOLUTION AND NUMERICAL
defined by the following formulas [15]: VERIFICATION
pnf =1 —=@)pr+dpp, ony=(1—@)os+ ¢op, The governing equations (8)-(10) subjected to the boundary

(0B)ns = (1 — &) (pB) s + 3(0B)ps  ns = kns/(0Cp)nss conditions (12) are discretized using the dual reciprocity
[if boundary element method, which aims to transform these

(PCp)ng = (1= 0)(pCp) s + ¢(pCp)p,  ting = (1— g5 equations into boundary only integral equations by means
(6) of a radial basis function approach. Equations (8)-(10) are

where ¢ is the nanoparticle volume fractiop,is the density, weighted with the fundamental solution of Laplace equation

« is the thermal diffusivity,C, is the specific heatp is u* = —1/2wInr by treating the terms on the right hand
the thermal expansion coefficient,is the effective dynamic side of these equations as inhomogeneity [16]. Thus, after the
viscosity,k is the thermal conductivity. The subscripts®,‘ ;'  application of divergence theorem, equations (8)-(10) take the

and ‘,’ refer to nanofluid, fluid and nanoparticle, respecnvel;f.orm

Finally, the thermal conductivity of the nanofluid is given as oS
ciSZ-—k/(q*S—u*—)dI‘: —/ bsu*dQ  (13)
kny = ky : : :
kp +2ks + ¢(ky — ky) where S is used for each unknowst, w and 6. Here, T is
The appropriate dimensionless boundary conditions coribe boundary of the computational domah ¢* = du*/on
sponding to the considered problem are and the constant; = 7;/2m with the internal angle); at the
At left wall: W=0=v=060=1 source point. The right hand side term_s in equauon; (8)-(10)
) are denoted byg and they are approximated by using poly-
At right wall: u=v=0,0=0 (7) "Momial type radial basis function linked with the particular
At horizontal walls: u=v=0,00/0n=0 solutions; to equationV2a,; = f] [16]. That |s these ap-

On the cylinder surface: u=v =0, 90/0n =0. proximation are given by ~ Z as, f; = Z as, Vi,
The system of equations (1)-(4) can be written in the stream

function ¢, vorticity w and temperature form as where as; are undetermined coefﬂmenté{ and L are the
5 number of boundary and interior nodes, respectively. Thus,
Vi =—w (®) equation (13) take the form
Pnf <2 Owdy  Ow Iy (0B)ns 00
_— =——— —— — RaPr——=— . L0S
pnfozfv YT o Jdy Oy Ox “ rpnfﬂf ox ¢iSi +/(q S—u %)dl“ =
2 2 2 r
—Hd?Pr ( sin2y oY + cos? va—w + sinQWa—d) N+L (14)
Oxdy Ox? oy? A wn ks
9) Z as, |citg + | (¢"0; —u*g;)dl
j=1 r
Anf g2 = or 9y _ T 99 (10) which contains only boundary integrals afd= 0u;/0n. By
af Or 0y Oy Ox discretizing the boundary with constant elements, the matrix-
by defining the stream function and the vorticityw as vector form of equation (14) can be expressed in a compact
N N 9 du way for each unknowns (= v, w, ), as
e W e a5
vooo ! Y _ HS - G22 — (HI — GO)F~'bs (15)
The corresponding boundary conditions for stream function on

and temperature become where the matrice$/ and Q) are constructed by taking each

At left wall: v=00=1 of the vectorsi; andg; as columns, respectively. The matrix
At right wall: W=0,0=0 12) F consists of fve;]ctorg“j oi(zizeéN + L) z;s colgrrt;ns. Ihe
. ) components of the matric&s and H are obtained by taking
At horizontal walls: ¥ =0,00/0n=0 the integral of the fundamental solutiart and its normal
On the cylinder surface: ) =0, 96/0n =0 derivative along each boundary elemerits, respectively.
and the unknown boundary conditions for the vorticity will bdhe final DRBEM equations (15) are coupled so that they
obtained from equation (8) by using a radial basis functici'e solved iteratively. In each iteration, the required space
approximation which is an advantage of DRBEM. derivatives of the unknowns, w and ¢, and also the un-
In order to determine the heat transfer enhancement in #gown vorticity boundary conditions are obtained by using
cavity, the local Nusselt numbe¥w based on the height of the coordinate matrix¥" [16].

the cavity is evaluated by [15] The present numerical algorithm is validated against the
a0 existing numerical results of [12], [17] for a two-dimensional
_ nf . . . . .
Nu = k: o ——|walt natural convection flow in a square cavity filled with Cu-

o water nanofluid. In this problem, the top and bottom walls
while the surface average Nusselt numbéu is obtained by are adiabatic while the left wall is heated and the right wall is
integrating its local value on the concerned surface. cold. Table | shows the values of the average Nusselt number
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along the hot wall of the cavity, which are computed witldecreases due to the retarding effect of magnetic field on
the present algorithm and are given in the works [12], [17fhe fluid flow, therefore, addition of nanoparticles results in
for various Grashof numbers and the solid volume fractiomeaker buoyancy driven circulations, which reduces the values
¢ = 0.04,0.2. The values ofNu in work of Khanafer [17] of stream function. By increase of the buoyant force via
are obtained from the correlation (23) in [17]. The obtaineidcreasingRa, the strength of) increases and the streamlines

results are in good agreement with those of [12], [17].

TABLE |
COMPARISON OF AVERAGENUSSELT NUMBER ON HOT WALL FOR THE
NATURAL CONVECTION FLOW IN CU-WATER FILLED SQUARE CAVITY.

& =0.04 6 =02
Gr Present Khanafer[17]| Present [17] Kobra[12]
103 2.0895 2.1182 2.7975 2.7645 2.5662
10 4.3542 4.3478 5.8641 5.6744 5.4050
105 9.1849 8.9243 12.121  11.647 10.667

IV. RESULTS AND DISCUSSION

In the present study, the numerical simulations with
DRBEM are performed for various combination of problem

parameters including Rayleigh number {16 Ra < 109),

Hartmann number (< Ha < 100) and the solid volume

fraction (0 < ¢ < 0.2) at fixed Prandtl numbePr = 6.2.

The computational domain is determined by taking the height
of the cavity/ = 1 and the diameter of the circular cylinder

become dense close to the vertical walls of the cavity forming
secondary eddies near the circular cylinderKat= 10°, 10°)

for each Ha(= 0,30,50). Moreover, the core vortex in
streamlines extends vertically d6a increase and it tends to
become diagonal and finally horizontal & increases. On
the other hand, with an increase Ru the free convection
dominates the flow and isotherms change their profiles from
being vertical to almost horizontal at the center of the cavity.
However, Hartmann number has an opposite influence on

(4 6

1.183
0.929

Ra =10°

Y Imax, f
W"max.nf

d = 0.2. The boundary of the square cavity and the inner cir-
cular cylinder are discretized by using 120 and 60-£N80) . 3 £
constant boundary elements, respectively. The choice of this S I
grid is based on the tests implying various grid sizes for the I =%
case whenRa = 10° and Ha = 50 are employed ap = 0.1, & §
d = 0.2 andvy = 0. The results are displayed in Figure 2 in =3
terms of|+|max and the average Nusselt numBér, along the
hot left wall. It is observed that the grid witN ~ 180 shows
little difference with the results obtained for finer grids. Thus,
the grid of N = 180 elements ensures grid independence and
hence is used in the subsequent computations. 58
D ot
ILs
g S 4y
N < if
23
25 * * *
2 58— 1= =)
56 160 léO 260 250 360 350 460
N
Fig. 2. Grid dependency wheRa = 105, Ha = 50, ¢ = 0.1, v = 0. = f «ﬁ
e
The effects of the Rayleigh number and the nanoparticle & i
volume fraction on the flow patterns and the temperature =

distribution are displayed for horizontally applied magnetic
field (v = 0) when Ha = 0, Ha = 30 and Ha = 50 in
Figures 3, 4 and 5, respectively. In these figures solid-lines

and dotted-lines represent the cases with nanofluie- (91)  Fig. 3. Streamlines and isotherms for nanofluid with= 0.1 (solid)
and with pure fluid (¢= 0), respectively. It is observed that inand water (dotted) at different Rayleigh numbefg: = 0, v = 0.

the absence of magnetic field (H=0), adding nanoparticles

leads to an increase in the magnitude of maximum streasotherms, that is, the isotherms tend to go from horizontal
function at Ra = 10%,10°,10%, while it decreases in the to vertical (especially akRa = 10°) indicating the suppression
conduction dominated case & = 103. However, in the of convective flows at higheffa. Moreover, following an
presence of magnetic field the strength of the stream functimcrease inRa, isotherms are condensed close to vertical
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walls, which results in a thermal boundary layer formation
along these walls afza = 10°,10° when Ha = 0,30 and
at Ra = 10° when Ha = 50. It is also observed from

= 0.051
= 0.029
-85

i
isotherms that at each Rayleigh number with the addition of W ' &
nanoparticles the thermal boundary layer along the vertical & : i
walls becomes thicker due to higher conductivity of nanofluid 3

than that of pure fluid. These results are compatible with the
ones given in [12].

Y
23
a2 aQ
g L <
L) ; s —
= 5 =%
I =% Q% § %
3
o % 2 g
Y w2
<+ N3 LA
= ]ﬁ = T
I <% I
iy S K
E if & E:
e 2=
38 e 5
S 3 o =
Loo w L"‘J — W OBEEE LS o Y S W e Y
— [I—
H *? “; 3 g” ........
g i =
E g 33 NS
33 == WiEmEmEmmTEEe I e
Fig. 5. Streamlines and isotherms for nanofluid with= 0.1 (solid)
5 and water (dotted) at different Rayleigh numbef&: = 50, v = 0.
£
Il
B Ha increases with an increase Ru. On the other handyu
%
@

increases adkia increases since the heat transfer is due to
convection, and the increase rate is higher in the absence of
magnetic field (Ha= 0).

Ra = 10°
1%l max, f = 18.115

16 15

Fig. 4. Streamlines and isotherms for nanofluid with= 0.1 (solid)
and water (dotted) at different Rayleigh numbef&: = 30, v = 0.

10

In Figure 6, the variation of average Nusselt number or”
the left hot wall with Hartmann and Rayleigh numbers are ®
shown for the nanofluid withpy = 0.1 when~y = 0. It
is observed that there is no difference Mu at different e ol - i
Hartmann numbers when the heat transfer is dominated by @) Ha ’ “(b) Ra’
conduction atRa = 10%, indicating thatHa has no significant rig. 6. Effects of (a) Hartmann number and (b) Rayleigh number on
effect on heat transfer. However, for higher valuesRaf Nu average Nusselt number @t= 0.1, v = 0.
decreases a#la increases since the magnetic field reduces
the flow and consequently the convective heat transfer isThe effect of solid volume fractiop on the average Nusselt

decreased. Furthermore, the rate of decreagérfor higher number at different values of Rayleigh number ane- 0 is

10°

ISSN: 1998-0140 336



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

displayed in Figure 7 (a}{a = 0, (b) Ha = 10, (¢) Ha = 30,

(d) Ha = 50. At eachHa, the average Nusselt number is an
increasing function of Rayleigh number for all values of solid
volume fraction since the heat transfer becomes dominatedi>
by the convection for higlRa. On the other hand, when the &
intensity of the magnetic field is low (Ha 80) the average
Nusselt number increases asincreases regardless of the
values ofRa, which indicates that the addition of nanoparticles
enhances the heat transfer rate inside the cavity. However,
the amount of increase iVu reduces asfa increases from

Ha = 0 to Ha = 10, and specifically atRe = 10* and E
Ra = 10° the solid volume fraction has no significant effect I 3j
on Nu following the suppression effect of magnetic field l,T i
on convective flow. On the other hand, whdfa > 30 = |2
the behavior of Nu with respect to¢ alters drastically at

Ra > 10°. That is, whenHa > 30 and Ra = 10°,10° an

increase in solid volume fraction results in a decreasé af

(and as a result in the reduction of heat transfer rate inside

the cavity) while it increases for lower values Bz and Ra.

0.073

Nu = 1.245

|1/"max,nf

max,nf — Y-
6:65

I

This result shows that the magnetic field of specific intensity %
plays a significant role in the heat transfer enhancement in the= gﬁ
enclosures filled with nanofluids of different volume fractions. F T Q
It is also observed that whefla = 30 the heat transfer is . |z ¢
higher for the pure fluid (¢= 0) when Ra = 10*. The reason 3

for this phenomena is that @a = 10* the buoyancy force
is not strong enough to resist the magnetic field with strength

Ha = 30, and hence an increase in the solid volume fraction
of nanofluid reduces the heat transfer rate. ‘
(@) Ha =0 (b) Ha = 10 o 3e
15 15 >~ aqj
—%—6 =0 = - “
—a—6=0.1 || I i Q
10 ol e—e=02 el ‘Z?‘g
5 5
ol s ol g - Fig. 8. Streamlines and isotherms for nanofluid with= 0.1 at
0 10 1 0 0 10 0 0 different inclination angles of magnetic field Ha = 30, Ra = 10°.
(C) Ha = 30 (d) Ha = 50
10 10f | —*—0=0
5 o o L the direction of the magnetic field has a significant effect
- e on the flow patterns. That is, the streamlines extends in the
- - direction of magnetic field whey = n/4,7/3 in eachRa.
4 . . .
! Furthermore, the core vortex of streamlines showing a vertical
z 2 extension around the circular cylinder when= 0, Ra = 103
ol = o tends to extend horizontally when increases tor/2. A

10 10°  Ra 10° 10° 10° 10* Ra 40 10°

similar behavior is also seen d@a = 10° with a small
Fig. 7. Variation of average Nusselt number with Rayleigh numbdlifference aty = 0 in which the core vortex in streamlines has
at different solid volume fractiong(= 0,0.1,0.2) wheny = 0: (&) been almost diagonal due to the stronger convective flow at
Ha =0, (b) Ha =10, (c) Ha = 30, (d) Ha = 50. Ra = 10°. The stream function increases a little in magnitude
as~ increases, but then its magnitude starts to decrease with
The variations of streamlines and isotherms with respefcirther increase iry. On the other hand, d@a = 10® when the
to the inclination angle of magnetic field for the nanofluidtheat transfer is due to mainly conduction there is no alteration
with ¢ = 0.1 at Ha = 30 are visualized in Figure 8 for in the isotherms and the values dfu as+ increases from
the conductive flow wherRa = 10% and in Figure 9 for the 0 to w/2. However at highRa = 10° as+ increases, little
convective flow whenRa = 10°, respectively. The averagevariations are observed in the isotherms, especially between
Nusselt number and the maximum magnitude of the stream= 0 andy = /2 following the changes inVu which
function are also displayed in the figures. It is evident th& an indicator for the heat transfer rate. It seems that the
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5.021

Nu = 3.233

"‘Mmax,nf

v

w/4
= 6.603

v =

Nu = 3.705

W’lmax.nf

y=mn/3
Nu = 3.653

[¥Imax,nf = 6-015

/2

v =

Nu = 3.392
[¥Imax,nf = 5-017

Fig. 9. Streamlines and isotherms for nanofluid with= 0.1 at
different inclination angles of magnetic field Ha = 30, Ra = 10°.

heat transfer is enhanced moreyat 7 /4, 7/3 compared to A | Ra — 10° (no cylinder)
the cases at = 0, 7/2 when the heat transfer is convection
dominated atRa = 10°.

The effect of the inner circular cylinder oN« along the o
hot wall of the cavity is also analyzed at various combination s 4t
of Hartmann and Rayleigh numbers. The variation /of.
with respect to Ha in the presence and in the absence

-0 Ra—10" (no cylinder)

<O+ Ra=10% (no cylinder)

Ra =10 (with cylinder)
—6— Ra — 10* (with cylinder)

—&— Ra — 10° (with cylinder)

of the inner circular cylinder is displayed in Figure 10 at 2B T

Ra = 10%,10%,10°. It is observed that the average Nusselt Al o e =8 |
number on the left wall increases when a circular cylinder

of diameterd = 0.2 is inserted inside the square cavity for 5 20 40 60 8 100

Ha

Ha < 50 when Ra = 10%,10°. On the other hand, at the
lowest Rayleigh numbefRa = 10° the presence of cylinder rig. 10. Variation of average Nusselt number along the hot wall of
has no effect onVu for each Ha since the heat transfer isthe cavity with and without circular cylinder gt= 0.

mainly driven by conduction. For higher valuesiét,. > 50 at

Ra = 10%,10%, Nu remains constant for both cases with and

without cylinder and afza = 10° it slightly increase with the of the magnetic field on the convective flow, and hence on the
insertion of cylinder. This is a result of the suppression effeconvective heat transfer at higha.
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V. CONCLUSION [10]

The natural convection flow in a square cavity filled with
Cu-water nanofluid in the presence of an inclined magnetic
field is numerically solved. It is observed that the dual recit!!
procity boundary element method is an effective technique for
the solution of MHD nanofluid natural convection in cavitie$L2]
with a circular cylinder, which is a rather complex problem
geometry. The obtained results reveal that the flow behavior
and the heat transfer enhancement are strongly influenced[13y
the presence of magnetic field and the insertion of nanopar-
ticles with various solid volume fractions to the fluid flow in
enclosures with circular cylinder. The Hartmann and Rayleigty]
numbers affect the fluid flow and the heat transfer in opposite
manner. That is, the flow strength and heat transfer rate
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on unsteady nanofluid flow and heat transfer using Buongiorno model,”
Journal of Magnetism and Magnetic Materials, vol. 416, pp. 164 — 173,
2016.

S. Aminossadati, “Hydromagnetic natural cooling of a triangular heat
source in a triangular cavity with water-CuO nanofluithternational
Communications in Heat and Mass Transfer, vol. 43, pp. 22 — 29, 2013.

F. Kobra, N. Quddus, and M. A. Alim, “Heat transfer enhancement of
Cu-water nanofluid filled in a square cavity with a circular disk under
a magnetic field,"Procedia Engineering, vol. 90, pp. 582 — 587, 2014,
10th International Conference on Mechanical Engineering, ICME 2013.
F. Selimefendigil and H. F. “Natural convection and entropy generation
of nanofluid filled cavity having different shaped obstacles under the
influence of magnetic field and internal heat generatidoyjnal of the
Taiwan Institute of Chemical Engineers, vol. 56, pp. 42 — 56, 2015.

T. Zhang and D. Che, “Double MRT thermal lattice boltzmann simu-
lation for MHD natural convection of nanofluids in an inclined cavity
with four square heat sourcesiternational Journal of Heat and Mass
Transfer, vol. 94, pp. 87 — 100, 2016.

increases as Rayleigh number increases, while they decred@s#ss. Bansal and D. Chatterjee, “Magneto-convective transport of nanofluid

for higher Hartmann numbers at a fixed solid volume fraction.
It is further shown that the effect of suspended nanoparticles
with various solid volume fractions depends strongly on tHe6]
values of Hartmann and Rayleigh numbers. The nanofluid
heat transfer rate increases with an increase in solid volupg
fraction in the case when the heat transfer is due to conduction
regardless of the values of Hartmann number. However, when
the heat transfer is dominated by convection via high Rayleigh
numbers, the heat transfer rate decreases as solid volume
fraction increases in the presence of magnetic field with high
intensity. Moreover, the direction of the magnetic field vary the
flow patterns significantly while the isotherms remains almost
same at various inclination angles of the magnetic field.
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