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Abstract—The paper is devoted to the construction and study of 

the additive average semi-discrete scheme for two nonlinear multi-

dimensional integro-differential equations of parabolic type. The 

studied equation is based on well-known Maxwell’s system arising in 

mathematical simulation of electromagnetic field penetration into a 

substance. Existence, uniqueness and long-time behavior of solutions 

of initial-boundary value problems for nonlinear systems of parabolic 

integro-differential equations are fixed too.  
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I. INTRODUCTION 

NTEGRO-differential models arise in many engineering and 

scientific disciplines as the mathematical modeling of 

systems and processes in the fields of physics, chemistry, 

aerodynamics, and so forth (see, for example, [7], [8], [13], 

[20] and references wherein). Such systems arise for instance 

for mathematical modeling of the process of penetrating of 

electromagnetic field in the substance. In a quasistationary 

case the corresponding system of Maxwell’s equations has the 

form [9]: 

),(= rotHrot
t

H
m




 (1) 

  ,=
2

rotH
t

c m






 (2) 

where ),,(= 321 HHHH  is a vector of the magnetic field, 

  is temperature, c  and m  characterize the thermal heat 
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capacity and electroconductivity of the substance. Equations 

(1) defines the process of diffusion of the magnetic field and 

equation (2) - change of the temperature at the expense of 

Joule’s heating. If c  and m  depend on temperature  , i.e., 

)(=  cc , )(=  mm , then the system (1), (2) can be 

rewritten in the following form [6]: 
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where function )(= Saa  is defined for )[0,s . 

    In [10] some generalization of the system of type (3) is 

proposed. Here the same process of penetration of the 

magnetic field into the material is simulated by the following 

averaged integro-differential model:  
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HdxdrotHa
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where   is an area occupied by the conductor. 

    Note that integro-differential parabolic models of (3) and 

(4) type are complex and still yields to the investigation only 

for special cases (see, for example, [1], [3]-[6], [10]-[12], 

[14]-[21], [23]-[28]). 

    Let us consider the following magnetic field H , with the 

form )(0,0,= UH , where ),,(= tyxUU  is a scalar 

function of time and of two spatial variables. Then 


















,0,=

x

U

y

U
rotH  and systems (3) and (4) will take 

the forms:  
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    Study of the models of type (3) and (5) have begun in the 

work [6]. In this work, in particular, are proved the theorems 

of existence of solution of the first boundary value problem for 

scalar and one-dimensional space case while SSa 1=)(  

and uniqueness for more general cases. One-dimensional 

scalar variant for the case 
pSSa )(1=)(  , 1<0 p  is 

studied in [5]. Investigations for multidimensional space cases 

at first are carried out in the work [4] and then have continued 

in the following works [1], [3], [10]-[12], [14]-[21], [23]-[28] 

and in a number over works as well. 

    Study of the models of type (4) and (6) have started in the 

work [16], where the existence, uniqueness and asymptotic 

behavior of the solutions of the first initial-boundary value 

problem for the one-dimensional scalar variant with 
pSSa )(1=)(  , 1<0 p  is studied. 

    The solvability of the initial-boundary value problems for 

(3), (4) type models in scalar cases is studied using a modified 

version of the Galerkin’s method and compactness arguments 

that are used in [13], [29] for investigation elliptic and 

parabolic equations. 

    One must note that for the cylindrical conductors to the 

study of modeling of physical process of penetrating of the 

electromagnetic field some amounts of works were again 

devoted. To the investigation of periodic problem for one-

dimensional (3) type model in cylindrical coordinates was 

devoted work [14]. 

    Particular attention should be paid to construction of 

numerical solutions and to their importance for integro-

differential models (see, for example, [2], [13], [15], [17]-[23], 

[25], [26], [28]). 

    The paper is devoted to the existence and uniqueness of 

solution of the initial-boundary problem for two (5) and (6) 

type nonlinear multi-dimensional integro-differential 

equations. Construction and study of the additive averaged 

Rothe’s type scheme is also given. 

    Principal characteristic peculiarity of the equations (5) and 

(6) is connected with the appearance in the coefficient with 

derivative of higher order nonlinear term depended on the 

integral of time and space variables. These circumstances 

requires different discussions, than it is usually necessary for 

the solution of local differential problems. 

    Many authors study the Rothe’s scheme for a integro-

differential models (see, for example, [13], [17], [23]). 

    It is very important to study decomposition analogs for 

above-mentioned multi-dimensional differential and integro-

differential models as well. At present there are some effective 

algorithms for solving the multi-dimensional problems (see, 

for example, [13], [30] and references therein). 

Our paper is dedicated to the global existence and 

uniqueness of solutions of initial-boundary value problem. 

Investigations are given in usual Sobolev spaces. Attention is 

paid to investigation of semi-discrete additive average 

schemes. In this paper we shall focus our attention to the 

particular case of (5), (6) type multi-dimensional integro-

differential equations. 

This article is organized as follows. In the Section 2 the 

formulation of the problem and some of its properties are 

given for so-called not-averaged (5) type equation. Especially 

existence and uniqueness of the solution of the stated problem 

are fixed there. Main attention is paid to construction and 

investigation of semi-discrete additive average scheme. This 

question is discussed in Section 3. In Section 4 analogical 

results for averaged (6) type equation are fixed. Some 

conclusions are given in Section 5.  

II. EXISTENCE AND UNIQUENESS FOR NOT-AVERAGED 

EQUATION 

Let   is bounded domain in the n -dimensional Euclidean 

space 
nR , with sufficiently smooth boundary .  In the 

domain )(0,= TQ   of the variables 

),,...,,(=),( 21 txxxtx n  let us consider the following first 

type initial-boundary value problem: 

2

=1 0

1

tn

i i i i

U U U
d

t x x x


     
   
     
  

   

= ( , ), ( , ) ,f x t x t Q  

(7) 

],[0,),(0,=),( TtxtxU   (8) 

,0,=,0)( xxU  (9) 

where T  is a fixed positive constant, f  is a given function of 

its arguments. 

    Using modified version of the Galerkin’s method and 

compactness arguments [13], [29] as in [16] the following 

statement can be proven for problem (7) - (9). 

Theorem 1  If  

0,=,0)(),(,, 2 xfQL
x

f

t

f
f

i









  

then there exists the unique solution U  of problem (7) - (9) 

satisfying properties:  
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where  

( ), ( ) > 0, ;C x x     

= = 0, ,x









 

is outer normal of .   

    Using the scheme of investigation as in, e.g., [16], [18], 

[20], [23], [24], [26], [27] it is not difficult to get the result of 
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exponentially asymptotic behavior of solution as t  for 

the (7) equation with 0),( txf  and homogeneous 

boundary (8) and nonhomogeneous initial (9) conditions. 

III. ROTHE’S TYPE ADDITIVE SCHEME FOR NOT-AVERAGED 

EQUATION 

    On ][0,T  let us introduce a net with mesh points denoted 

by jt j = , Jj 10,= , with J1/= . 

Coming back to problem (7) - (9) and let us construct 

additive average Rothe’s type semi-discrete scheme:  
1

=
j j

i
i

u u



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1

=1

1 ,
k jj

ji i
i

ki i i

u u
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x x x




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    
       

  

0 0= = 0,iu u  

=1,..., , = 0,1 1,i n j J   

(10) 

with homogeneous boundary conditions, where )(xu j

i , 

Jj 10,=  is solution of the problem (10) and following 

notations are introduced:  
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where 
ju  denotes approximation of exact solution U  of 

problem (7) - (9) at jt . 

    The object of this section is to prove one main statement of 

this paper. Here we use usual scalar product ),(  and norm 

  of the space )(2 L . 

Theorem 2 If problem (7) - (9) has sufficiently smooth 

solution then functions 
mu  defined by the solutions of 

problems (10) converge to the solution of problem (7) - (9) 

and the following estimate is true  

.1=),(= 1/2 JmOuU mm   

Proof. Let us introduce following notations:  
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For the exact solution of problem (7) - (9) we have  
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After subtracting (10) from relation above we get  
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we have 
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Here we add and subtract the first and second terms in the 

right side. 

    Using (7) and (10) we have the following problem:  
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Using these relations, identity of sum approximation (12) and 

Schwarz’s inequality we get from (14)  
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Summing (15) with respect to j  from 0 to 1m  we get 
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The desired result of Theorem 2 now follows from (16) by 

the standard discrete Gronwall’s lemma. 

IV. UNIQUE SOLVABILITY AND ROTHE’S SCHEME FOR AN 

AVERAGE MODEL 

Now let us consider the following first type initial-boundary 

value problem for an average equation: 
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Since problem (17) - (19) similar to problems considered in 

[16], where investigation of (4) type multi-dimensional scalar 

equations is given and at first is discussed unique solvability 

and asymptotic behavior of (17) type models as well, we can 

follow the same procedure used there. Using modified version 

of the Galerkin’s method and compactness arguments [13], 

[29] the following statement can be proven. 
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    The proof of the formulated theorem is divided into several 

steps. One of the basic step is to obtain necessary a priori 

estimates. 

    Using the scheme of investigation as in, e.g., [16] it is not 

difficult to get the result of exponentially asymptotic behavior 

of solution as t  for the (17) equation with 0),( txf  

and homogeneous boundary (18) and nonhomogeneous initial 

(19) conditions. 

Coming back to problem (17) - (19) and let us construct 

additive averaged Rothe’s type scheme: 
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with homogeneous boundary conditions, where )(xu j

i , 

Jj ,1,=  , is solution of the problem (20) and the 

following notations are introduced again:  
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where 
ju  denotes approximation of exact solution U  of 

problem (17) - (19) at jt . We use usual norm   of the space 

)(2 L . 

Theorem 4  If problem (17) - (19) has sufficiently smooth 

solution then the solution of problem (20) converges to the 

solution of problem (17) - (19) and the following estimate is 

true  

.,1,=),(= 1/2 JjOuU jj   

V. CONCLUSION 

    Using early investigated finite difference and finite element 

schemes for one-dimensional (7) and (17) type models (see, 

for example, [20] and references therein) now we can reduce 

numerical resolution of the multi-dimensional integro-

differential models (7) and (17) to one-dimensional ones. 

Carried out various numerical experiments agree with 

theoretical researches. It is very important to construct and 

investigate studied in this note type models for more general 

type nonlinearities and for (7) and (17) type multi-dimensional 

systems as well. 

Partial integro-differential multi-dimensional equations 

associated with the penetration of a magnetic field in a 

substance is considered. Existence, uniqueness and long-time 

behavior of solution of initial-boundary value problem are 

fixed. The semi-discrete Rothe’s type schemes are investigated 

as well. 
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