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Abstract—Let us consider the electron plasma response with
an arbitary degree of degeneracy to an external ac electric field.
Surface absorption of the energy of an electric field is calculated.

Index Terms—the Vlasov–Boltzmann equation, energy absorp-
tion of an electric field

I. INTRODUCTION

The character of electric field screening near the surface of a
conductor is critically important for different problems of sur-
face physics [1]–[2], in particular, the problem of propagation
of plasma oscillations [3]–[4].

Here, we have obtained an analytical solution to the problem
on the behavior of a semi-infinite plasma with an arbitrary
degree of electron gas degeneracy in an external ac electric
field perpendicular to the plasma surface. Such a situation
takes place, e.g., when analyzing a solid-state semiconductor
plasma. We use the Vlasov–Boltzmann kinetic equation with
the Bhatnagar–Gross–Krook (BGK) collision integral for the
electron distribution function and Poisson equation for the
electric field.

It makes it possible to separate energy absorption into
the volume and surface components. Surface absorption is
analyzed in detail. A nontrivial character of the dependence of
surface absorption on the ratio between the volumetric electron
collision frequency and the frequency of the external electric
field is demonstrated.

II. FORMULATION OF THE PROBLEM AND BASIC
EQUATIONS

The general statement of the problem is given in [5]. We
will use the τ–model Vlasov–Boltzmann equation

∂f

∂t
+ v

∂f

∂r
+ eE

∂f

∂p
= ν(feq − f) (1)

The behavior of the electric field in plasma is described by
Poisson equation

divE = 4πρ, ρ = e

∫
(f−f0)dΩF , dΩF =

(2s+ 1)d3p

(2π~)3
.

(2)

Here, f is the electron distribution function; feq is
the locally equilibrium Fermi–Dirac distribution function,

feq(r, v, t) =
{

1 + expE−µ(r,t)kT

}−1
, f0 = fFD is the

unperturbed Fermi–Dirac distribution function, f0(v, µ0) =

fFD(v, µ0) =
{

1 + expE−µ0

kT

}−1
, p=mv is the electron

momentum; E=mv2/2 is the electron kinetic energy; µ0 =
const and µ(r, t) are the unperturbed and perturbed chemical
potentials, respectively; e and m are the charge and effective
mass of an electron, respectively; ρ is the charge density; ~ is
Plancks constant; ν is the electron scattering frequency; s is
the particle spin (s = 1/2 for electrons); k is the Boltzmann
constant; T is the plasma temperature, which is assumed to
be constant; and E(r, t) is the electric field in plasma.

Let us consider the condition of diffusive reflection of
electrons from the boundary of a semi-infinite plasma: f(x =
0,v, t) = feq(x = 0,v, t) at vx > 0, e(0) = 1, e(+∞) <
+∞. The external electric field on the plasma surface is
perpendicular to the plasma boundary and varies in time as
Eext(t) = E0e

−iωt(1, 0, 0).
The corresponding self-consistent electric field in plasma

has the form E(x, t) = E(x)e−iωt(1, 0, 0).
We assume that the external field is sufficiently weak,

so that the linear approximation is applicable.Equations (1)
and (2) can be linearized with respect to the absolute Fer-
miDirac distribution function f0: feq(x, P, t) = f0(P, α) +
g(P, α)δα(x)e−iωt, where f0(P, α) = fFD(P, α) = (1 +
eP

2−α)−1, g(P, α) = eP
2−α/(1 + eP

2−α)2, P = p/pT =
v/vT . Here vT is the electron thermal velocity given by
vT =

√
2kT/m and α = µ/kT is the reduced chemical

potential. The change of the chemical potential is considered
to be a small parameter so that representation α(x, t) = α +
δα(x)e−iωt is possible. We linearize the electron distribution
function f(x, P, Px, t) = f0(P, α) + g(P, α)h(x, Px)e−iωt,
where h(x, Px) is a new unknown function and h(x, Px) ∼ E.

As a result, we get a system containing new unknown
functions and dimensionless variables. The detailed solution is
given in [6]. The solution is based on the method of separation
of variables, is reduced to obtaining the dispersion function
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and search eigenfunctions by which we can decompose the
resulting analytical solution. Dispersion function determines
the range of solutions to the problem

Λ(z) = 1− 1

w0
− z2 − η21

w0η21
λ0(z, α),

λ0(z, α) = 1 + z

∫ +∞

−∞

k(µ, α)dµ

µ− z
.

Constants w0, η21 and function k(η, α) have forms

f0(η, α) = (1 + exp(η2 − α))−1, k(η, α) =
f0(η, α)

2s0(α)

s0(α) =

∫ +∞

0

f0(t, α)dt, s2(α) =

∫ +∞

0

t2f0(t, α)dt

w0 = 1− iω
ν
, η21 = w0

ν2

ω2
p

s2(α)

s0(α)
.

As a result of the solution, the induced electromagnetic
field is represented as the sum of three terms corresponding
to the expansion in the spectrum of the dispersion function. In
general, the structure of an electric field arising in a plasma
can be represented as e(x) = ev + es(x),

ev = E∞

es(x) = Edexp

(
−w0x

η0

)
+

∞∫
0

1

2πi(η2 − η21)
∗

∗
(
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)(
1
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− 1

X−(η)

)
exp

(
w0x

η

)
dη,

where

E∞ = C0 =
Λ1

Λ∞
, Ed =

C0(η1/(η
2
0 − η21) + α−)

X(η0)(η1α+ − η0α−)
,

C−1 = −C0[η1 + α−(η20 − η21)]

(η1α+ − η0α−)
, α± =

X(η1)±X(−η1)

2
,

X(z) =
1

z
expV (z), V (z) =

1

π

∞∫
0

ζ(τ)dτ

τ − z

ζ(τ) =
1

2i
lnG(τ)− π.

The detailed description of the function G(τ) is given in [5]–
[6].

Let us consider the electron response in a metal layer to an
external ac electric field. We will calculate the electric field
energy absorbed in a cylindrical area with the base area S
and thickness a. The external ac electric field E0 exp(−iωt)
is applied perpendicular to the layer surface.

Absorption in a cylindrical volume with the base area S and
thickness a is given by a well-known expression [7]

Q =
S

2
Re

a∫
0

j(x)E∗(x)dx.

Here, j(x) is the current density and the asterisk denotes a
complex conjugate.

Since we are considering a one-dimensional problem, the
equation for the electric field has the form dE

dx = 4πq where q
is the charge density. All quantities are assumed to depend on
time as exp(−iωt), i.e., E = E(x) exp(−iωt). The continuity
equation for the one-dimensional charge–current system is
given by dj(x)

dx − iωq(x) = 0.
Using some calculations, we obtain

Qs =
vTSE

2
0

8π
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Fig. 1. Surface absorption in the case of ε = 0.0001.

The quantity Qs corresponds to surface absorption. For
a sufficiently broad plasma layer (with a width exceeding
the electron mean free path), Qs independent of the layer
thickness.

Figure 1 shows the plots of surface absorption at ε =
0.0001. The curves 1, 2, 3 correspond to the values of the
dimensionless chemical potential α = −1, 0, 1. Figure 1 shows
that as the chemical potential of the growth surface absorption
increases.
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