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Abstract— We consider the fracture mechanics problem for 
the finite and semi-infinite cracks in the gradient elasticity. 
Local stress fields that define the fracture the strength of 
materials are found as solutions of the inhomogeneous 
Helmholtz equations in which the inhomogeneity is determined 
by classical stresses. To construct solutions, the radial factors 
method and the Papkovich-Neuber representation are used. It 
is shown that, in problems of crack mechanics. We show that 
the local stresses in the vicinity of crack tips are non-singular, 
have the form characteristic of stress concentration, and 
depend only on the level of acting stresses and the scale 
parameter, which is found as a result of mechanical testing of 

material samples.  
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I. INTRODUCTION (HEADING 1) 

In recent years, the problem of singularities in the 
problems of elasticity theory and crack mechanics has been 
widely discussed [1,2]. The singularity of solutions for 
stresses in the linear theory of elasticity at the crack tip 
excludes the application of criteria for the strength of bodies 
with stress concentration. On the contrary, gradient elasticity 
provides regularization of singular solutions of differential 
equations of the theory of elasticity [3-6], allows one to 
describe dimensional effects and allows the possibility of 
using traditional approaches for the assessment of strength. 
As a short introduction to nonlocal elasticity, we present the 
following simple considerations. Let’s consider a plane 
problem and introduce a generalized function  ( , )U x y  

which is equal to the average value of the function  ( , )u x y in 

a rectangular representative fragment / 2 / 2a a      

/2 /2
2

/2 /2

( , ) (1 / ) ( , )( ( , ; , )
a a

a a

U x y a K u x y d d
 

         (1) 

where ( , )K   - is the core of averaging 

Next, we use the expansion of the integrand in a power 
series in local coordinates 

 

   
, ,

2 2
, , ,

( , ; , ) ( , )

(1/ 2!) 2 ...

x y

xx xy yy

u x y u x y u u

u u u

     

     
 (2) 

It can be shown that there exists such an averaging core 
that, after substituting (2) into (1) and integrating over the 

fragment, we obtain 2( , ) ( , ) ( , )U x y u x y s u x y   , where s  
is the scale parameter. Nonlocal functions can also be 
introduced for vector and tensor fields that determine the 
stress-strain state of a plane problem. In particular, it is 
shown that the equilibrium equations can be rewritten in 
terms of generalized stresses [5,6] ij : 2( )ij ij ijl     . It 

is believed that Hooke's laws are formulated in terms of 
generalized stresses and generalized deformations, which is 
natural from a physical point of view. Local stresses are used 
to assess strength. During the solution of the problem in 
stresses, the first stage considers the traditional boundary-
value problem for generalized stresses  ij , and hence also 

for generalized deformations and displacements. At the 
second stage, the obtained function. At the second stage, the 
obtained function ij  is substituted into the equation 

2( )ij ij ijl     , which is solved with respect to local 

stresses ij . 

II. ГРАДИЕНТНОЕ РЕШЕНИЕ ДЛЯ КОНЕЧНОЙ  ТРЕЩИНЫ 

Let us consider a plane problem for an infinite strip 
loaded  by stresses    in the direction of the axis ОУ and 
containing a finite crack of length 2l , , 0l x l y    . 
The classical solution to this problem is written in a 
complex-valued form through harmonic and biharmonic 
potentials ( )w  and ( )w , w x i y   

11 22Re( ), Re( ),

Im

xx yy

xy

     



         

  
(3) 

 
Here  we must take into account that 
 

0 0,     , 2 2 1/2
0 / ( ) ,w w l      

2 2 2 3 2
0 ( ) / [2( ) ]l w w w l   . 

 
Let’s construct a generalized solution that does not have 
singularities at the origin. To do this, we find regular 
solutions for the harmonic and biharmonic functions   and 

 ,  that satisfy the equations 2 2
0s     ,   

2 2
0s      , compensating the features of particular 

solutions of the inhomogeneous Helmholtz equations 
(classical singular solutions) at singular points 
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, 0x l y    using radial factors [7] 1 2
0

r se w  ,     

  3 2
1 1 r sr s e w   ,     

    2 5 2
2 3 1 r sr s r s e w    , satisfying the 

Helmholtz equation and having a set of the same features. As 
a result, we find 
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Nonsingular stresses are determined by potentials  and   
by formulas (3),(4). For example, local stresses on the 
material axis (s) can be determined ( x̂ x l  and l s ): 
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where  

1 2
/2ˆ ˆ( ) exp( ( 1)), 1,3,5ke x l x k      

 
III. GRADIENT SOLUTION FOR I INFINITE CRACKS 

To construct regular solutions for semi-infinite cracks in 
an isotropic strip, we use the Papkovich – Neuber 
representation to write down classical solutions in a 
convenient form through one complex-valued function 

x yf f if  , 2( , ), 0f f w w f    and for stress fields 

Re( )xx P T  ,   Re( )yy P T  ,   Imxy T , here ,P T
are complex potentials.  It is shown that classical solutions  
for displacements and stresses are written through one 
harmonic function: 
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Here ( , )f w w  is the harmonic complex potential which 
for cracks of Mode I, Mode II and Mode III has the 
following form, respectively: 

 1 2 1 22 / / (5 8 ) (1 )I If f K w w       , 

 1 2 1 22 / 3 / (5 8 ) (1 )II IIf f i K w w        , 

 1 22 / ImIII IIIf f K w    

 
For the generalized gradient theory, local regular fields of 

stresses and displacements are found as solutions of the 
inhomogeneous Helmholtz equations: 

 
2 2u s u U   ,  2 2p s p P   ,   2 2t s t T    (7) 

The right-hand sides of (7) contain singular complex-
valued functions , ,U P T . They are written for each mode of 
cracks through one harmonic function (6). Regular local 
solution i.e. potentials ,p t , displacements x yu u iu  and 

stresses Re( )xx p t  ,  Re( )yy p t  ,   Imxy t   is 

constructed using the radial factor method [7]. For Mode I 
crack, such a regular solution has the form 
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where    
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Regular solutions are built for both Mode II cracks and Mode 
III cracks. For example, we have for a complex-valued 
displacement function for cracks of Mode III 
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and, accordingly, a regular solution for Mode III cracks 
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IV. The concept of stress concentration 

Nonsingular solutions obtained using gradient models 
(4), (7) - (10) are the basis for implementing the concept of 
stress concentration in crack mechanics proposed in [8]. For 
example, for a Mode I crack, the stress expression yy , 

ˆ / , /r r l l s   calculated over the crack extension can 
be used as an estimate of strength.  
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Fig. 1. Distribution of the normalized stress from normalized  distance of 
tip of crack (1. - 70 ,  2- 50 , 3.- 30 ) 

The distribution ˆ/ ( ),yy yy r     is a positive 

bounded and continuous function of the parameter r̂  over 
the entire determination interval ˆ0 r  , which becomes 
to zero at ˆ 0r   typical for stress concentration. Strength can 
be estimated by the level of ultimate stresses yy .  The 

typical distribution of the nonsingular normalized stresses 
near tip of crack Mode I for different value of the normalized 
scale parameter    is  shown on the  Fig1.  

 Instead of maxm
yy   the magnitude of the stress 

intensity 

  
2 2

ˆ ˆ0 0

max maxm
i xx yy xx yy

r r   

           

can be used when it comes to plastic materials. The found 
regular stress solutions allow us to calculate the stress 
concentration coefficient / ,mk     where  m  is the 

maximum value of stresses yy  (or stress intensity i ). The 

calculated stress concentration coefficient depends on the 
scale parameter  . The obtained calculated strength 
estimates are compared with experimental ones.  

An experimental study was carried out on plates of 
aluminum alloy, brass and steel. A crack was defined  as a 
side cut in a strip that was loaded according to a three-point 
bending test.  

As an example, we briefly discuss the experiment and 
calculation for aluminum alloy plates. The theoretical curve 
of the proportionality limit constructed from the stress 
intensity is shown in Fig 2.   

 

 
Fig. 2. Theoretical depenence of normalized stress intensity /i  from 

scale parameter   

For a plate with a crack 5mm long, the experimentally 
established proportionality limit is 65 MPa. Thus, the 
stress concentration coefficient / 1.154uk     and 
according to Fig. 2 we have 5.5 mm and then 

/ 0.91s l  . Further, assuming that the value of 0.91s 
mm is unchanged for the material under consideration, we 
give a forecast of the proportionality limit for the strip with 
different long cracks. For a plate with a crack of length 

10l  mm at mm, we have 11,  1.56k   and predict 
using Fig.2 ultimate stresses (proportionality limit) 

48.1 MPa. For 15l  mm, we get 16.5,  1.93k   

and 38.9 MPa. Finally, for 20l  mm, we also find 
22,   2.22k   and 33.8 MPa. As a result, it 

turned out that these values of the ultimate stresses obtained 
theoretically coincide with experimental accuracy with high 
accuracy (the correlation coefficient is less than 6%).  

As a result, parameter /l s  is determined and scale 
parameter s  is found, which, along with the tensile strength, 
is a fracture characteristic.  The experiments were carried out 
both for brittle and plastic materials. It is shown that the 
parameter s  for a particular material is a constant value and, 
along with the tensile strength, can be considered as a 
fracture parameter, giving a high accuracy forecast for the 
strength of materials. Moreover, the concept of stress 
concentration made it possible to predict theoretically the 
effect of increasing the proportionality limit in the vicinity of 
the crack tip for plastic materials, which was also confirmed 
by experiment. It is noted that for a plastic material this 
parameter is approximately an order of magnitude larger than 
the value obtained above for a brittle material. 
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