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Abstract: In the analytical and numerical study, the
interaction between three species is modeled, where in the
three species are identified as a prey , which is susceptible,
the infected prey and the predator with type-II and type-lIv
functional responses, which represents a mathematical
model of eco-epidemiology. This study is carried out in
both analytically and numerically. The boundedness of the
model is studied and the stability analysis of the model is
carried out at the positive equilibrium point in terms of
locally and globally. The conditions for the occurrence of
Hopf bifurcation with fixed biological parameter values
are investigated and also it is noticed that the bifurcation

occurs by sensitive changes in the parameter values of |,,1,
, and y which represents the growth rate of a predator,

transmission rate from infected prey to susceptible prey
and half-saturation constant of predator respectively.
Further, the stochastic nature of the model is analyzed

both analytically and numerically. It is observed that the
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system exhibits chaotic behavior with the sensitive
parameter values which causes large environmental

fluctuations.

Key words: - Infected, Susceptible, Boundedness, Local
stability, Global stability, Routh-Hurwitze criteria, Hopf

bifurcation, stochastic.

I.  INTRODUCTION

Ecological systems in general dynamic , complex and
non-linear in nature. The study of the Pre-Predator dynamics
is one of the important area in mathematical Ecology and this
study can optimized through the formulation and analysis
respective Mathematical models. Many researchers like
Hastigs and Powell et. all [2,3,4,5,9.10,11,12,19] examined
the complex non-linear behavior of three species continues
time ecological models.
focus is on the

In recent years many researchers

topic called Eco-Epidemiology which is the combination of
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Ecology and Epidemiology. Eco-epidemiological systems

describe  the spread of infectious diseases among the

interacting species when at least one of the species
population have infectious disease. The analysis of these
systems become significant in controlling the spread of these
discases and got a lot of consideration since the Kermac—
Mckendric SIR model was proposed . In eco-epidemiology,
researchers study ecological systems when the environment is
either

polluted with infectious diseases or when

prey ,
predator or in both populations spread the disease. Many
researchers Anderson, May, Chattopadhyay, Arino and Bate
[15,22,24] proposed different situations like disease in the
Prey, disease in both Prey and Predator. Bate A.M. and Hilker.
FM [28,32] observed that predator, prey oscillations can shift
when disease become endemic.

Many researchers observed that the environmental
fluctuations also caused the different behaviors of the dynamic
systems .J.Ripa [21] studied the effect of environmental noise
in ecological food webs. R.M.May [20] investigated that the
population has deviated more from steady states in a
biological system involved in stochastic fluctuations by
considering white noise for a population. The work of many
researches [30,32] in this area motivated us to compute the
behavior of the coexistence state of the system having random
environmental fluctuations due to white noise.

The complexity of the ecological model is
considered in terms of the functional responses involved in the
mathematical models. when prey/predator interacting with
each other the change can occur in their density . This can be
referred as functional response by Holling type-LII and type-
III. Generally, Holling type-LII and type-III responses have
been applied to many theoretical studies. Huang and Xiao
[8,6 ] and many other researchers [7,10,13,17,23,25,26,29,34
] investigated the bifurcation analysis and stability of a Prey-
Predator model with Type-II & Type-IV responses.

Here the converted infected prey to susceptible
will not be infected again which is the assumption we consider
in this model. The predator will have interaction either with
infected prey or susceptible prey, not both at a time.

II. MATHEMATICAL MODEL
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The proposed model is
%:ax— xz—l"ﬂ— I1X22+5y
dt a+x B+X
ﬂ:ﬂ_i_lzi_gy
dt a+x y+y
I |
d_ e lyz g,
dt  g+x° y+y

Here X' is the susceptible prey density, 'y' is the infected prey
density and 'z'is the Predator density at any instant of time t.
The parameter 'a' is growth rate of susceptible prey; the
parameter 'b'is intraspecific competition among individuals

of prey x; the parameters «, 3,7 are half saturation constants
; 1,,1,are rate of infection; I,,l, are the maximal growth rate
of the species ; 0 is the rate of infected prey individuals to
recover and reenter into susceptible prey; d,is mortality rate

of the predator , it is evident that all parameters are positive.
The system (2.1 ) has eleven parameters. It is evident

that dealing a system having more number of parameters is

challenging and

required more complicated analysis,

model in dimensionless type is

This

reformulating a

helpful from many aspects. procedure will facilitate to

observe the consistency of the model equations and

ensure that each term have an equivalentset of units
in equation.  non-dimensionalizing the model reduces the
number of free parameters and divulges a smaller set of
quantities that govern the dynamics of model. Consider the

model values

_aa.  _ba®  ly 5. a. la
al_l_’ 2_|_a ;_—2,a4—|—,a5——,a6 |_
oV 0 La 0 v 0
La d,a ba o d,a
a8=|2—,059= |2 ;kl=—;k2=|—;k3— Iz My =
o o/ a 0 3

After non-dimensionalization, The proposed model (1.1 )

becomes

@.1)
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dx Xy Xz
—=a,X(1-kXx)— -
dt aX( ) 1+X m, + X %y
dy X yz
= 2k |+ 2=
dt 5y[1+x 2j+1+y
d_ 72( x “%J‘ o
dt m, + X l+y
III. THE BOUNDEDNES OF THE SYSTEM

In this section, we will attain some adequate conditions for
the boundedness of (2.2).
Theorem(3.1): The system (2.2 ) is uniformly bounded.

Proof: we consider a function ®(t)=X+Yy+2z, , then

dd® dx dy dz
—_—— 4 —

dt dt dt dt
dCD Xy Xz
o lx(l—klx)—m(l—og)—m e (a;—a,)
0
z
—lJ):—y(ocg—1)+oc4y—055yk2—oc7zk2

Choose a5 <1, o, >1, and «, > ar,, then

do

o <ax(1-kx)+a,y—a,yk, —a,zk,

Now we choose arbitrary positive real number o for which

do()

ot +pD(t) < x(«

—ak x+p)-y(ask

p)

2= p) holds
-z(ak, -

For simplicity we take

0 < p <min(ak, —a,,a,k, ), Therefore

dd(t)
dt

(1p)

+pD(t) < x(e 1ok
1

—akXx+p)<

Here H is the maximum value of x(a1_a1k1x+ p). So,

4o

O(t)<H.
& P (9]
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Then we obtain CD(t)<—+LCD(0)— Je 7 fort>0.As
p p

o
Therefore, ®(t) is bounded in Ri.

Iv. STEADY STATES

The system has the following five steady state solutions

dy _
dt

resulting from ax_ =0,—=

=0.
dt

dt

1)(0’050)2)(%2 ,0,0j3)P(x', y",0),where x* = 11(2k :
. (1_k2)2

y =
ak, (o, —k,)(kk, +k,—1)
1
A A A 1+4(1-4kSm, )2
4) P| x,0, z {where x B T—
3

/; _a (1-kx)(m, +x*)

a,

5) the coexistent steady state is obtained by from the

equations:

{al (1-kXx)—a,

Solving equations (3.2) & (3.3),we get

B —k; (M, +x7))
- [(0{8 +0¢7k3)(m0 +X*2)—a7X*J

_ e [kz +X" (K, —1)}[m0 + x*z]
(1+ x”)[(oc8 +a7k3)(m0 + x*z)—a7x*]

o a(x

4.1

(4.2)

(4.3
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et . —k, L(X* -a' )(X* —ﬂ*)J q B, =—(by, +b,,); B, = (b,b,, —by,b,, — 0,0, —b;;b; );
= an
) y (058 +a,k, )[(X* -7 )(X -5 )J B, = (b;,b,,b,; +by3by by, —by,b,50s, —Dby3b, by ).
Here
asa [kz +x"(k, —1):|[m0 + x*2:|
- : * * * s -2 *
(1+x")(o¢8 +a7k3)[(x* —;/*)(x* —5*)} B = &2 (1+z )+a3z (m, —x* (mo +X 2) +a,(2k x" —1)
2
1—4’1—4 k? 1 aﬂ—4 k? ’ -
Where a' = T B = i & ; B =&Y Z N2 . 2y 2 2k x* —1)NZN?
2k, 2k, 3_N5N2|:y s a2 (M —x7)N; + o, (2K x" —1)N; 3:|
2 N3
a7y*z*(m0 _X*z)(X* —0{4N1)
. :a7—\/a72—4m0(a8+a7k3)2 j{ N,N,N? +
2(a +a;k;) ’
5 =% +\/0l722 _4mo(is +ak,)’ axX'y'z" |:a7Z*(mO —Xx*)N;? —aaN :|
5787 T3 |t
(@ +ark) N7N; Ny N,

whenever k,>1 and (@' <& <x"<p'), then the Consider, A = BB, —B,

equilibrium point E = E(X*,y*,z*) exists. A= y'z' [F*z FEN2(YZ -Noa )J
- 3 278

NZNJ
V.  STABILITY ANALYSIS OF COEXISTENT ay' (X =Ny, )(F* +N2y'z")
+ 2 2
STEADY STATE NNSN;
: a,a,2°x" (m, —x*)F’
Theorem(5.1): The equilibrium point E is stable locally + NZN2 +
2773
when B, >0, B,>0and (BB,-B,)>0.
a,y'z | (FT+Ny'z) aax
+ +
bll b12 b13 sz N23N32 N12N3
Proof:- The Jacobian matrix is J (E* ) =|b, b, by [’ NN,
N2N2N _az N1_(X _N1a4)N2
where e N X

3

B =(e -2k )= (m =) (mex)
* 1+y") * N, = (14X );N, = (1+y7); Ny =(m, +x);
b12 =q, _1_:_(—)(*9b13 =0 mo)_:_x*z > = :(y*szz';afZ*gnl\olz_ij)szj
+a,(2k X —1)N2N:

oy’ b = -y .y A=BB,-B, >0, if
21 *2722_ *2923_1_'_ P
(1+x) (1+x7) y 2\
. .. N,z ( e,y (m,—x™) )2
. . w\2. i) 4k*m, >1ii) N2 >1iii) o, <— 1 0 )
by, =a,z" (M, —x?)(m, +x7) " ) akim, )N ) e N, a;N,
b = —a 7" .
2 (1+ y*)Z' By Routh-Hurwitze principle, the steady state point E is

stable locally, if B, >0,B, >0 and (BB, —B,)>0 holds.
The characteristic equation of J (E*) is
Theorem(5.2): Along with the conditions stated in the above

A+ Bllz + Bzﬂ + B3 =0. where theorem (5.1) and If
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. <(mo+‘1’1”)(mo+‘1’f)[a4‘1’z* v,
3 * *
(W)

then , the steady state point E is stable globally.

Proof: We consider a Lyapunov function v(t) such that

-n v
1

+n, {‘Pz -¥Y, -%,In [T—iﬂ ,where
\PZ

+n, [\Ig AR N 1n($1 H
3

_ 2
Y (1+Y9)(1+Y))

+a1kl}

Y =x, ¥, =y, ¥, =1z and n,Nn,,Nn,are positive constants

\PZ* + a3\I]3* (\Pl +\Pl*)

dv _ | A E)AHE) - (m,+ ¥ 2)(m, + )
=n, ]
dt _aYy -ak
\P]lPl* 11
nw¥y. .
- 2 B (‘"Pz_\Pz )2
1+Y¥,)(1+Y,)

(¥i-w)

{\2—'1(“4(”‘1’1)—‘1’1”

a+v¥)) 1+v¥)

na. }(‘Pl -¥ (Y, -Y,))

+{n3057 —-Na,

(m, +¥,) (m, +¥/7)

+ﬁ{nz—n3a8+ N+, }(‘1’3—‘1’3 )(¥, - ).

1+¥,7)

The sufficient conditions for C(Ij_‘t/ <0 are as follows

n=n =Ln = (H‘P;),% v (1+*\11; —as)’
a (1+¥))(1+¥))

— a3a8(m0 +\Pl*2)

o (1+w))

7

a. < (mO + \Pl*z)(mo +q]12)
3 * *
(Y, +Y))

a\t, h Y
YY" (1+¥)A+Y¥))

+ak

Numerical Simulations:
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Figure 5.1:(a) a time profile of the steady state with respect to

the populations of x, y,z . (b) phase portrait at E
=(0.5963, 0.0272, 0.0001539) with the parameter values
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m, =0.00009982 ; «, =1.099912 ; «a, =0.099872 ; «, =
0.099893 ; o, =0.199285 ; a, =0.0099 ; o, =0.0999389 ;
k =1.92; K, =1.00009 ; K, =1.4091 .

(c) a time profile and phase portraits in two dimensional

plane for the above parameter values.
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Figure 5.2:(a) a time profile of the steady state with respect to

the populations of x, y, z. (b) phase portrait at E =(0.723,
0.0184, 0.000312) with the parameter values M, =0.09982 ;

a, =1.079912 ; a,=0.009 ; a,=0.08 ; ;=02 ; «,
0.01; &, =0.099; k =142;k,=1.01; Kk, =1.2.
(c) a time profile and phase portraits in two dimensional plane

for the above parameter values.

susceptible Prey
Infected Prey
Predator

=)
=)

o
o

o
IS

susceptible Prey Infected Prey & Predator

o
X

1000 1200 1400 1600 1800 2000
Time

Predator Population

05
0
08

06 055

0.4 05
02 0.45
0
Infected Prey Population 04 susceptible Prey Population



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES
DOI: 10.46300/9101.2020.14.14 Volume 14, 2020

o
o
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Time susceptible Prey
2
(0]
§ —Ifected Prey ||~ & 1
E —P(edamr g 1 . 9200 w0 a0 @ ] 20 a0 60 1e0 2
2 g
) it
o
0 : ; . 0 : : .
0 500 1000 1500 2000 0 02 04 06 08B ®
Time Infected Prey
02 2
.E = susceptible Prey g Figure 5.3:(a) a time profile of the steady state with respect to
2 | = Predator % ! .
£ = T the populations of x, y, z . (b) phase portrait at E =(0.5411,
o

— [ 1689, 0. i =o. -
TR 1 16 05 1% 06 0.1689, 0.5680) with the parameter values M, =0.000918 ;

Time susceptible Prey a,=6.019; a,=0.1099; o, =0.00107 ; a5 =0.104 ; a, =
0.79; &, =3.990; k =1.92; Kk, =5; k; =1.114 . (c) a time

(c) profile and phase portraits in two dimensional plane for the
above parameter values. (d) a time profile of Infected prey

population. (e) a time profile of Susceptible prey population.

(d) a time profile of Predator population.

VL HOPF BIFURCATION

In the present study, various parameters

have been used to exhibit the behavior of dynamical system.

X0 400 600 000 1000 120 1400 1600 1800 2000
Time

Eco-Epidemiological models with constant parameters are
(d) frequently found to approach a steady state where species
coexist in equilibrium. The behavior of a system may change
in relation to the parameters used in the model. Such
parameters which cause the transition in a system are named
as bifurcation points. At any point where the system has

nontrivial periodic solutions, a Hopf bifurcation occurs.

The following theorem established that

200 400 600 900 1000 1200 1400 1600 1800 2000

Hopf bifurcation occurs for the system (2.2) at a sensitive
© valuea, =a,". For proving this, we follow Liu [6,27]

approach.
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Theorem(6.1): At @, =a; the model (2.2) occurs Hopf equilibrium point E .The corresponding graphs shown as
bifurcation along with the local stability conditions (i),(ii),(iii)  follows

of theorem (5.1) holds.

Proof:

|F Gz =N,a,F'N 2" +a,H'G™N,*N,? \
+ayN,’ NN, 2" (G'N + a2, NN, )

. N24N3N12 (aley*Z*) .
Xz
(Mo =x) )| (1= N2 ) =N E* + HN, N,y

Where G* = F* +y'z'N2;H® =x—a,N,,Then

let o, =

susceptible Prey Infected Prey & Predator

y* * * ) %2 _2 * P50 20 =0 400 550 B00 700 800 900 om0
—2(1+z )+a'32 (m, =X )(m0+x ) +0,2kx"=1)>0 Time

Bl =a =

2

ay'r . . .
et = I\T;Nf [Y'NS +a2 (M, —x?INS +a, (2k X =DNIN |
a,y'x'z y'z (m, = x*)(x" —a,N,)
-2 N, + 0 e
NFNZNG 5 {[ N,N,N:

3

Fredator Pogulaion

ay' Xz (z"(mo—x*z)Nl2 H
NZNZN? N, '

[FG 7~ Ny F N2 +aH'G NN,

Y LasN;N;le*(G*Nf +a,a N N,) }
2" (N NN (my =) )[ (N 'z ) (1= N ) =N P+ H NNy |

06

>0. g

Infacted Pray Population suscaptible Pray Popultion

(b)
and 1 =
0 : v
dA _ a3Z*X* (mo _ X*Z)F* N X" y*Z*(mO _ X*Z) % _SUSCBptlhle PTEY | % "
da, lo-e N2N? N2NZN, 3 Infected Prey % :
[=] Y=
N @GN (C=Na)N, £, £,
{0‘32 A VI 0 0 W 0 02 0 12 04 06
Time susceptible Prey
ol 4
dA 5 —Infected Prey || 5
Therefore, A7 |ar=ar # 0. Hence, a simple Hopf bifurcation 39 g i)
3 g
0 o
occurs at &, =a," . e 0
0 £00 o0 05 1
Numerical Simulations: Titne Infected Prey
Using the same set values in Figure 5.3, from the 0D 4
c - : .
theorem (6.1), we can determine the critical value of ¢, and 2 Blecsbiufy g
2 07| = Predator 1 s
itis (a,")=0.79. The system is unstable for o, >a,” around § i
5 ‘ 0 I
. 0 500 o 02 0 02 04 08
the positive equilibrium point E , taking «," =0.81 the Time susceptble Prey

solution of the system (2.2) has been shown in Fig: 6.1(b) ,
(©

which indicate that the system is unstable around the positive
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Figure 6.1:(a) a time profile of the steady state with respect to
the populations of x, y , z
a, =0281.

. (b) Bifurcation diagram for
(c) a time profile and phase portraits in two

dimensional unstable graphs. (d) a time profile of Predator
population. (e) a time profile of Susceptible prey population.

(f) a time profile of Infected prey population. .
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VIL Stochastic analysis

In this section, the stochastic version of the
model has been formulated by considering the influence of the
random noise which is in the form of additive Gaussian white

noise to the model (2.2) and the perturbations are as fallows

ax 2 X Xz

a:(alx—alklx )—1+yx—a2 M.+ X +054y+p4'774(t)
o

dy X yz

b A — —k, |+= n,(t

pm a5y[1+x 2j+l+y+p2772()

dz X yz

il ——k, |—a, 22— .

dt a7y[m0+xz 3] a81+y+p2m(t)

Where P, P,,P; are constants and 7(t) =(7;(t)) is a 3D

Gaussian White noise parameters satisfying

E[ni (t)] =0;wherei =1,2,3.

Let X=44 +S";y =, +R";Z= 14, +T"; then

du
X=g; Y=p; 2=wu;where g =

;i=123.
By neglecting higher power of 77,(t) , equation (7.1) becomes

* * * o *
ﬂl(t):_zklalﬂls — 1S _#IL%S + P

0

()= asﬂlR* +/j3R* + Pa175

(7.1.1)
° a7 % £
1) :HIUIT _asluzT + Ps7;;
o

Applying Fourier Transform on both sides of (7.1.1), we get

P,y (@)= (i0+2aks") (@) (0)8 +— 1, (@) 5°

0

P, 7, (@)= =0t 14 ()R +it2. 41, (@) — o, (@) R

0, 7, (®) :—%; ()T +a, 1, (0) T +iw. 11, ()

0

M(w)u(@)=n(w®) represents the matrix form of above

equations, (7.2)

where
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S - —|Az(w)|2:£a7R*T*]+(“5”R*)z;

‘ul(a)) P, 771(60) Mo
a a a] |49 g  (aasT Y
M(@)=|b b, b |;u(@)= u(@) (@)= p.n(@) B =| e
c C C 1 (@) ) (e

2
C. (@) - ((mkl - >S*R*] +(oR)':

0

a =iw+2akS;a, =S";a, =&S*;bl =-a,R";
m

where ’ 2 ey [ 0T 2.
bzzia);b3:—R*;cl———T ;C, = 17;¢, =l |A3(a))| :(asagRT) —{ m, ] ’
mO
The above equation (7.2) can also be written as [ Qayak, + 7)3 T Jz (aga)T* )2’ y
=[M(o)] n(w) : S
(aSR S -w ) (Zalka)S )
Let [M(a))]_l = L(®),Therefore, ,Zz(co) = L(a));](a))
* % S*T* *
Where L(a)):M X, :(O‘SR T _a)z)’Yl =0; X, :(—%ar; J,Yz =(a)S );
M(o) . °
* * a a)
By considering ( from 8.10,8.11 and 8.12. of [27] ) X, =(S'R).Y, :{ 3m0 j;

a,R'T B Ay _[@eST
14 (@) = ZLU(a))nJ(a)) and S, (o) = za (a))|LU(a))| : wher i=1 Xz{v,‘[ m, J’Y4 = (@R ) X, _[—mg @ J

then we obtain

Y, = (2ak@S"); X, =£(2alkl—“r;“5)s*R*J,Y6 =(aR");
0

2 2

X, = (@ R'T).Y, {“ﬁ’T J ((mlagk + m7 )S*T J

0 0

A
pr]|M( J :[sz

| .
C|
1P gy

B | 4s
M
2 _ M) i=1,2,3.

=Q

(7’\%;):(058@?); Xy = (“SR*S* _a)z)’ Yo = (2alk1a)8*).

By substituting above values in (7.3), then

b, {xj]2 +ij}
7 “ae Lyeri(o)| B0 e
+p, {Xj}2 +Yj32}

where M (@) =R(0) +i(Img(@)) here A P

M(0)| = {mi(ZozlklmO +a, —ayo504)S'R'T —2alkla)28*}
0

+{“3“7 ST + e oR'T + @08 R — o } wher {i =1,2,3; j, =1,4,7; ], =2,5.8; j, =3.6,9}.
m,
’ If p,=0; p,=0,then the population variances are

* % 2
A (w)|2 =(a8R*R* -’ )2 :|B, (co)|2 :[Mj 2 p3(X32 +Y32) T

m,

+\2 H
(5 o (s o225

M,

! do;

27 _'[ORZ(a))JrIQ(a)) |
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2 _ pS(X62+Y62)T 1
2 b

susceplible Prey Jnfected Prey & Predator

If p,=0, p;=0,then the population variances are

Time

5 _ pl(xlz"'le)]g 1
2z R?

RS
[V}
|
©
—_
>
= IS)
+
<
8]
N—
é —3
o)
(8]
—_
&
—_ +
™~
—_
£
Predator Popuaticn
B oo 823
:,“"
|
.‘v
\

Infecte d Prey Population L scaptible Pray Population

If p,=0, p,=0 then the population variances are

(b1)
X7 +Y,7) %
2_ p2( 2 - )I 2 1 2 da)n
A 27 2 R(0)+1’ (o)
XZ+YS3) = :
2—p2( > )J > ! > do; i
2 2 R(0)+1%(®) £

Numeric Simulations for stochastic system:
In this section the stochastic model (7.1) is examined

numerically in the Figures 7:(al, bl) to 7:(a5, b5) of the
varying parameter values ( P,,P,,P;): (0.1,0.3,0.2);

Predito Pepultion

(0.1,0.05,0.7); (0.05,0.05,0.17); (0.5,0.5,0.19); (
0.05,0.5.0.9); with the following fixed parameters M, =

0.00009982 ; @, =1.099912 ; a, =0.099872 ; a, =0.099893
;o =0.199285 ; ar, =0.0099 ; o, =0.0999389 ; K =1.92 ;

K, = 1.00009 ; K, =1.4091.

Jfected Prey & Predatr

suscegtible Prey

‘‘‘‘‘

(3)
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Figures 7 :(al) to (a5) represents variation of x,y, z verses
time t and Figures 7: (b1) to (b5) represents phase portraits

of variation of x, y, z with different p,, p,, P, parameters

values.

CONCLUSIONS
In this paper, we consider the three species Eco-Epidemiology
model with Holling Type-IV ~ and Type-II Predator(z)
functional response with Susceptible prey(x) and infected Prey
(y) respectively to understand the dynamics of the model. The

co-existence steady state (X*, R z*)is exist when the rate
of infection (l,) which less than the rate of infected prey

individuals to recover and reenter into susceptible prey (0)
and also
(a* <8 <X < ﬂ*)where a",0%, 8 values are defined in

section 4.The stability of the system is carried out locally and
globally at the coexistence state. The numerical simulations
in section 5 are evident to the stability of the coexistence state
point . The global stability at the coexistence state is carried
out by constructing the Lyapunov function. It is observed that
the proposed model exhibits Hopf bifurcation when The ratio
between the growth rate of the predator (z) and the product of
the rate of infection (l;) and the half saturation constant ()

is greater than 0.79 which is equal to «,.

we proposed a stochastic version of the model in
section 7 and studied the behavior of the stochastic system
around the co-existence steady state. From this study we
observed that the sensivity of parameters (low and high
intensively) causes large environmental fluctuations which
leads to chaotic behavior, this can be showed by the figures
7:(al,bl) to 7:(a5,b5) of section 7.So, we conclude that the
environmental fluctuations also effect the our Eco-
Epidemiology model..

REMARKS
Initially Lotka - Volterra proposed a linear functional response
for a pry-predator model and which is unbounded. This
response is called Type-I functional response. But, while
studying the complexity in model ecosystems need reasonable
functional responses that should be nonlinear and bounded.

. WX . .
The predator functional response —— which is called
C+X

Holling Type-II functional response. This functional response
describes the predator per capita rate of predation is limited by

its capacity to process food. The functional response - 18

+ X

a Holling type-IV functional response. This response function
describes a situation in which the predator’s per capita rate of
predation decreases at sufficiently high prey densities. In this
paper we proposed Type-II and Type-IV functional response,
X Lx
a+x’ B+x
functional responses the model becomes more complex with
the more number of parameters. Due to this a third order

which are

> respectively. By considering these
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characteristic equation is obtained at the co-existence steady
state with the co-efficient having power 4 which is challenging
to analyze by using Routh-Horwirtz criteriaReferences.
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