
Higher-Genus Contributions to an Induced
Supergravity Action

Simon Davis

Abstract—The higher-genus contributions to a supergravity
action induced by the evaluation of the superstring path
integral are considered. Three extra terms are found in the
BRST transformation that would arise in the supergravity
action. The supersymmetric BRST contour integral over the
ideal boundary of an infinite-genus surface is found to be
vanishing if the harmonic measure is zero. The effect of a
conformal transformation is demonstrated to be consistent with
the vanishing of the BRST superspace contour integral. Since
the commutator of BRST and conformal Since the BRST
symmetry and conformal transformations transofrmations is
proportional to the BRST current in four-dimensional gravity,
and the vacuum is invariant under both transformations,
conditions on the worldsheet fields result from the dynamics in
the embedding space. A connection between conformal models
on the two-dimensional worldsheet and the quantum action
of the gravitational theory in four dimensions is established
through the ghost sector. The number of degrees of freedom
in the gravity theory must be reduced to achieve this result.
The introduction of new variables related to the embedding
of two-dimensional surfaces in three-geometries and then four-
manifolds is then required to satisfy the condition of quantum
consistency characteristic of conformal field theories.

Keyword—induced supergravity, superspace contour integrals, 
ideal boundary, embedding space.  

I. Introduction
The weighting factor in the bosonic string path integral

eχ is equal to e−
∫
Σ
d2ξ

√
hR, where R is the curvature of

the surface Σ. This action also represents two-dimensional
gravity, which is a topological theory with no classical
dynamical degrees of freedom. Conformal rescalings of the
metric of the surface introduce a scalar field ϕ such that
the string coupling is given by the expectation value ⟨eϕ⟩.
Then the sum over the genus includes a factor ⟨eϕ⟩χ and
which is expectation value of e−S , where S is a dynamical
two-dimensional action

∫
d2ξ

√
hϕR.

A similar effect occurs in connection with the quantum
anomaly that prevents the Weyl and diffeomorphism
transformations from being symmetries of the bosonic
string action. The cancellation of this anomaly requires
the introduction of counterterms that comprise the Wess-
Zumino-Polyakov action. Since the counterterm is gen-
erated by a BRST variation of this action, it entire
integral must be invariant under BRST and conformal
transformations.

The Wess-Zumino-Polyakov action is knwon for the
complex plane to be the integral − 1

2d
2zµ∂2 ln λ, where µ
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is the Beltrami differential and λ is the conformal factor
in the combination of Weyl rescaling and diffeomorphisms
[1]. The complex plane is the covering space of the
torus, and both the solution to Ward identities for the
conformal symmetry may be verified. However, it is not
a universal covering space for genus g ≥ 2 and represents
only an intermediate covering after the isometric disks
of the generators of the uniformizing Schottky groups are
removed. Consequently, integrals in the action constructed
with PSL(2;C) transformations must be defined on the
fundamental domain consisting of the set of ordinary
points on the complex plane. Nevertheless, a formula for
the anomaly may be given. These fields can be projected
onto two-dimensional string worldsheets [2][3].

The generalization to the superstring action will induce
a supergravity action with fermion fields. In addition to
diffeomorphism invariance, the string theory will char-
acterized by supersymmetry and a BRST symmetry [4].
The BRST operator will occur in the formulation of the
two-dimensional action, which is distinguished from the
superstring effective action in the target space. There
are higher-genus contributions to the supergravity action
unless BRST invariance is preserved. The action of the
BRST operator on the relevant terms in the action is zero
if supersymmetric generalizations of the BRST contour
integrals vanish. The integration over the ideal boundary
could yield additional terms to the action. The breaking
of any symmetries or the diminishing of the effect in the
infinite-genus limit will be examined.

A fundamental result in string theory will be a theo-
retical foundation for the dynamics of matter and gravity
in four dimensions. A Lagrangian with curvature terms
is found to occur both in the string effective action and
the induced supergravity action. The first is formulated
in a higher critical dimension, and many new fields are
introduced in the compactification to four dimensions.
The second only requires an increase in the dimension
of the model from two to four. There are many basic
symmetries in these dimensions which are directly related
to the geometry of Riemann surfaces and hyperbolic
geometry. Therefore, much of the rigidity of the model,
compatible with the finiteness of the quantum theory, can
be preserved in this formalism.

It is demonstrated in §2 that there are three terms
that could arise in the induced supergravity action on
a Riemann surface. Two of the terms are given by
differentials. These terms can be demonstrated to vanish
over compact surfaces and surfaces with boundaries over
which the contour integral vanishes, which is valid when
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the harmonic measure of the ideal boundary is zero. It
is proven in §3 that this condition is equivalent on a
Type I surface to the commutativity of the BRST and
conformal transformations. The third integral equals zero
because the superspace derivative and the BRST operator
anticommute.

Therefore, the discussion of BRST transformations in
the induced supergravity action on Riemann surfaces in
string theory is complete. Since string theory and general
relativity both describe the gravitational field in the
embedding space, it is worthwhile verifying that several
of the results in string theory also would be valid for
a four-dimensional gravitational action. Such a result in
established in §3, where it is found that the BRST and
conformal symmetries of the ghost field action derived in
the covariant quantization of the gravitational theory com-
mute. Given this property, and the resemblance between
the projection of the ghost Lagrangian to four dimensions
to induced supergravity and W3 gravity models, a basis
for the transition from the worldsheet theory of strings to
a gravitational theory in the embedding space theory now
exists.

Two related results in gauge theories are the validity
of the Adler-Bardeen theorem in establishing the non-
renormalization of anomalies, and the commutativity of
conformal and BRST transformations. The absence of a
rigorous proof of the supersymmetric generalization of the
Adler-Bardeen theorem for a super-Yang-Mills theory has
been related to noncommutativityof superconformal and
BRST transformations [5]. One corollary is the absence of
a conclusive demonstration of the gauge independence of
the anomaly. Similarly, invariance of an anomaly under
BRST transformations will not be evident.

For the induced supergravity action of the Polyakov
string, the entire anomaly is constructed. The generalize-
tion to the superstring action will induce a supergravity
action with fermion fields. In addition to diffeomorphism
invariance, it follows from the previous discussion that
supersymmetry transformations can cause the anomaly
not to be preserved under BRST transformations, and a
solution to the superconformal Ward identities is required.
Consequently, the BRST transformations of all of the
terms must be examined.

The action for general relativity in four dimensions
can be quantized with the addition of a Faddeev-Popov
Lagrangian and a gauge-fixing term. The BRST symmetry
of the Faddeev-Popov action is supplemented by a con-
formal symmetry. Furthermore, the commutator of the
BRST and conformal charges is found to be proportional
to the BRST charge. Therefore, the vacuum can be
defined such that it belongs to the kernel of both charges
simultaneously. The commutator also would vanish upon
evaluation in this physical state. Independence of the
vacuum expectation value of the anomaly respect to BRST
transformations then follows.

The projection of the four-dimensional Faddeev-Popov
Lagrangian to two dimensions does not yield the bosonic
string ghost action. The connection will be investigated

further by considering a scalar form of the theory of
gravity. In §4, it is recalled that equations for spin-two
fields in the weak-field limit of general relativity yield
a scalar differential operator that has a Green function
decreasing with the inverse square of the distance and a
momentum-space propagator which varies as the inverse
square of the momentum. Therefore, the propagator and
the quantum theory in its scalar form resemblescalar
electrodynamics. Removing the field strength term, and
using the metric connection to define an additional term in
the covariant derivative, the symmetry of the Lagrangian
with a local phase factor would be reduced to a global U(1)
invariance under a gauge fixing condition. The projection
of the ghost action of this model to a Riemann surface
is found to include the ghost action of bosonic string
theory. Ghosts representa complement to the space of
physical states. Nevertheless, this result is indicative of
a projection of quantum states in a scalar form of gravity
in four dimensions to string states on two-dimensional
surfaces.

The ghost sector complements the physical sector of
the four-dimensional theory. Therefore, a further rela-
tion between the symmetries is necessary to establish
a connection between the two-dimensional theory and
a complete model of the dynamics in four dimensions,
which is known not to be characterized macroscopically
by conformal invariance. Two methods may be devel-
oped at this stage. First, the conformal gravity and
supergravity Lagrangians may be included to extend
the conformal symmetry from two to four dimensions.
There are some problems of quantum consistency of the
actions, together with relevance to gravitational phe-
nonemona at large scales in space-time. Secondly, the
escalation of the dimension from two to four dimensions
follows a standard method. The two-dimensional rational
conformal field theories are the dimensionally reduced
Chern-Simons actions in three-dimensions. The Chern-
Simons action with gauge group ISO(2, 1) is equivalent to
three-dimensional gravity, which is a topological model.
Consequently, embedding coordinates must be introduced
to produce a four-dimensional action. These coordinates
would describe the fibres of the tangent and normal
bundles. The analogue of the Liouville action in string
theory to describe hermitian structures in vector bundles
and the dependence of the metric on the conformal scale
factor is the Donaldson action, which may be given in
both in two and four dimensions. The variational equation
of the four-dimensional hermitian Einstein-Yang Mills
integral is solved by anti-self dual connections. It may
be recalled also that the Chern-Simons action on a three-
dimensional space Σ is equal to the topological integral∫
M
Tr(F ∧ ∗F ), equal to the Yang-Mills action for a self-

dual connection, on a manifold M with boundary ∂M =
Σ, which exists always for oriented, closed, smooth three-
manifolds. Therefore, the generalization of the worldsheet
model to four dimensions, aligned with the quantum
consistency of two-dimensional theories with conformal
symmetry, may be developed through the quantization
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of these theories.

II. The Vanishing of BRST Superspace Contour
Integrals

The classical Weyl and diffeomorphism invariance of
the bosonic string does not remain at the quantum level
since there is an anomaly described by a Wess-Zumino-
Polyakov action. Given that there is a transformation of
the coordiantes (z, z̄) on a Riemann surface to (Z, Z̄),
where

dZ = λ[dz + µdz̄] (1)
dZ̄ = λ̄[µ̄dz + dz̄],

with λ = ∂Z being a conformal factor and µ = ∂̄Z
∂Z being

the Beltrami coefficient. Calculations at leading order in
the string perturbation series begin with surfaces of genus
zero or the sphere. The evaluation of scattering matrix
elements, such as the Kobe-Nielsen amplitude, does not
require an additional moduli space integral, since the
complex dimension of moduli space equals 0 for g = 0,
1 when g = 1 and 3g − 3 if g ≥ 2. Nevertheles, the
above coordinate transformations exists on the complex
plane the moduli space of metrics on the sphere is
zero-dimensional. The removal of one point from the
sphere produces a manifold that can be stereographically
projected to the finite complex plane, which produces the
torus upon identification of sides in a lattice. Therefore,
the moduli space also would be one-dimensional, with the
parameter being µ. Therefore, the Wess-Zumino-Polyakov
effective action must be regarded as an integral formulated
over the moduli space at genus one, with the complex
plane as the covering space. It is then defined [1] to be

ΓWZP (µ) = −1

2

∫
C
d2zµ∂2ln λ = −1

2

∫
d2z

∂̄Z

∂Z
∂2ln ∂Z

= −1

2

∫
C
d2z

{
∂

[
∂̄Z

∂Z
∂ln ∂Z

]
− ∂

(
∂̄Z

∂Z

)
∂ln ∂Z

}
= −1

2

∫
|z|=∞

dz̄
∂̄Z

∂Z
∂ln ∂Z +

1

2

∫
Z
d2z ∂

(
∂̄Z

∂Z

)
∂ln ∂Z

}
(2)

such that it can be generalized to higher genus, even
though there is no quotient by a lattice group. The first
integral vanishes if µ(z, z̄) vanishes as |z| → ∞ or the
coordinates (Z, Z̄) and (z, z̄) coincide at infinity within a
scaling factor. The second integral is

ΓWZP (µ) =
1

2

∫
C
d2z

(
∂∂̄Z

∂Z
− ∂2Z

∂Z∂̄Z

)
∂2Z

∂Z

=
1

2

∫
C

[
(∂2Z)

∂∂̄Z

(∂Z)2
− (∂2Z)2(∂̄Z)

(∂Z)3

]
(3)

Given the following transformations

sZ = λc (4)
sλ = ∂(λc)

sµ = (∂̄ − µ∂ + ∂µ)c

sc = c∂c,

the variation of the effective action is

sΓWZP = −1

2

∫
C
d2z (sµ)∂2ln λ− 1

2

∫
C
d2z µ(s∂2 ln λ).

(5)
The BRST operator may be brought through the ∂2 to

give ∂2s(ln λ) since sZ = λc and s(∂Z) = ∂(λc). Then

sΓWZP = −1

2

∫
C
d2z(∂̄ − µ∂ − ∂µ)c∂2 ln λ− 1

2

∫
C
d2z µ∂2

∂(λc)

λ
=

1

2

∫
C
d2z c(∂̄ − µ∂)∂2 ln λ− 1

2

∫
C
d2z ∂µ c∂2 ln λ

− 1

2

∫
C
d2z µ

(
∂3c+ ∂2

(
c
∂λ

λ

))
=

1

2

∫
C
d2z c

[
∂2

(
1

λ
(∂µ λ)

)
− ∂2µ∂ln λ− ∂µ∂2ln λ

]
− 1

2

∫
C
d2z µ

(
∂3c+ ∂2

(
c
∂λ

λ

))
=

∫
C
d2z c ∂3µ− 1

2∫
C
d2z c(∂2µ∂ln λ+ ∂µ∂2ln λ) +

1

2

∫
C

d2z c∂2µ
∂λ

λ
.

=

∫
C
d2z c ∂3µ− 1

2

∫
C
d2z c(∂µ)(∂2ln λ)

(6)

The first integral is identified with
∫
C d

2zA(z;µ) which
is the holomorphic component of the diffeomorphism
anomaly.

The integrals in superspace require the basis elements
of the cotangent space to the super-Riemann surface in
the coordinates (Z, Z̄,Θ, Θ̄) with reference to the system
ez = dz + θdθ, eθ = dθ,

eZ =

[
ez + eāHz

z̄ + eθHz
θ + eθ̄Hz

θ̄

]
Λ (7)

eΘ =

[
ez + ez̄Hz

z̄ + eθHz
θ̄ + eθ̄Hz

θ̄

]
z

+

[
eθHθ

θ + ez̄Hθ
z̄ + eθ̄Hθ

θ̄

]√
Λ. (8)

with Λ = ∂Z + Θ∂Θ and τ = ∂Θ. It follows from the
structure equations [1],deZ + eΘ ∧ eΘ = 0, deΘ = 0 , that

τ =
1

(Hθ
θ )

2
(D −Hz

θ ∂)(H
θ
θ

√
Λ) (9)

˜̄Dln Λ = ∂Hz
θ̄ −

Hθ
θ̄

Hθ
θ

∂Hz
θ .

Given that there is a transition of coordinates from (z, z̄)
to (z̃, ˜̄z) to (Z, Z̄), where dz̃ = λ(dz + µdz̄), d˜̄z = dz̄,
∂̃ = λ−1∂, ˜̄∂ = ∂̄ − µ∂, D̃ = ∂θ̃ + θ̃∂z̃, ˜̄D = ∂ ˜̄θ + ˜̄θ∂˜̄z

and ˜̄∂ln λ = 1
λ
˜̄∂λ = 1

λ (∂̄ − µ∂)λ = 1
λ (∂µ)λ = ∂µ, the
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analogue of − 1
2

∫
C d

2zµ∂2ln λ = 1
2

∫
C d

2z(∂µ)(∂ln λ) =
1
2

∫
C d

2z̃(∂µ)(∂̃ln λ) = 1
2

∫
C d

2z( ˜̄∂ln λ)(∂̃ln λ) would be

ΓWZP [H
z
θ̄ ,H

z
θ ] =

1

2

∫
SC
dz̃d˜̄zdθ̃d ˜̄θ (D̃ln Λ)( ˜̄Dln Λ). (10)

Since the superJacobian of the transformation of the coor-
dinates is sdet ∂(z̃,˜̄z,θ̃, ˜̄θ

∂(z,z̄,θ,θ̄)
=

√
Λ

Hθ
θ

and D̃ = 1√
ΛHθ

θ

(D−Hz
θ ∂),

ΓWZP [H
z
θ̄ ,H

z
θ ] =

1

2

∫
SC
dzdz̄dθdθ̄

√
Λ

Hθ
θ

[
∂Hz

θ̄ −
Hθ

θ̄

Hθ
θ

∂Hz
θ

]
1√
ΛHθ

θ

(D −Hz
θ ∂)ln Λ

=
1

2

∫
SC
dzdz̄dθdθ̄

1

(Hθ
θ )

2

[
∂Hz

θ̄ −
Hθ

θ̄

Hθ
θ

∂Hz
θ

]
(D −Hz

θ ∂)ln Λ

(11)

The gauge Hz
θ = 0, (Hθ

θ )
2 = 1 − (Dθ −Hz

θ ∂)H
z
θ = 1 and

this integral reduces to

ΓWZP [H
z
θ̄ ,H

z
θ = 0] =

1

2

∫
SC
dzdz̄dθdθ̄ ∂Hz

θ̄D ln Λ

= −1

2

∫
SC
dzdz̄dθdθ̄Hz

θ̄ ∂D ln Λ.

(12)
The BRST variation of the effective action in this gauge
has been computed [6]. With the BRST transformation
rules

sHz
θ̄ =

[
D −Hz

θ̄ ∂ +
1

2
(DHz

θ̄ )D

]
Cz + (∂Hz

θ̄ )C
z (13)

sΛ = Cz∂Λ +
1

2
(DCz)DΛ + Λ∂Cz,

sΓWZP [H
z
θ̄ ,H

z
θ = 0] = −1

2

∫
SC
dzdz̄dθdθ̄Hz

θ̄ ∂Dln Λ

− 1

2

∫
SC
dzdz̄dθdθ̄Hz

θ (−∂D)s ln Λ =

= −1

2

∫
SC
dzdz̄dθdθ̄

{[
− D̄ −Hz

θ̄ ∂ − 1

2
(DHz

θ̄ )D

]
Cz

+ (∂Hz
θ̄ )C

z

}
∂Dln Λ =

+
1

2

∫
SC
dzdz̄dθdθ̄ Hz

θ̄ ∂D
1

Λ(
Cz∂Λ +

1

2
(DCz)DΛ + Λ∂Cz

)
=

1

2

∫
SC
dzdz̄dθdθ̄ Cz

[
− D̄ −Hz

θ̄ ∂ − 1

2
(DHz

θ̄ )D

]
∂Dln Λ

− 1

2

∫
SC
dzdz̄dθdθ̄(∂Hz

θ̄ )C
z∂Dln Λ

+
1

2

∫
SC
dzdz̄dθdθ̄ Hz

θ̄

]
∂D

1

Λ

(
Cz∂Λ +

1

2
(DCz)DΛ + Λ∂Cz

)
, (14)

because integration by parts in the Grassmann variable
does not require a change in the sign, which can be

seen, for example, in
∫
dθ

(
∂
∂θ (a1 + b1θ)

)
(a2 + b2θ) =

b1b2 =
∫
dθ(a1+ b1θ)

∂
∂θ (a2+ b2θ). Commuting D̄ through

∂D introduces a new negative sign since DD̄y(θ, θ̄) =
−D̄Dy(θ, θ̄). Commuting (DHz

θ̄
)D through ∂D preserves

the sign. However, this term vanishes since D2y(θ, θ̄) = 0.
Consequently, the relation

[
D̄ − Hz

θ̄
∂ + 1

2 (DH
z
θ̄
)D

]
Λ =

(∂Hz
θ̄
)Λ [1] yields

sΓWZP =
1

2

∫
dzdz̄dθdθ̄ Cz∂D

(
1

Λ
(∂Hz

θ̄ )Λ

)
+

1

2

∫
dzdz̄dθdθ̄Hz

θ̄ ∂D∂C
z

+ extra terms (15)

Again, integration by parts of the operator D will not
affect the sign,

sΓWZP =

∫
dzdz̄dθdθ̄ Cz∂2DHz

θ̄ + extra terms (16)

The first integral represents the superdiffeomorphism
anomaly.

The Wess-Zumino-Polyakov action may be derived for
closed Riemann surfaces of arbi-
trary genus [?][3]. Since a Weyl anomaly occurs in the
BRST variation of the diffeomorphism invariant effective
action ΓD, counterterms may be added remove this
anomaly and replace it with a diffeomorphism anomaly.
With the conformal factor written as λ = eφρ0,

ΓW (µ, µ̄, λ) = ΓD(µ, µ̄, λ) + ∆Γ(µ, µ̄, λ)

∆1(µ, µ̄, λ) = −1

2

∫
Σ

d2z

[
1

2(1− µµ̄)
(∂ − µ∂̄)

ϕ(∂̄ − µ∂)ϕ− ϕ

[
∂∂̄ln ρ0 − (∂ − µ∂̄ − (∂̄µ̄))

∇0µ

1− µµ̄
− (∂̄ − µ∂ − (∂µ))

∇̄0µ̄

1− µµ̄

]}
(17)

∆2Γ(µ, µ̄, λ) =
1

2

∫
Σ

d2z

{
µ(R0 − r0) + µ̄(R̄0 − r̄0)

− 1

(1− µµ̄)

[
∇0µ∇̄0µ̄− 1

2
µ̄(∇0µ)

2

− 1

2
µ(∇̄0µ̄)

2

]}
(18)

where r0 = ∂2ln ρ0− 1
2 (∂ln ρ0)

2 is a projective connection

with the transformation rule (r0)a = (∂zazb)
2

[
(r0)b −

{za, zb}
]

in the overlap of the coordinate patches {Ua, za)}
and {(Ub, zb) in Σ and R0 is a holomorphic projection
satisfying sR0 = 0 and a coefficient representing the
central charge is set equal to 1 [2]. Then

sΓW (µ, µ̄,R0, R̄0) =

∫
Σ

d2zc(∂3 + 2R0∂ + (∂R0))µ

+

∫
Σ

d2zc̄(∂̄3 + 2R̄0∂̄ + (∂̄R̄0))µ̄ (19)
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is the sum of a holomorphic and anholomorphic compo-
nent. The holomorphic term is the variation of the Wess-
Zumino-Polyakov action ΓWZP on the surface Σ.

Another formula for this action includes
1

2

∫
Σ

d2z

[
2R0µ+ 2∂2µ+ ∂ln Ω0D∂µ

+ ∂ln Ω(µ)D∂µ+ ∂ln Ω0D∂ln Ω(µ)Dµ

]
+

1

4i

∮
∂D(ω0)

ln

(
Ω(µ)D
ω0

)
d ln

(
ω(µ)

Ω0D

)
+

1

2

∑
k

ν0kln

(
ω(µ)

Ω0D

)
(P̂0k) (20)

with Ω being a polydromic differential that has no zeros
on Σ replacing the Diff0(Σ) invariant one-forms ω with
2g−2 zeros at Pk(µ) with multiplicity νk(µ), P̂k is the lift
of Pk to the covering surface and ω0 and Ω0 are reference
one-forms. The third integral is necessary as a result of
the contribution of these zeros.

The differentials have been constructed to satisfy gluing
conditions amongst the coordi-
nate charts with transition functions that are PSL(2;C)
elements which would be necessary in a planar covering
of the Riemann surface. The domain of integration then
would be C\{∪g

ℓ=1DTℓ
∪DT−1

ℓ
, ℓ = 1, ..., g}. The integral

of a differential on this region would equal an integral
over the boundary consisting of the isometric circles
ITℓ

, IT−1
ℓ
, ℓ = 1, ..., g}. Given a PSL(2;C) invariance, the

contour integrals on ITℓ
and IT−1

ℓ
would cancel because

the integration paths have the opposite orientation. It
remains to be established if this cancellation is preserved
under BRST transformations.

The generalization of the Polyakov action to super-
Riemann surfaces of higher genus begins with a direct
generalization of the integral for the super-torus that satis-
fies a superconformal Ward identity for the effective action
Γ1[Rzθ,H

z
θ̄
] = 1

4π

∫
d2λÂ1, where Â1 = 4(Rzθ−Rχ0

)Hz
θ̄
+

Dθ(∆χ + ∆χ0
)Hz

θ̄
, χ = −Dθln Ψ and χ0 = −Dθln Ψ0

are the superaffine connections derived from the super-
half-differentials Ψ and Ψ0, Rzθ = −∂zζθ − ζθDθζθ is the
superprojective connection given in terms of the coefficient
of the connection ζθ = −Dθ ln DθΘ̂ constructed from
the solution to the super-Beltrami equation for the super-
projective structure consisting of charts from the super-
Riemann surface to C1|1 with coordinates (Ẑα, Θ̂α) and
{Hz

θ̄
} is the set of super-Beltrami coefficients, and several

new terms including the integral Γ2[H
z
θ̄
] = 1

2πi

∮
Â2 with

Â2 = ln

(
Ψ

η0

)
d̂ ln

(
η

Ψ0

)
(21)

must introduced for cancellation of the BRST variation of
the integrand and the action of the BRST operator [4] is
given by

s ln Ψ =
1

2
∆χC

z sΨ0 = 0 s ln η =
1

2
∆ξC

z sη0 = 0.

(22)

with Cz being the superdiffeomorphism ghost field. The
BRST transformation of this term in the effective action
therefore yields a contour integral on the super-Riemann
surface that must be evaluated through a supersymmetric
generalization of Stokes’ theorem.

To develop the theory of higher-genus contributions to
the supergravity action, it may be recalled that Stokes’
theorem has a superspace generalization [4][7]. Let

d̂Φ = (dλDθ + (−1)p+qdλ̂Dθ̄)Φ (23)
Φ = Φθdλ

Φθ(z, θ, z̄, θ̄) = ϕ0 + (θ − θ0)ϕ1 + (θ̄ − θ̄0)ϕ2

+ (θ − θ0)(θ̄ − θ̄0)ϕ3

Then

Dθ̄Φθ = ϕ2−(θ−θ0)ϕ3+(θ̃− θ̃0)∂̃ϕ0−(θ−θ0)(θ̃− θ̃0)∂̃ϕ0,
(24)∫

D̂

D̂Φ = −
∫
D̂

dλ̄ ∧ dλ(θ − θ0)(θ̄ − θ̄0)∂̄ϕ1 (25)

= −
∫
D

dz̄ ∧ dz∂̄ϕ1 =

∮
∂D

ϕ1dz,

and ∮
∂D̂

Φ =

∮
∂D̂

Φθdλ =

∮
∂D̂

(θ − θ0)ϕ1dzdθ (26)

=

∮
∂D

ϕ1dz.

Therefore, ∫
D̂

D̂Φ =

∮
∂D̂

Φ (27)

and the super-Stokes theorem is verified.

Theorem 1. The BRST variation of Â2 is given by the
sum of d̂

[
s ln η ln

(
Ψ
η0

)]
+ dλTλ + dλ̄T̄λ̄, where Tλ =

1
2Dzϕ+ (Rzθ −Rζ0)C

z − (Rzθ −Rχ0)C
z, T̄λ̄ = −s ln Ψ

Dθ̄ln
(

η
Ψ0

)
− s ln ηDθ̄ln

(
Ψ
η0

)
with ζ0 = −Dθ ln η0,

ζ = −Dθln η and
ϕ = Dθ[C

z(χ0 + χ− ζ0 − ζ)] + (ζζ0 − χχ0 − 2ζχ)Cz, and
three extra terms. Two terms are total derivatives which
vanish upon integration over a closed Riemann surface of
finite genus. The presence of the third term requires a can-
cellation of the commutator of the superspace derivative
and the BRST transformation.

Proof.
The BRST transformation of the term Â2 equals

sÂ2 = s

{
d̂

[
ln

(
Ψ

η0

)
ln

(
η0
Ψ0

)]
−
[
d̂ln

(
Ψ

η0

)
ln

(
η

Ψ0

)]}
(28)
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Since the BRST transformation and superspace derivative
anticommute, sd̂+ d̂s = 0, then

sd̂

[
ln

(
Ψ

η0

)
ln

(
η

Ψ0

)]
− d̂s

[
ln

(
Ψ

η0

)
ln

(
η

Ψ0

)]}
. (29)

and

d̂s

[
ln

(
Ψ

η0

)
ln

(
η

Ψ0

)]
= d̂

[
s ln

(
Ψ

η0

)
ln

(
η

Ψ0

)]
+ d̂

[
ln

(
Ψ

η0

)
s ln

(
η

Ψ0

)]
(30)

d̂

[
sln

(
η

Ψ0

)
s ln Ψ

]
= sln

(
Ψ

η0

)
(
Dθ

(
η

Ψ0

)
dλ−Dθ̄ln

(
η

Ψ0

)
dλ̄

)
+ d̂s

(
Ψ

η0

)
ln

(
η

Ψ0

)
− s

[
d̂

(
Ψ

η0

)
ln

(
η

Ψ0

)]
= sln

(
η

Ψ0

)[
Dθln

(
Ψ

η0

)
dλ

−Dθ̄ln

(
Ψ

η0

)
dλ̄

]
− sd̂ ln

(
Ψ

η0

)
ln

(
η

Ψ0

)
. (31)

Amongst the terms in the expression is

−s ln
(
Ψ

η0

)
Dθln

(
η

Ψ0

)
dλ− sln

(
Ψ

η0

)
Dθ̄ln

(
η

Ψ0

)
dλ̄

− (d̂s+ sd̂)ln

(
Ψ

η0

)
ln

(
η

Ψ0

)
+ sln

(
η

Ψ0

)
Dθln

(
Ψ

η0

)
dλ

+ ln

(
η

Ψ0

)
Dθ̄ ln

(
Ψ

η0

)
dλ̄ (32)

The remaining terms are

− s ln ΨDθln

(
η

Ψ0

)
dλ+ ln

(
η

Ψ0

)
(d̂s− sd̂λ)

ln

(
Ψ

η0

)
+ s ln ηDθln

(
Ψ

η0

)
dλ. (33)

Consider

Tλ =
1

2
Dθϕ+ (Rzθ −Rζ0)C

z − (Rzθ −Rχ0)C
z (34)

ϕ = Dθ[C
z(χ0 + χ− ζ0 − ζ) + (ζζ0 − χχ0 − 2ζχ)Cz.

(35)

Then

Dθϕ = D2
θ [C

z(χ0+χ− ζ0− ζ)]+Dθ[(ζζ0−χχ0−2ζχ)Cz]
(36)

and, since

∆ξ(−χ+ ζ0) = (−∆χ0
+∆ξ)(−χ)−∆χ0

χ+ (∆ξ −∆ζ)ζ0

+∆ζζ0 (37)
∆χ(ζ − χ0) = (∆χ −∆ζ0)ζ +∆ζ0ζ −∆χχ0

and
1

2
∆ξ(C

z(−χ+ ζ0))dλ = {1
2
D2

θ [C
z(−χ+ ζ0)]

− 1

2
Cz∆ξ(−χ+ ζ0)}dλ (38)

−1

2
∆χ(C

z(ζ − χ0))dλ = {−1

2
D2

θ [C
z(ζ − χ0)] +

1

2
Cz∆χ(ζ − χ0)}dλ,

s ln ηDθln

(
Ψ

η0

)
dλ− s ln ΨDθln

(
η

Ψ0

)
dλ

=

{
1

2
D2

θ [C
z(−χ+ ζ0 + ζ − χ0)] + (∆χ0

−∆ξ)χ

+ (∆ξ −∆ζ)ζ0

+ (∆ξ −∆ζ)ζ0 + (∆χ −∆ζ0)ζ −Rχ0
Cz +Rζ0C

z

}
dλ

=

(
− 1

2
Dθϕ+Rζ0C

z −Rχ0
Cz

)
dλ

+
1

2
Dθ[(ζζ0 − χχ0 − 2ζχ)Cz]dλ

+
1

2
[(∆χ0

−∆ξ)χ+ (∆ξ −∆ζ)ζ0 + (∆χ −∆ζ0)ζ]dλ

= dλ

(
1

2
Dθϕ+ (Rzθ −Rζ0

)
Cz − (Rzθ −Rχ0

)Cz)

+
1

2
Dθ[(ζζ0 − χχ0 − 2ζχ)Cz]dλ

+
1

2
[(∆χ0

−∆ξ)χ+ (∆ξ −∆+ζ)ζ0 + (∆χ −∆ζ0)ζ]dλ.

(39)

It follows that

Tλdλ = s ln η Dθ ln

(
Ψ

η0

)
dλ− s ln Ψ Dθln (fracηΨ0) dλ

(40)

Tλ̄dλ̄ = s ln η Dθ̄ln

(
Ψ

η0

)
dλ̄− s ln Dθ̄ln

(
η

Ψ0

)
dλ̄

Substitution into Eqs.(2.27) and (2.28) gives

sÂ2 = d̂

[
s ln η ln

(
Ψ

η0

)]
+ dλTλ + dλ̄T̄λ̄ (41)

+
1

2
Dθ[(ζζ0 − χχ0 − 2ζχ)Cz]dλ

+
1

2
[(∆χ0

−∆ξ)χ+ (∆ξ −∆ζ)ζ0 + (∆χ −∆ζ0)ζ]dλ

+ ln

(
η

Ψ0

)
(−d̂s− sd̂)ln

(
Ψ

η0

)
.

Three new terms in addition to d̂
[
s ln η ln

(
Ψ
η0

)]
+

dλTλ + dλ̄T̄λ̄ occur in the BRST variation of Â2 [4]. The
first term 1

2Dθ[(ζζ0−χχ0−2ζχ)Cz]dλ is a derivative along
the Grassmann variable in superspace, and the integral
vanishes on a closed finite-genus super-Riemann surface
by the super-Stokes theorem. The second term consists
of Laplacians which will integrate to zero on a compact
surface. The integral of the third term is∫

D̂

ln

(
η

Ψ0

)
(−d̂s− sd̂)ln

(
Ψ

η0

)
(42)
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While the superconformal and BRST transformations
do not necessarily commute in a supersymmetric gauge
theory [5], the vanishing of the anticommutator of s and
d̂ is sufficient to ensure the absence of a third integral.

The entire set of terms in the effective action has
been found to be Γ = Γ1 + Γ2 + Γ3 + Γ4, where Γ3

is another contour integral Γ3[H
z
θ̄
] = 1

4πi

∮
∂D

dλ̄[(ζζ0 −
χχ0 − 2ζχ)Hθ − 1

2 (χ + χ0 − ζ − ζ0)DθH
z
θ̄
] and Γ4 is

a sum of residues Γ4[H
z
θ̄
] =

∑
k

α0k

4 △ζC
z(P0k) with

η0(Pk) = β(Pk)(zk − z0k − θkθ0k)
1
2α0k [4]. The variations

of Γ2 and Γ3 cancel extra terms in sΓ1[Rzθ, H
z
θ̄
], leaving

only a globally defined anomaly. Therefore, the vanishing
of the new terms introduced in Theorem 1 is necessary
for a consistent formulation of the effective action. The
third contour integral does not vanish immediately by the
super-Stokes theorem. Nevertheless, the dissection into a
4g-sided polygon which contains no zeros of η is sufficient
to establish that the integral over contours surrounding
the points P0k will vanish again by the residue theorem
[3].

Superconformal classes of metrics on a super-Riemann
surface are parameterized by Hz

θ̄, Hz
θ. However, the

superconformal transformation mixes both Hz
θ̄

and Hz
θ,

complicating the description of supermoduli space. This
result reflects the non-splitness of supermoduli space. It
is known also that, with a super-projective connection
R(z, θ), the modified anomaly Ã(Cz;Hz

θ̄
) = Cz(∂D +

3Rzθ∂ + (DRzθ)D+2(∂Rzθ)H
z
θ̄

transforms with the super-
jacobian under superconformal transformations [6].

There does exist a formulation of nonperturbative quan-
tum chromodynamics with phantom symmetries such that
a generalized momentum operator does not commute with
the BRST charge [8]. Since the effects are nonperturbative,
these commutators would not be related to induced
supergravity actions at finite genus. At infinite genus,
there will be a new contribution to the contour integrals
from the ideal boundary. It is necessary to establish
that the contour integrals of the BRST variation over
the ideal boundary vanish. This result may be achieved
either by a restriction to the class of Type I surfaces or a
quasiconformally invariant subset or field that have BRST
variation that tends to zero at the boundary.

III. The Induced Supergravity Action at Infinite Genus
Additional terms in the induced supergravity action

occur when the action of the BRST transformation is
nonvanishing. Consider a surface with an ideal boundary
of zero linear measure. These Type I surfaces have the
classes OG, characterized by zero harmonic measure and
no Green function with a single source, and OAB , that
have no nonconstant, bounded, analytic functions, as
subsets. However, since each end of a Riemann surface
is identified with one point of the ideal boundary, it is
necessary to consider the contour integral over the actual

boundary arc. For example, the integral over a circular
boundary at an end of a surface would be non-zero. The
commutation of the conformal and BRST transformations
therefore will be proven to be required for the class of OG

surfaces.

Theorem 2. The BRST contour integrals of fields on
an OG surface of infinite genus vanish on the ideal
boundaries if the BRST transformation and the conformal
transformations commute.

Proof.
The BRST contour integral over the commutator of the

BRST operator with a vertex operator may be defined on
the ideal boundary or the boundary of the end of a surface.
Since the fields satisfy classical Laplacian equations on the
surface, the addition of a harmonic or analytic function
represents only another solution. Nevertheless, the absence
of nonconstant harmonic functions with finite Dirichlet
integrals in OHD, nonconstant analytic functions with
finite Dirichlet integrals in OAD and bounded nonconstant
analytic functions on an OAB surface, and the conformal
invariance of the classification of Riemann surfaces of infi-
nite genus, precludes the addition of arbitrary harmonic or
analytic functions to the integrands of the BRST integrals.
Consequently, given a meromorphic function that tends
to zero at the boundary of an end of infinite extent,
the BRST contour integral would not change because the
Dirichlet integral can be converted into a contour integral
by Stokes’ theorem. The contour integral also vanishes for
the conformally transformed surface with the boundary
given by the accumulation point of an infinite sequence
of handles. Similarly, for the supersymmetric theory, as
a result of the super-Stokes theorem, the integral of the
superspace derivative of a function on the super-Riemann
surface would be equal to the the integral of the function
over the contour on the ideal boundary. However, since
the super-differential and the BRST transformation do
not commute, the BRST transformation of a superspace
derivative of a function cannot be integrated to a boundary
term.

It is necessary therefore to establish the equivalence of
the evaluation of integrals of fields that tend to zero at
boundaries of surfaces of infinite extent with the vanishing
of the integral over a discrete set of accumulation points
of handles on a sphere with zero linear measure. A field
which tends to zero at infinity can have finite, analytic
limits at the accumulation points on a sphere of finite
extent.

Specifically, the conformal transformation ϕ : z → w(z),
where z is a coordinate tending to ∞ on the surface of
infinite extent and w(z) has finite values on the surface
constructed by attaching handles to the sphere, it follows
that any field ψ would be transformed to

ψ′(w) = ψ′(ϕ(z)) = ψ(z) (43)
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These surfaces can be embedded in R3 through the
homeomorphisms φi in an atlas {(Ui, φi)}, and, by the
extreme value theorem, the set of values of ψ′|Ui

= η′ ◦φi

would be finite on a compact set in C.
The coordinate z on the surface of infinite extent is not

necessarily global. However, the unit disk is a universal
cover for both surfaces. Suppose that the coordinate on the
unit disk is t such that the boundary is |t| = 1. Suppose
that the projection map from the unit disk to the surface
of finite extent is π : D → Σfin. Then the function ψD

can be defined to be

ψD(t) = ψ′(w) = ψ′(π(t)) (44)

The ideal boundary on the unit disk will be intersection
of the fundamental domain with the unit circle consisting
of a discrete set of points with zero Lebesgue measure.
Then ∫

β

ψD(t)dt = 0. (45)

It may be recalled that∫
∂Σinf

ψ(z)dz =

∫
β

dz

dw

dw

dt
ψD(t)dt. (46)

The surface Σinf can be covered by open sets that may
be mapped homeomorphically to open sets in the upper
half plane by a bounded mapping η, and the image of the
boundary would be located at infinity in H. The conformal
mapping ϕ−1 ◦ π then may be chosen to be ϕ−1 ◦ π(t) =
i 1+t
1−t . Since

dϕ−1 ◦ π(t)
dt

= i
d

dt

(
1 + t

1− t

)
(47)

=
2i

(1− t)2
,

the integral (3.4) will vanish if ψD(t) tends to zero as
rapidly as (1− t)2. It follows that the fields ψ will yield a
vanishing integral over the boundary ∂Σinf. when ψ(z) →
0 as 1

zα with α ≥ 2.

There is a distinction between the linear measure of the
ideal boundary and the border arc of a Riemann surface
over which a contour integral may be evaluated. Each end
of a surface may be identified with a point on the ideal
boundary. A point has no linear measure, and therefore,
an integral over this set would equal zero. Yet, the border
arc of one end of an infinitely long surface actually has
non-zero measure giving rise to a nonvanishing contour
integral. Surfaces belong to the class OAB have ideal
boundaries of zero linear measure, and yet, this property
is not sufficient to ensure a vanishing contour integral.
Instead, it is necessary to restrict the category in Theorem
2 to the class of OG surfaces. The rapid decrease of the
size of the handles tending towards infinity is sufficient to
give a boundary yielding a contour integral.

IV. BRST and Conformal Symmetries in Four
Dimensional Gravity

The relation between between these two symmetries
may be considered in four dimensions. The consistency
of the projection of the commutation of conformal and
BRST transformations reveals the connection between the
theories in two and four dimensions. First, it is known that
the commutator of BRST transformations in gravitational
theories with translation generators on the background
vanishes [10]. For conformal transformations, consider
the classical gravitational Lagrangian after integration by
parts

Lcl =
2

κ̃2
√
−ggµν(Γρ

µνΓ
λ
ρλ − Γλ

µρΓ
ρ
νλ) (48)

=
1

2κ̃2
[g̃µν g̃λρg̃τσ − 2δτ

νδµλ g̃ρσ − 1

2
g̃µν g̃ρτ g̃λσ]

(∂µg̃
ρτ )(∂ν g̃

ρσ)

g̃µν = gµν
√
−g

κ̃2 = 32πG,

and gauge fixing generates Faddeev-Popov ghosts, which
are described by the Lagrangian [10]

LFP = − 1

κ̃2
[(∂µbν)g̃

µν + i(∂µc̄ν)δg̃
µν − α

2
ηµνbµbν ]. (49)

Under a coordinate transformation xµ to x′µ and x′λ =(
δµ

λ + ∂µf
λ
)
xλ,

δf (Lcl) = ∂µΛ
µ
f, cl (50)

Λµ
f, cl = − 2

κ̃2
[fµg̃λσRλσ + δf (g̃

µλΓρ
λρ)− δf (g̃

λρΓµ
λρ)]

If δc̄ν = ibν and δbν = 0,

δLFP = − 1

κ̃2
[(∂µδbν)g̃

µν + (∂µbν)δg̃
µν + i(∂µδc̄ν)δg̃

µν−
α

2
ηµν · 2δbµbν ]

= − 1

κ̃2
[(∂µbν)δg̃

µν + i(i∂µbν)δg̃
µν ]

= 0. (51)

The current is given by

1

κ̃2
Jµ
B =

∂L
∂(∂µg̃λσ)

δ(g̃λσ) +
∂L

∂(∂µbλ)
δ(bλ) (52)

+
∂L

∂(∂µcλ)
δ(cλ) +

∂L
∂(∂µc̄λ)

δ(c̄λ)− Λµ
f
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and

1

κ̃2
∂µJ

µ
B = ∂µ

(
∂L

∂(∂µg̃λσ
δ(g̃λσ)

)
+ ∂µ

(
∂LFP

∂(∂µbλ)
δbλ

)
+ ∂µ

(
∂LFP

∂(∂µcλ)
δcλ

)
+ ∂µ

(
∂LFP

∂(∂µc̄λ)
δc̄λ

)
− ∂µΛ

µ
f (53)

=
∂L

∂(g̃λσ)
δg̃λσ +

∂L
∂(∂µgλσ)

δ(∂µg̃
λσ

+
∂L
∂bλ

δbλ +
∂L

∂(∂µbλ)
δ(∂µbλ)

+
∂L
∂cλ

δcλ +
∂L

∂(∂µcλ)
δ(∂µc

λ) +
∂L
∂c̄λ

δc̄λ

+
∂L

∂(∂µc̄λ)
δ(∂µc̄λ)− ∂µΛ

µ
f

(54)

by the Euler-Lagrange equation. Given the formal identity
δL = ∂µΛ

µ
f , the divergence of the current would vanish.

Given that δf (
√
−g) = −∂λ(fλ

√
−g),

δf (g̃
µν) = δf (g

µν√−g) = (δfg
µν)

√
−g + gµνδf (

√
−g)

(55)
= [(∂λf

µ)gλν + (∂λf
ν)gµλ

− fλ∂λg
µν ]

√
−g − gµν∂λ(f

λ√−g)
= (∂λf

µ)g̃λν + (∂λf
ν)g̃µλ − fλ∂λg̃

µν

Let fµ = cµ since c can be regarded as a vector field and a
generator of a coordinate transformation in a superspace
consisting of space-time and spinor coordinates. Then,

LFP = − 1

κ̃2

[
(∂µbν)g̃

µν + i(∂µc̄ν)((∂λc
µ)g̃λν

+ (∂λc
ν)g̃µλ − cλ∂λg̃

µν)− α

2
ηµνbµbν

]
(56)

∂L
∂∂µbλ

= − 1

κ̃2
g̃µλ (57)

∂L
∂∂µcλ

=
i

κ̃2

[
(∂λc̄ν)g̃

µν + (∂σ c̄λ)g̃
σµ

]
∂L

∂∂µc̄λ
= − i

κ̃2
δg̃µλ.

Then
∂LFP

∂∂µbλ
δbλ +

∂LFP

∂∂µcλ
δcλ +

∂LFP

∂∂µc̄λ
(58)

=
1

κ̃2
δg̃µλbλ +

i

κ̃2

[
(∂λc̄ν)g̃

µν + (∂σ c̄λ)g̃
σµ

]
δcλ

1

κ̃2
δBRST (g̃

µλ)bλ =
1

κ̃2
[(∂ρc

µ)g̃λνbλ

+ (∂ρc
λ)g̃µρbλ − cρ∂ρ∂̃

µλbλ]. (59)

Furthermore,

∂LFP

∂g̃λσ
= − 1

κ̃2
[∂λbσ + i((∂µc̄σ)(∂λc

µ) + (∂λc̄ν)(∂σc
ν))]

(60)
∂LFP

∂∂µg̃λσ
=

i

κ̃2
(∂λc̄σ)c

µ

and
1

κ̃2
δBRST (g̃

µλ)bλ +
1

κ̃2
∂LFP

∂∂µg̃λσ
δBRST g̃

λσ (61)

=
1

κ̃2
[(∂ρc

µ)g̃ρλbλ + (∂ρc
λ)g̃µρbλ − cρ∂ρ∂̃

µλbλ]

− i

κ̃2

[
(∂λc̄ν)g̃

µν + (∂σ c̄λ)g̃
σµ

]
cρ∂ρc

λ

+
i

κ̃2
(∂λc̄σ)c

µ[(∂ρc
λ)g̃ρσ + (∂ρc

σ)g̃λρ − cρ∂ρg̃
λσ]

Similarly,

∂Lcl

∂(∂µg̃γδ)
=

1

κ̃2
[g̃µν g̃λγ g̃δσ − 2δλ

µδ(δ
ν g̃γ)σ

− 1

2
g̃µν g̃γδ g̃λσ]∂ν g̃

σλ (62)
∂Lcl

∂(∂µg̃λσ)
δ(g̃λσ) =

1

κ̃2
[g̃µν g̃λγ g̃δσ − 2δλ

µδ(δ
ν g̃γ)σ−

1

2
g̃µν g̃γδ g̃λσ]∂ν g̃

σλ

[(∂ρc
γ)g̃ρδ + (∂ρc

δ)g̃γρ − cρ∂ρg̃
γδ]

The remaining term is

Λµ
c = − 2

κ̃2
[cµg̃λσRλσ + δc(g̃

µλΓρ
λρ)− δc(g̃

λρΓµ
λρ)]. (63)

Since Γρ
λρ = 1√

−g
∂λ(

√
−g),

δBRST (g̃
µλΓρ

λρ) = δ(gµλ∂λ(
√
−g)) (64)

= [(∂ρc
µ)gρλ + (∂ρc

λ)gµρ − cρ∂ρg
µλ]∂λ(

√
−g)

+ gµλ∂λ[−∂ρ(cρ
√
−g)]

and

δBRST (g̃
λρΓµ

λρ) = [(∂σc
λ)g̃σρ + (∂σc

ρ)g̃λσ − cσ∂σ g̃
λρ]Γµ

λρ

+ g̃λρδc

[
1

2
gµτ (∂ρgτλ + ∂λgτρ − ∂τgλρ)

]
(65)

= [(∂σc
λ)g̃σρ + (∂σc

ρ)g̃λσ − cσ∂σ g̃
λρ]Γµ

λρ

+
1

2
g̃λρ[(∂σc

µ)gστ + (∂σc
τ )gµσ − cσ∂σg

µτ ]

(∂λgτρ + ∂τgλρ − ∂ρgτλ)

− 1

2
g̃λρgµτ∂ρ(∂τ c

σgσλ + ∂λc
σgτσ + cσ∂σgτλ)

− 1

2
g̃λρgµτ∂λ(∂τ c

σgσρ + ∂ρc
σgτρ + cσ∂σgτρ)

+
1

2
gµτgµτ∂τ (∂ρc

σgσλ + ∂λc
σgρσ + cσ∂σgλρ)

= [(∂σc
λ)g̃σρ + (∂σc

ρ)g̃λσ − cσ∂σ g̃
λρ]Γµ

λρ

− 1

2
g̃λρgµτ (∂τ∂ρc

σgσλ + ∂τ∂λc
σgσρ + cσ∂τ∂σgλρ)
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The following equations
4Rµν = ∂µbν + ∂νbµ + i(∂µc̄λ)(∂νc

λ)

+ i(∂ν c̄λ)(∂µc
λ) (66)

+ i∂ν [(∂λc̄µ)c
λ] + i∂µ[(∂λc̄ν)c

λ]

∂µg̃
µν + αbν = 0.

are derived from the action. Then

Λµ
c = − 2

κ̃2

[
1

4
cµg̃λσ

{
∂λbσ + ∂λbσ + i(∂λc̄ρ)(∂σc

ρ)

+ i(∂σ c̄ρ)(∂λc
ρ))

+ i∂σ[(∂ρc̄λ)c
ρ] + i∂λ[(∂ρc̄σ)c

ρ]

}
+ [(∂ρc

µ)gρλ + (∂ρc
λ)gµρ − cρ∂ρg

µλ]∂λ(
√
−g)

+ gµλ∂λ[−∂ρ(cρ
√
−g)]

+ [(∂σc
λ)g̃σρ + (∂σc

ρ)g̃λσ − cσ∂σ g̃
λρ]Γµ

λρ

− 1

2
g̃λρgµτ (∂τ∂ρc

σgσλ + ∂τ∂λc
σgσρ + cσ∂τ∂σgλρ)

]
.(67)

Combining Eqs.(4.14), (4.15) and (4.20),
Jµ
B = [(∂ρc

µ)g̃ρλbλ + (∂ρc
λ)g̃µρbλ − cρ∂ρg̃

µλbλ] (68)

− i

[
(∂λc̄ν)g̃

µν + (∂σ c̄λ)g̃
σµ

]
cρ∂ρc

λ

+ i(∂λc̄σ)c
µ[(∂ρc

λ)g̃ρσ + (∂ρc
σ)g̃λρ − cρ∂ρg̃

λσ]

+ [g̃µν g̃λγ g̃δσ − 2δλ
µδ(δ

ν g̃γ)σ − 1

2
g̃µν g̃γδ g̃λσ]∂ν g̃

σλ

[(∂ρc
γ)g̃ρδ + (∂ρc

δ)g̃γρ − cρ∂ρg̃
γδ]

+ 2

[
1

4
cµg̃λσ

{
∂µbν + ∂νbµ+

i(∂µc̄λ)(∂νc
λ) + i(∂ν c̄λ)(∂µc

λ)

+ i∂ν [(∂λc̄µ)c
λ] + i∂µ[(∂λc̄ν)c

λ]

}
+ [(∂ρc

µ)gρλ + (∂ρc
λ)gµρ − cρ∂ρg

µλ]∂λ(
√
−g)

+ gµλ∂λ[−∂ρ(cρ
√
−g)]

+ [(∂σc
λ)g̃σρ + (∂σc

ρ)g̃λσ − cσ∂σ g̃
λρ]Γµ

λρ

− 1

2
g̃λρgµτ (∂τ∂ρc

σgσλ + ∂τ∂λc
σgσρ + cσ∂τ∂σgλρ)

]
.

The BRST charge is

QB =

∫
d3xJ0

B . (69)

The Faddeev-Popov Lagrangian LFP is invariant under
the transformations cλ → e−acλ and c̄ρ → eac̄ρ. Setting
δcλ = −cλ and δc̄λ = c̄λ,

∂LFP

∂(∂µcλ)
δconf (c

λ) +
∂LFP

∂(∂µc̄λ)
δ(c̄λ) =

− i

κ̃2
[(∂λc̄ν)g̃

µν + (∂σ c̄λ)g̃
σµ]cλ (70)

− i

κ̃2
[(∂σc

µ)g̃σλ + (∂σc
λ)g̃µσ − cσ∂σ g̃

µλ]c̄λ.

It equals
ig̃µλ[c̄ρ(∂λc

ρ)− (∂λc̄ρ)c
ρ] + iαbρc̄ρc

µ + ∂λG
λµ (71)

Gλµ = ic̄ρ(g̃
λρcµ − g̃µρcλ).

because

ig̃µλ[c̄ρ(∂λc
ρ)− (∂λc̄ρ)c

ρ] + iαbρc̄ρc
µ (72)

+ ∂λ[ic̄ρ(g̃
λρcµ − g̃µρcλ)]

= ig̃µλ[c̄ρ(∂λc
ρ)− (∂λc̄ρ)c

ρ] + iαbρc̄ρc
µ

+ i(∂λc̄ρ)c
µg̃λρ + ic̄ρ(∂λc

µ)g̃λρ + ic̄ρ(∂λg̃
λρ)cλ

− i(∂λc̄ρ)c
λg̃µρ − ic̄ρ(∂λc

λ)g̃µρ − ic̄ρ(∂λg̃
µρ)cλ

which differs from ∂LFP

∂(∂µcλ)
δconf (c

λ) + ∂LFP

∂(∂µc̄λ)
δconf (c̄λ) by

i(∂λc̄ρ)c
µg̃λρ−ic̄ρ(∂λcλ)g̃µρ, given that [bλ, cρ] = [bλ, c̄ρ] =

0, {cλ, c̄ρ} = 0 and iαbρc̄ρcµ+ic̄ρ(∂λg̃λρ)cµ = 0. Since ∂λcλ
and ∂λc̄λ are scalars, and ∂λcλ → e−a∂λc

λ, ∂λc̄λ → ea∂λc̄
λ

under conformal transformations, both divergences can be
set equal to zero.

Removing ∂µGµλ from the current, a conformal current

Jµ
c = ig̃µλ[c̄ρ(∂λc

ρ)− (∂λc̄ρ)c
ρ] + iαbρc̄ρc

µ (73)

may be defined with a vanishing divergence

∂µJ
µ
c = i(∂µg̃

µλ)[c̄ρ(∂λc
ρ)− (∂λc̄ρ)c

ρ] + ibρc̄ρc
µ (74)

+ ig̃µλ[(∂µc̄ρ)(∂λc
ρ)− (∂µ∂λc̄ρ)c

ρ − (∂λc̄ρ)∂µc
ρ]

+ iα∂µb
ρc̄ρc

µ + iαbρ(∂µc̄ρ)c
µ + iαbρc̄ρ∂µc

µ

= −iαbλ[c̄ρ(∂λcρ)− (∂λc̄ρ)c
ρ]

+ iαc̄ρ[b
λ∂λc

ρ − bρ(∂λc
ρ)− (∂λb

ρ)cρ]

+ ig̃µλ(∂c̄ρ)(∂λc
ρ)− iαbλ[(∂ρc̄λ) + (∂λc̄ρ)]c

ρ

− ig̃µλ(∂λc̄ρ)∂µc
ρ

+ iα∂µb
ρc̄ρc

µ + iαbρ(∂µc̄ρ)c
µ + iαbρc̄ρ∂µc

µ

= 0.

The integral of the conformal current

Qc =
1

κ̃2

∫
d3xJ0

c =
1

κ̃2∫
d3x

[
ig̃0λ[c̄ρ(∂λc

ρ)− (∂λc̄ρ)c
ρ] + iαbρc̄ρc

0

]
. (75)

The commutator [QB , Qc] is determined by the BRST
variation of the conformal current and the conformal vari-
ation of the BRST current. The first variation δBRSTJ

µ
c

equals

δBRST [ig̃
µλ[c̄ρ(∂λc

ρ)− (∂λc̄ρ)c
ρ] + iαbρc̄ρc

µ] =

i[(∂ρc
µ)g̃ρλ + (∂ρc

λ)g̃µρ − cρ∂ρg̃
µλ] (76)

[c̄σ(∂λc
σ)− (∂λc̄σ)c

σ]

+ ig̃µλ[ibρ(∂λc
ρ)− c̄ρ(∂λ(c

σ∂σ)c
ρ)

− i(∂λbρ)c
ρ + (∂λc̄ρ)c

σ∂σc
ρ]

− αbρbρc
µ − iαbρc̄ρc

λ∂λc
µ.
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which can be cast in the form

− αbρbρc
µ − iαbρc̄ρc

λ∂λc
µ − g̃µλ[bρ(∂λc

ρ)− (∂λbρ)c
ρ)]
(77)

+ ig̃µλ[(∂ρ∂λc̄σ)c
ρcσ + (∂ρc̄σ)∂λc

ρcσ + 2∂λc̄σc
ρ∂ρc

σ]

− ig̃µλ[∂λ(∂ρc̄σc
ρcσ) + ∂λ(c̄σc

ρ∂ρc
σ)]

+ i∂ρ(c
µg̃ρλ[c̄σ(∂λc

σ)− (∂λc̄σ)c
σ])

+ i∂ρ(c
λg̃µρ[c̄σ(∂λc

σ)− (∂λc̄σ)c
σ])

− i∂ρ(c
ρg̃µλ[c̄σ(∂λc

σ)− (∂λc̄σ)c
σ])

+ iαcµ[c̄σb
σ(∂λc

λ) + c̄σ(∂λb
σ)cλ + bλ(∂σ c̄λ)c

σ]

+ iαcλbµ[c̄σ(∂λc
σ)− (∂λc̄σ)c

σ]

+ i(∂ρc
ρ)g̃µλ[c̄σ(∂λc

σ)− (∂λc̄σ)c
σ].

Since

− ig̃µλ[∂λ(∂ρc̄σc
ρcσ) + ∂λ(c̄σc

ρ∂ρc
σ)] (78)

= −i∂λ(g̃µλ(∂ρc̄σcρcσ + c̄σc
ρ∂ρc

σ)]

− iαbµ[∂ρc̄σc
ρcσ + c̄σc

ρ∂ρc
σ],

there is a simplification of the combination

iαcλbµ[c̄σ(∂λc
σ)− (∂λc̄σ)c

σ]

− iαbµ[∂ρc̄σc
ρcσ + c̄σc

ρ∂ρc
σ] = −2iαbµc̄σc

ρ∂ρc
σ (79)

and a cancellation of terms in the first and sixth lines

iαcµc̄σ∂λb
σcλ + iαcµc̄σb

σ∂λc
λ + iαcµbλ∂σ c̄λc

σ

− iαbρc̄ρc
λ∂λc

µ (80)
= iα∂λ(c

µc̄σb
σcλ)− iα∂λc

µc̄σb
σcλ − iαbρc̄ρc

λ∂λc
µ

= iα∂λ(c
µc̄σb

ρcλ)

yielding

−αbρbρcµ − g̃µλ[bρ(∂λc
ρ)− (∂λbρ)c

ρ] (81)
+ ig̃µλ[(∂ρ∂λc̄σ)c

ρcσ + (∂ρc̄σ)∂λc
ρcσ + 2∂λc̄σc

ρ∂ρc
σ]

− 2iαbµc̄σc
ρ∂ρc

σ + i(∂ρc
ρ)g̃µλ[c̄σ(∂λc

σ)− (∂λc̄σ)c
σ]

+ total derivative terms

for δBRSTJ
µ
c . The value of α is a gauge choice. Setting

α = 0, integration by parts with Eq.(3.24) gives

2g̃µλ(∂λbρ)c
ρ + ig̃µλ[(∂λc̄σ)(c

ρ∂ρc
σ − ∂ρc

ρcσ)

+ ∂ρc̄σ∂λc
ρcσ] (82)

+ ig̃µλ[−c̄σ∂λcσ(∂ρcρ) + (∂λc̄σ)(∂ρc
ρ)cσ]

+ total derivative terms

= 2g̃µλ(∂λbρ)c
ρ + ig̃µλ[(∂λc̄σ)(c

ρ∂ρc
σ − ∂ρc

ρcσ)

− c̄σ∂λc
σ(∂ρc

ρ)]

+ total derivative terms

By Eq.(4.18), integration by parts and the equation

g̃µν∂µ∂νc
ρ = α[bλ(∂µc

ρ)− bρ(∂λc
λ)− (∂λb

ρ)cλ] (83)

which may be set equal to zero when α = 0, δBRSTJ
µ
c

equals the sum of a curvature term 4Rµ
ρc

ρ and total
derivatives. Regarding the spin-2 fields as perturbations
about the background metric, Rµν can be set equal to

zero either on flat space or through the vacuum gravita-
tional field equations. Similarly, it may be deduced from
Eq.(4.21) that δcJµ

B = −Jµ
B . Then δBRSTJ

µ
c − δcJ

µ
BRST

can be equated to the sum of −Jµ
B and total derivative

terms [10]. The projection of [QB , Qc] onto two dimensions
may be identified with −QB . Therefore, the action of
the commutator will vanish on physical states satisfying
QB |ϕ⟩ = 0.

The ghost fields therefore provide a method for incor-
porating scale invariance into the gravitational theory. It
may be noted that the variation δconf (g̃

µν) has been set
equal to zero. It vanishes most naturally in two dimensions
because, gµν → eagµν , √−g →

√
e2a(−g) = ea

√
−g, and

g̃µν = gµν
√
−g → g̃µν . These fields can be projected onto

two-dimensional string worldsheets to provide the content
of a theory invariant under scale transformations. The
projection of the Faddeev-Popov action to two dimensions
is

LFP

∣∣∣∣
Σ

= − 1

κ̃2

[
(∂αbβ)h̃

αβ + i(∂αc̄β)((∂γc
α)h̃γβ

+ (∂γc
β)h̃γα − cγ∂γ h̃

αβ)− α2

2
δαβbαbβ

]
(84)

where h̃αβ = hαβ
√
h, with hαβ being the two-dimensional

metric, which differs from the free-fermion bc theory on
a Riemann surface arising from the gauge fixing of the
string action. It is closer to the action for W3 gravity in
the conformal gauge can be reformulated in the higher
derivative gauge [11] to be

IW3 =

∫
d2z

[
− 1

2
∂̄φα∂φα

− hTmat + πh∂̄h− b∂̄(∂̄c+ c∂h+ ∂ch),

]
(85)

where h is an unfixed component of the worldsheet
metric hαβ =

(
1 0
0 h

)
equal to the determinant, b and

c are ghost fields, πh is an auxiliary field and Tmat is
the matter energy-momentum tensor, after a FFBRST
transformation of the scalars φi, the ghost fields, h and
πh [12]. The ghost terms in the Lagrangian now consist of
two derivatives, which occur also in the projection of the
four-dimensional gravitactional action to the worldsheet.

The gravitational interaction between two masses was
described initially by a force law which has the same form
as that of electrostatics, except that masses must have
the same sign. The gravitational potential satisfies the
Poisson equation ∇2φ = −8πGρ, where ρ is the mass
density, which may be derived in a weak-field limit of
general relativity. Without the source term, in the de
Donder gauge, the equation for the spin-two excitation is
□hµν = 0. Since h00 = −2φ, hij = −2ϕδ[ij], □φ = 0. The
Green function for the d’Alembertian in four dimensions is

1
|xµxµ| . By a Fourier transform, the propagator can be rep-
resented in momentum space as 1

p2 . Therefore, the model
may be quantized similarly to electrodynamics, with the
vector fields replaced by scalar fields. To incorporate the
effects of mass by analogy with the Poisson’s law, with
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the gravitational potential of a mass φ = −Gm
r and

−4πGρ = −4πG m
4
3πr

3 = −3Gm
r3 = 3

[ r
2]φ, consider the

equation (□ − 3
r2 )φ = 0. The Green function for this

differential operator would be (mr)
√

3

|xµxµ| . The radial form

is (mr)
√

3

r2 .
Removing the field strength term from scalar electrody-

namics, and replacing the gauge potential coupling with
a weak-field connection term, the Lagrangian would have
the form

Lscalar gravity =
1

2
Dµφ†Dµφ+

1

2
m2φ†φ (86)

Dµφ = (∂µ + Γµ)φ

Even though the connection is not a tensor field, spatial
components of the Christoffel symbol are given by a
gradient of the potential and Γµ may be set equal to
∂αφ. Then

Lscalar gravity =
1

2
(1 + φ†)(1 + φ)∂µφ†∂µφ+

1

2
m2φ†ϕ.

(87)
Let m = 0 and φ̃ = 1 + φ. The Lagrangian then equals

Lscalar gravity(m = 0) = φ̃†φ̃∂µφ†∂µφ̃ (88)

Under the transformations ϕ̃ → eiα(x)φ̃(x) and φ̃† →
e−iα(x)φ̃†(x),

δLscalar gravity(m = 0) = ϕ̃†φ̃{∂µφ̃†∂µφ̃+ ∂µα∂µφφ
†φ

− i∂µαφ̃†∂µφ̃+ i∂µαφ̃∂
µφ̃†}

− ϕ̃†φ̃∂µφ̃†∂µφ̃

= (φ̃†φ̃)∂µα∂µα+ i∂µ{φ̃†φ̃α[φ̃∂µφ̃† − φ̃†∂µφ̃}
− iα[(φ̃∂µφ̃†)2 − (φ̃†∂µφ̃)2]. (89)

Since ∂µ(φ̃∂µφ̃†) = ∂µ(φ̃
†∂µφ̃), φ̃∂µφ̃† = φ̃†∂µφ̃ + kµ,

where ∂µkµ = 0 and
−iα[(φ̃∂µφ̃†)2 − (φ̃†∂µφ̃)2] = −iα∂µ(φ̃†φ̃)kµ =
−iα∂µ(φ̃†φ̃kµ), which is a total derivative if ∂µα = 0,
kµ = 0 or ∂µα(ϕ̃†ϕ̃kµ) = 0. The condition φ̃∂µφ̃† = φ̃†∂µφ̃
requires φ̃ to have a constant phase, and therefore it
cannot be preserved under local gauge transformations
with ∂µα ̸= 0.

While ghosts may be eliminated in this model through
a decoupling from the scalar field, the gauge may be
fixed, reducing the symmetry from a local to global
U(1) invariance, by adding the Lagrange multiplier term
1
2

∫
d4x cµ(φ̃∂

µφ̃†

−φ̃†∂µφ̃). The projection to two dimensions is
1
2

∫
d2zc(φ̃∂ ¯̃φ − ¯̃φ∂φ̃). The sum of the projected

ghost action and gauge-fixing term can be projected onto
two-dimensional string worldsheet

1

2

∫ [
a∂̄b+ b∂̄c+ c(φ̃∂ ¯̃φ− ¯̃φ∂ϕ̃)

]
(90)

The Euler-Lagrange equation for c is

∂̄b = φ̃∂ ¯̃φ− ¯̃φ∂φ̃ (91)

and variation with respect to a gives

∂̄b = 0 (92)

which fixes the gauge. Variation with respect to b yields
∂̄c = 0. The two relations also may derived from the
standard bc action 1

2

∫
b∂̄c.

It has been suggested that all of the supergravity
amplitudes at tree level can be given by a universal formula
which is valid for a class of NkMHV as well as MHV
amplitudes [13]. This conclusion is based, however, on a
single trace decomposition of the amplitude which follows
only for rational curves in twistor space of degrees d1
and d2 with one intersection. The complex dimension
is one for each curve, yielding complex codimension ci,
i = 1, 2, equal to two, and

∑2
i=1 ci = 4, which is

larger than that of the twistor space, and therefore, the
upper bound d1d2 is not relevant. Nevertheless, there
may exist multiple intersections of the curves and the
number can be counted through Floer theory [14]. The
NkMHV amplitudes are known to introduce higher-genus
curves, which require conformal supergravity and quartic
poles in the factorization of the amplitudes [15]. The
ghost structure [16] and the divergences [17] in conformal
supergravity have been described. The equations of the
bosonic sector of supergravity theory coupled to scalar and
antisymmetric tensor fields have been derived from the
vanishing of anomalies in operator products in worldsheet
gravity [20]. The ambitwistor string can be formulated in
four and ten dimensions [18], and a gravitational action,
summed in a perturbation series, may be derived from the
twistor string amplitudes [19].

The Liouville action describing the dynamics of a
scalar mode in string theory may be generalized to the
Donaldson action with a variation that gives the equation
for hermitian structures in holomorphic vector bundles
both on two-dimensional surfaces and four-manifolds [21].
Therefore, both the dependence of the metric on the scale
and extra embedding degrees of freedom in the tangent
and normal bundles on the three-dimensional geometries
foliating the four-manifold may be investigated with this
action.

The BRST symmetry can be extended to a quadratic
gravity action, renormalizable in the generalized sense
[22], with couplings to a scalar field in a unitary theory.
The scale invariance of the Faddeev-Popov action may be
projected to this symmetry in two dimensions, which then
yields a quantum theory with conformal invariance. The
existence of a conformal invariance of a theory with scale
invariance in four dimensions also follows perturbatively
given a set of conditions including unitarity, Poincare
invariance in the background space-time, a discrete spec-
trum in the scaling dimension and the existence of a scale
current [23]. The physical states invariant under BRST
transformations in four dimensions will be projected to
states for which the action of the BRST and conformal
transformations commute in in two dimensions. The BRST
invariance of the induced two-dimensional action then
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would be valid on any Riemann surface with an ideal
boundary of zero linear measure.

V. Conclusion
The BRST transformations of terms in the induced su-

pergravity action have been extended to give to superspace
to establish whether the invariance is preserved at higher
genus. It is found that three extra sets of terms arise in the
transformation. Two of the terms can be integrated to give
zero on a compact surface and do not affect the induced
action. The third term is an integral of an expression that
includes an anticommutator of a superspace derivative and
the BRST transformation that vanishes. The action of the
BRST operator on the second anomaly term A2 therefore
yields an expression consisting of differentials, with the
sum of Tλdλ and T̄λ̄dλ̄, proving the BRST invariance of
the anomaly through one of the superspace techniques
[4]. By contrast, a direct evaluation of the BRST trans-
formation of the Wess-Zumino-Polyakov action gives the
standard diffeomorphism anomaly, together with several
other terms. Since the BRST operator s is required to
satisfy s2 = 0, it will be necessary to check the other
terms in the variation of ΓWZP in superspace.

The preservation of the anomaly under the action of s
is valid in gauge theories where the two transformations
do commute. The effective action in two-dimcensional
conformal field theories is defined such that the BRST
variation yields the anomaly with a total derivative.
However, since the domain of the integral is a region
of the complex plane exterior to 2g disks at genus g,
and the integral of any differential would equal a sum
of contour integrals over the boundaries of the disks.
By PSL(2;C) invariance, there are pairwise cancellations
of the contour integrals with opposite orientations. A
second BRST transformation again will yield derivative
terms which generate contour integrals over the curves
that occur after BRST transformations of the circular
boundaries. The generalization to the superstring action
will induce a supergravity action with fermion fields.
In addition to diffeomorphism invariance, the st This
result would even be verified for the induced action for
the bosonic string for a class of infinite-genus surfaces.
The contribution of boundaries of surfaces also may be
evaluated. It is found that the integrals over the ideal
boundaries of infinite-genus surfaces will not yield any
additional terms when the harmonic measure is equal to
zero.

The conformal current for the Faddeev-Popov action has
a vanishing divergence and the commutator of the BRST
charge with the conformal charge Qc is nonvanishing.
This calculation may be extended to the quadratic gravity
action. The Faddeev-Popov ghosts in the quantization of
the quadratic gravity action must be projected to ghosts
in the quantization of the induced supergravity action
of the superstring. On the vacuum state, the action of

the commutator would be be projected to zero in two
dimensions. The consistency of the projection from four
to two dimensions will be required for the embedding of
the string dynamics in four dimensions.

The Faddeev-Popov action for general relativity is
quadratic in derivatives which will occur in a projection to
a two-dimensional surface. Therefore, it is conjectured that
a scalar form of the theory of gravity may be developed. A
consideration of the weak-field approximation of the grav-
itational field equations and a Lagrangian by analogy with
scalar electrodynamics without the field strength term
results an action with complex scalar fields. The gauge
invariance is initially a global U(1) symmetry. However,
allowing the phase to be position-dependent, equations for
α are derived for the variation of the Lagrangian to be a
total derivative. Fixing a gauge, the local U(1) invariance
is reduced to the global U(1) group, and the ghost action
is found. The field equations are found to coincide with
that of the ghost action of bosonic string theory and
the gauge fixing condition. Therefore, a scalar form of
the gravity theory is necessary to establish a relation
between the models in two and four dimensions. The
extension of the symmetries on the string worldsheet to a
complete description of the dynamics in the embedding
space may require the inclusion of conformal gravity,
which represents the effective theory of the twistor string.

The Weyl invariance of the Faddeev-Popov Lagrangian
confirms the characterization of the gravitational action as
an effective theory derived from a string sigma model on
the Riemann surface. In bosonic string and superstring
theory, the equations for the metric to preserve the
conformal symmetry at the quantum level are derived
from an effective action in a critical dimensions equal to
twenty-six and ten respectively. There are conditions also
on the metric that arise from variations for a Lagrangian
expanded in a series with higher-order curvature combi-
nations. The solutions to these equations to all orders in
the sigma model coupling include flat space and several
other classes of geometries, which can be compactified over
extra coordinates to four dimensions. The scale invariance
is recovered only in the ghost sector of gravity, which is
consistent with the absence of this symmetry at sufficiently
large distances.
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