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University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenija
tomaz.dobravec@fri.uni-lj.si

Abstract- According to the `1 norm,
the minimum-projection P i(x, v) is the
smallest element of the intersection of
the discrete straight line t(x, v) = {x + t ∗
v, t ∈ Z} and the half-plane Z2

i = {x ∈
Z × Z; sign(i) ∗ x|i| ≤ 0}. The minimum-
projection is, among other things, also
used to execute effective routing algo-
rithms in circulant graphs. This arti-
cle presents an algorithm for calculat-
ing the minimum-projections and an al-
gorithm for calculating the smallest ele-
ment of the discrete straight line t(x, v) in
the whole plane Z × Z. Both algorithms
have the time complexity O(1). The arti-
cle also discusses the k-dimensional gen-
eralization of the above-mentioned algo-
rithms.

Keywords- Integer lattice, Manhattan
norm, smallest element, circulant graphs

I. Introduction

Let n, h1 and h2 be integer numbers and let
0 < h1 < h2 < bn2 c. Furthermore, let Vn be
a set of non-negative numbers that are smaller
than n, I = {1, 2,−1,−2} and let Ei (for each
i ∈ I) be a set of edges, Ei = {(v, v + sign(i) ∗
hi (mod n); v ∈ Vn}. A graph with a set of
vertices Vn and a set of edges E = ∪i∈IEi is
called an undirected 2-circulant graph and is
marked by G(n;±h1,±h2) [1, 10, 11]. Circulant
graphs, which among other things also comprise
cycles, complete graphs, twisted toruses and
the like (see Figure 1), are used in computer
networks and multiple-processor systems with
a distributed memory [9], as the topology for

local-area and telecommunications networks [8],
in the development of VLSI technology and for
distributed calculations [2]. Several routing al-
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Fig. 1: Circulant graphs G(7;±2,±3) and
G(16;±1,±4)

gorithms for circulant graphs were proposed in
the literature [2, 3, 5, 6, 7, 8, 9]. For an effective
realization, some of them require data on the
shortest paths in the so-called semi-directed cir-
culant graphs, i.e., circulant graphs in which the
use of one of the four types of edges Ei (i ∈ I) is
prohibited. These shortest paths are called the
restricted shortest paths [4] (to emphasize the
difference, the adjective unrestricted will some-
times be used for the normal shortest paths).
As with many other routing-related problems
in circulant graphs, the problem of finding the
shortest paths (restricted and unrestricted) can
be naturally transformed into a problem con-
cerning a labeled integer lattice in which each
w-labeled point represents a path between the
nodes 0 and w. The problem of finding the un-
restricted shortest path that connects the nodes
0 and w in a circulant graph is equivalent to the
problem of finding, among all w-labeled points,
the one with the minimal `1 norm. Instead of
searching the whole lattice to find the small-
est element, a fast algorithm was proposed by
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Pisanski and Žerovnik [12]. They introduced
the packed basis of a circulant graph, which is,
in fact, a set of two independent vectors, b1 and
b2, that span the module of all the 0-labeled
points (i.e., the module that corresponds to all
the circular paths in a graph) and that satis-
fies the following condition: max{||b1||, ||b2||} ≤
min{||b1 + b2||, ||b1 − b2||} (note that such a
basis always exists and that it can be found
in a logarithmic time [12]). Using the packed
basis the algorithm for constructing the un-
restricted shortest path between the nodes 0
and w reads: (1) find the packed basis {b1, b2},
(2) inside the parallelogram formed by b1 and
b2, find the point xw with the label w, (3)
among the elements of the set C = {xw, xw −
b1, xw − b2, xw − (b1 + b2)}, find the one with
the smallest norm. For example, when look-
ing for the shortest path between the nodes 0
and 10 in the circular graph G(11;±3,±4) (the
labeled integer lattice for this example is de-
picted in Figure 2), the algorithm first finds
the packed basis {b1, b2} = {(1, 2), (5,−1)} .
Inside the parallelogram formed by this basis
(the shaded area) there are 11 points with dis-
tinct labels; the label 10 is carried by the point
xw = (2, 1). The shortest path between the
nodes 0 and 10 is the `1-smallest element of the
set C = {(2, 1), (1,−1), (−3, 2), (−4, 0)} (the
points marked with squares), i.e., the point (1,-
1) (the encircled point). This point corresponds
to a path with one short hop in the positive di-
rection (+3) and one long hop in the negative
direction (-4): 0 + 3− 4 ≡ 10 (mod 11).
A simple generalization of this algorithm for
the restricted case would be: when looking for
the i-restricted shortest path (i.e., a path that
does not contain hops of type i ∈ I) between
the nodes 0 and w, instead of searching in-
side the whole set C, search only inside the
intersection of the set C and the correspond-
ing half-plane Z2

−i. Although there are many
cases in which this generalization would work,
there are also some exceptions where it fails.
For example, when looking for the 1-restricted
shortest path (i.e., the path that does not con-
tain short hops in the positive direction) be-
tween nodes 0 and 10 in G(11;±3,±4) (see
Figure 2), this generalization would search for
the `1-smallest element in the intersection of
the set {(2, 1), (1,−1), (−3, 2), (−4, 0)} and the
left half-plane, which would result in the point
(−4, 0), whereas the resticted shortest path in
this case is (0,−3).

An algorithm for constructing the i-restricted
shortest paths, which was proposed in [6], for
each x ∈ {xw, xw − b1, xw − b2, xw − (b1 + b2)}
and for each b ∈ {b1, b2} projects x along a dis-
crete line t(x, b) (i.e., a discrete line through x
in the direction b) into the `1-smallest element
in Z2

−i – this element is called the minimum-
projection of x along b. The restricted short-
est path is then chosen only from among these
(at most 4) elements. An example of the
use of this algorithm in constructing the 1-
restricted shortest path between the nodes 0
and 10 in G(11;±3,±4) is shown in Figure 3.
The minimum-projections of the elements of the
set C are the points marked with the squares.
The `1-smallest element of the squared points is
the point (0,-3) – this is the restricted shortest
path that was searched for.
One of the most important parts of the al-
gorithm for constructing the restricted short-
est paths is the method for calculating the
minimum-projection of an integer lattice point
along a given vector. In this paper we will
present this method and show its constant time
complexity. We will also show the generaliza-
tion of this method for k-dimensional lattices.

II. Minimum-projection in Z× Z
In this section we will define the minimum-
projection in Z × Z and present the algorithm
for its calculation. To measure the distances in
Z × Z we will use the `1 norm, that is, ∀x, y ∈
Z×Z, d(x, y) = ||x− y|| = |x1− y1|+ |x2− y2|.
The right, the left, the upper and the lower half-
plane in Z×Z will be designated (in the respec-
tive order) Z2

1, Z2
−1, Z2

2, and Z2
−2.

A. Definitions
Definition II..1 Let x and v be points in Z×
Z. The discrete set L = {x + k v, k ∈ Z} ⊂
Z× Z is called a line and is denoted by t(x, v).
The intersection of the line t(x, v) and a half-
plane Z2

i is marked by ti(x, v).

The smallest element on a given half-line
ti(x, v) is such a point y ∈ ti(x, v) that ||y′|| ≥
||y|| for each y′ ∈ ti(x, v). This smallest ele-
ment is called the minimum-projection since it
can be found by a projection of any point w of
a line t(x, v) into Z2

i in the direction v, i.e., by
adding the value of kwv to w for a particular
kw ∈ Z.

Definition II..2 Let x, v ∈ Z × Z and i ∈ I.
The `1-smallest element of a half-line ti(x, v)
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Fig. 2: Labeled integer lattice corresponding to the circulant graph G(11;±3,±4) with packed
basis {b1, b2} = {(1, 2), (5,−1)}, base parallelogram (shaded area) and four base elements xw, xw−
b1, xw−b2, xw−(b1+b2) for w = 10 (the points marked with squares) – suitable for the construction
of unrestricted shortest paths.
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Fig. 3: Labeled integer lattice corresponding to the circulant graph G(11;±3,±4) with packed
basis {b1, b2} = {(1, 2), (5,−1)}, discrete lines t(xw, b1), t(xw, b2), t(xw− b1, b2), and t(xw− b2, b1)
for w = 10 and minimum-projections P−1(xw, b1), P−1(xw, b2), P−1(xw − b2, b1), P−1(xw − b1, b2)
(the points marked with squares) – suitable for the construction of restricted shortest paths.

is called the minimum-projection of the point x
in the direction v into the half-plane Z2

i and is
denoted by P i(x, v).

B. The background

To derive the algorithm for the minimum-
projection we have to consider many different
cases. Thus, in order to reduce the complexity
of the problem, we will first focus only on the
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projection into the right half-plane (i.e., i = 1).
For all the other cases the derivation is similar;
we will emphasize the differences in Section C..
If the direction vector v is vertical, the projec-
tion along this vector into the right half-plane is
not possible. Therefore, we will assume v1 6= 0
hereafter.
For a given x, the direction vectors v and
−v span the same line, t(x, v) = t(x,−v),
and the minimum-projection P i(x, v) equals
the minimum-projection P i(x,−v). In the
algorithm-derivation process we will use the
positive representative of both direction vectors
(i.e., the one whose first component is positive),
v̂ = sign(v1) ∗ v.
There are four possible layouts of a half-line
t(x, v̂) in the right half-plane as shown in Fig-
ure 4. In the cases (a) and (b) the `1-smallest
element of a half-line is the one that is the clos-
est to the y-axis, since the absolute values of
both components of the line points are increas-
ing when moving away from the y-axis.
In the cases (c) and (d) we have to distinguish
two fractions of a half-line: the fraction before
the line intersects the x-axis and the fraction
thereafter. The norm of the points on the sec-
ond fraction of a line increases when moving
away from the y-axis, while on the first frac-
tion of a half-line this is not always the case.
In particular, if the line is steep (i.e., the angle
between the line and the x-axis is greater a 45
degrees), the norm of the line points in the first
fraction decreases. In this case the `1-smallest
element of a half-line is the one that is the clos-
est to the x-axis.
We say that the problem of finding the minimal
projection P 1(x, v̂) is of type X, if the solution
of a problem is the point on a half-line that is
closest to the x-axis. Otherwise, the type of
the problem will be denoted by Y . To find the
minimum-projection we first have to determine
the type of the problem and then according to
this we calculate the element on the half-line
that is the closest to the x- or y-axis.

Determine the type of the problem. A
problem of type X appears when the line is
steep and of the type (c) or (d). That is,
when v̂1 < |v̂2| and either the increasing line
(v̂2 > 0) intersects the y-axis in the lower half-
plane (x2 + (−x1/v̂1)v̂2 < 0) or the decreasing
line (v̂2 < 0) intersects the y-axis in the upper
half-plane (x2 + (−x1/v̂1)v̂2 > 0) . The rear-
rangement of these formulas gives the following

characterization: the problem is of type X if

v̂1 < |v̂2| &&
x2

v̂2
<

x1

v̂1

holds. Otherwise, the problem is of type Y .

Finding the element closest to the x-axis.
Let the continuous line x + t ∗ v̂, t ∈ R
intersect the y-axis at (0, y) for y ∈ R. Then,
(x1, x2) + t(v̂1, v̂2) = (0, y). Expressing t from
the first component of this vector equation,
we obtain t = −x1/v̂1 at the point of inter-
section. Considering the facts that (a) the
points of a discrete line t1(x, v̂) are of type
x + k ∗ v̂ where k ∈ Z and (b) the vector v̂
is “directed into” the right half-plane (i.e.,
v̂1 > 0), the point on t1(x, v̂) that is the closest
to the y-axis is obtained by setting k = dx1/v̂1e.

Finding the element closest to the y-axis.
The same observation as in the previous para-
graph yields t = −x2/v̂2 at the point of the
intersection of the continuous line and the x-
axis. The important difference is that both
points (the one above and the one below the
x-axis) are possible candidates for the solution.
We get the one that is the closest to the x-axis
by setting k = dx2/v̂2c, where d c indicates a
function that rounds to the nearest integer.

C. The algorithm for the minimum-
projection

Taking into account the above conclusions we
get the following algorithm for calculating the
minimum-projection in Z2

1 :

• if v1 = 0, the projection is not possible →
stop,

• let v̂ = sign(v1) ∗ v,

• if (v̂1 < |v̂2|) and (x2

v̂2
< x1

v̂1
)

then k := d−x2

v̂2
c

else k := d−x1

v̂1
e,

• P 1(x, v):=x + kv̂.

The algorithm for the minimum-projection in
Z2
2 is similar to this, i.e., the difference is only

in the meaning of the indices 1 and 2 – they
have to be mutually exchanged wherever they
appear.
However, for Z2

−1 and Z2
−2 we have to deal

with two additional issues. First, the criterion
for the type-of-a-problem characterization
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Fig. 4: Four possible layouts of a half-line in the right half-plane

changes. Namely, the condition x2

v̂2
< x1

v̂1
used

in the case i = 1, changes to x2

v̂2
> x1

v̂1
for

i = −1. Similarly, x1

v̂1
< x2

v̂2
used in the case

i = 2, changes to x1

v̂1
> x2

v̂2
for i = −2. Second,

since v̂ is “directed into” the right (or upper)
half-plane, we used in the cases i = 1, 2 the
rounding function d e to get “the first element”
after the intersection of the line with the
axis. On the other hand, we need in the cases
i = −1,−2 the element that is “the last” before
the intersection. To obtain such an element we
have to replace the rounding function with b c
.

Combining all these facts into a common form
gives us a general algorithm for calculating the
minimum-projection P i(x, v).

Algorithm 1:
Calculating the minimum-projection
P i(x, v) in Z2

1) if v|i| = 0, the projection into Z2
i is not

possible → stop

2) let v̂ := sign(v|i|) ∗ v and j := 3− |i|,

3) if (i < 0)
then f(#) := b#c
else f(#) := d#e,

4) if (v̂|i| < |v̂j |) and ( sign(i) ∗ xj

v̂j
<

sign(i) ∗ x|i|
v̂|i|

)

then k := d−xj

v̂j
c

else k := f(−x|i|
v̂|i|

),

5) P i(x, v) := x + kv̂.

Time complexity. The time complexity of
the algorithms presented in this paper will be

measured in the number of performed atomic
operations add, sub, mul, div, sign, abs and
trunc. Since all of the rounding functions used
in these algorithms can be performed by the
atomic operation trunc followed by the atomic
add or sub, we will count a rounding function
as 2 atomic operations.
Algorithm 1 does not contain loops. It calcu-
lates the minimum projection in five consecu-
tive steps, each consisting of the atomic op-
erations as follows. In step 1 it performs one
atomic operation to calculate |i|; we will as-
sume hereafter that |i| is already known and
no operation is needed for its calculation. Since
the vector v has two components, the calcula-
tion of the vector v̂ requires two mul operations
and the overall time complexity of line 3 is 4.
The condition in line 4 is calculated in 6, and
the number k in 3 atomic operations. Finally,
the projection P i(x, v) in line 5 is calculated in
4 (two adds and two muls) atomic operations.
In the five steps the algorithm uses 18 atomic
operations, and thus the time complexity of Al-
gorithm 1 is O(1).

III. The smallest element on a
discrete line

Another similar and related problem is to find
the smallest element on a given line t(x, v).
This problem is defined as follows.

Definition III..1 Let x and v be elements of
the integer lattice Z × Z and v 6= (0, 0). The
smallest element of the line t(x, v), which is
marked by P (x, v), is the element of the form
x + kv with the smallest `1norm.

Because v is a non-zero vector, the smallest el-
ement of the line can be found with the dou-
ble use of a minimum-projection algorithm. In
particular, if vi 6= 0 for i ∈ {1, 2}, then P (x, v)
= min(P i(x, v), P−i(x, v)).
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However, there is another, even simpler, way
to calculate P (x, v). When calculating the
minimum-projection we differentiate between
several cases regarding the layout of a line in a
half-plane and the inclination of the directional
vector. We have shown that the solution always
lies near the intersection of the line and one of
the coordinate axes. Therefore, the smallest el-
ement on t(x, v) is one of the four elements of
this line that are located “before” and “after”
the points of intersections. If any of the coordi-
nates of the vector v equals zero, then there are
only two candidates for the smallest element of
the line. The number of candidates is also re-
duced if a point of the line is located on one of
the coordinate axes (in this case both points,
the one “before” and the one “after” the inter-
section, are the same). The number of candi-
dates for the minimum element of the line thus
ranges from 1 to 4. The precise procedure for
calculating the element P (x, v) is given in Algo-
rithm 2, in which we first calculate the elements
close to the point of the intersection of the line
and the y-axis (line 2) and then the elements
close to the point of the intersection of the line
and the x-axis (line 3). Finally, we select, from
the calculated elements, the one with the small-
est norm.

Algorithm 2:
Calculating the smallest element P (x, v)

1 S={};

2 if v1 6= 0 then

S := S∪{x+ b−x1

v1
cv, x+ d−x1

v1
ev}

3 if v2 6= 0 then

S := S∪{x+ b−x2

v2
cv, x+ d−x2

v2
ev}

4 P (x, v):=argmins∈S ||s||1

Time complexity. We presented Algorithm 2
as an alternative to the double use of Algorithm
1. Although the formulation of Algorithm 2 is
compact and straightforward to understand,
it is only slightly less time consuming than
the double use of Algorithm 1. In particular,
to calculate each element of the set S in
lines 2 and 3, Algorithm 2 performs 7 atomic
operations; to calculate each norm in line 4 it
performs 3 atomic operations. Thus, 40 atomic
operations are performed by Algorithm 2. On

the other hand, the double use of Algorithm 1
performs 2*18 atomic operations to calculate
P i(x, v) and P−i(x, v) and 2*3 operations to
calculate their norms. Hence, to calculate
the smallest element by the double use of
Algorithm 1 it takes 42 atomic operations.

IV. Minimum-projection in
k-dimensions

A two-dimensional minimum-projection
problem can be naturally generalized to its
k-dimensional variant. In this section we define
a minimum-projection problem in Zk and
present an algorithm for solving this problem.

Let I = {−k,−k + 1, . . . ,−1, 1, . . . , k − 1, k},
and let Zk

i be a k-dimensional half-space, an
intersection of the k-dimensional lattice Zk and
the ith half-space,

Zk
i := {x ∈ Zk; x|i| ∗ sign(i) ≥ 0}.

Let t(x, e) denote a line t(x, e)={x+se; s ∈ Z}
in Zk and ti(x, e) its intersection with Zk

i .

Definition IV..1 Let x, e ∈ Zk and i ∈ I. The
smallest element of the half-line ti(x, e) is called
a minimum-projection of the point x in the di-
rection e into the half-space Zk

i and is denoted
by P i(x, e).

For a two-dimensional case we have presented a
simple algorithm for calculating the minimum-
projection that contains no loops, but in a k-
dimensional space this is, due to there being a
greater number of special cases, a far more dif-
ficult task. Consequently, instead of a simple
no-loop algorithm, we will introduce a proce-
dure that calculates the minimum-projection in
k steps. In calculating the minimum-projection
of the element x along e in Zk

i we will use ê
to designate a vector, which is parallel to the
vector e and is directed into the ith half-space,

ê := sign(i ∗ e|i|) ∗ e.
If ei = 0, the projection along e is not possible.
In all the other cases we are searching among
the elements of the line ti(x, ê) for the one with
the smallest norm. Line t(x, ê) enters into the
ith half-space when xi + sêi = 0, therefore:

ti(x, e) =

{
x + sê; with s ≥

⌈
−x|i|

ê|i|

⌉}
.
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Because we know that the line reaches its min-
imum near the point of intersection with the
coordinate planes (that is at xj + sêj = 0 for
j ∈ I+), it suffices to search among the elements

x +

⌊
−xj

êj

⌉
∗ ê, j ∈ I+

for which
−xj

êj
≥
⌈
−x|i|

ê|i|

⌉
. A precise procedure

for calculating the minimum-projection is pre-
sented in Algorithm 3.

Algorithm 3:
Calculating the minimum-projection
P i(x, e) in Zk

1) if (e|i| = 0), the projection into Zk
i is

not possible → stop

2) ê := sign(i ∗ e|i|) ∗ e;

3) s0 :=
⌈
−x|i|

ê|i|

⌉
; minP := x + s0ê;

4) for j = 1 to k, j 6= i, ej 6= 0 do

5) new = x +
⌊
−xj

êj

⌉
∗ ê

6) if (−xj

êj
≥ s0) and

(||new|| < ||minP ||)

7) then minP := new;

8) P i(x, v) = minP

Time complexity. Every vector operation
in Algorithm 3 takes k atomic operations. In
particular, to calculate vector ê in line 2 the
algorithm performs k + 2 operations (two to
calculate sign(i ∗ e|i|) and k to calculate the
products for each component of the vector).
Similarly, line 3 takes 2k + 3 atomic operations
(3 for s0 and 2k for minP ). Hence, lines
1, 2, and 3 together perform 3k + 6 atomic
operations. The vector new in line 5 is also
calculated in 2k + 3 atomic operations and the
condition in line 6, in 4k− 1 atomic operations
(one for the quotient −xj

êj
and 2k − 1 for

each norm). Since the loop in line 4 iterates
for at most k − 1 times, overall Algorithm 3
performs 3k + 6 + (k− 1)(6k + 2) = 6k2− k + 4
atomic operations. The worst-case complexity
of Algorithm 3 is thus Θ(k2).

Numerical experiment. In order to numer-
ically test the speed of the presented calcula-
tions in lattices Zk with a large dimension we
coded Algorithm 3 in a Java program. For every
k = 10, 20, 30, . . . , 400 we generated 1000 ran-
dom vectors x and e, and measured the time
needed to calculate P i(x, e). The results ob-
tained from this test are presented in Figure 5,
where a theoretical upper bound c(6k2−k+4) is
also depicted (the constant c is about 0.005 and
was determined by numerical probing). The re-

cI6 k
2
- k + 4M

100 200 300 400
k

1000

2000

3000

4000

5000

time

Fig. 5: The average time to calculate P i(x, e)
in Zk in microseconds

sults show that the measured average case of
Algorithm 3 is slightly better then the worst-
case scenario, even though in some cases the
upper bound is achieved. On average the mea-
sured time was 12.2% shorter the theoretical
upper bound.

V. Conclusion

The problem of finding the properties of a k-
circulant graph (e.g., the shortest paths or the
diameter) can be naturally transformed into an
equivalent problem in the labeled integer lat-
tice Zk in which the distances are measured
with `1 norm. For example, the shortest path
from the node u to the node v in the graph
G(n;h1, h2, . . . , hk) is such a solution of the
diophantine equation u + x1h1 + x2h2 + . . . +
xkhk ≡ v (mod n) that minimizes the sum
|x1| + |x2| + . . . + |xk|. The restricted short-
est paths are an important property of circulant
graphs that are used for the effective execution
of some routing algorithms. After the transfor-
mation into the labeled integer lattice Zk the
problem of finding the restricted shortest path
between the nodes v and u reduces into a prob-
lem of finding the minimum-projections of the
w labeled points in Zk into the four half-planes
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(where w ≡ v − u (mod n)). Since the problem
of finding the minimum-projection involves dio-
phantine equations and a minimization accord-
ing to the `1 norm, an explicit formula for this
problem does not exist. Instead, several options
have to be considered and combined into an al-
gorithm to calculate the minimum-projection.
In this paper we introduce an algorithm for
calculating the minimum-projection in Z × Z.
Since this algorithm uses no loops, it has a con-
stant time complexity. In particular, we have
shown that the algorithm performs at most 18
atomic operations (add, sub, mul, div, abs,
sign, and trunc).
We also introduced an algorithm for calculat-
ing the `1-smallest element on a discrete line
x+ke; k ∈ Z. We compared the performance of
this algorithm with the performance of the dou-
ble use of the minimum-projection algorithm
(which also gives the same result) and showed
that both methods use almost exactly the same
number of atomic operations.
The problem of finding the minimum-projection
in Zk is much more complex since the number of
spacial cases increases with the dimension k. To
solve this problem we introduced an algorithm
that uses a for-loop to check all of the k pos-
sible candidates for the solution. Considering
that vector operations (addition or multiplica-
tion with a constant), which are performed in
every iteration of a loop, take k atomic opera-
tions, we showed that, if we count the atomic
operations, the time complexity of this algo-
rithm is Θ(k2).
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