Implementation of modified cubic UAT tension B-spline DQM for Numerical approximation of 1D and 2D Reaction-Diffusion System

Mamta Kapoor,
Department of Mathematics,
Lovely Professional University,
Punjab, India

Varun Joshi,
Department of Mathematics,
Lovely Professional University,
Punjab, India

Abstract—In present paper, a new approach, “modified cubic UAT tension B-spline DQM” has been developed to solve the 1D and 2D Reaction-Diffusion system numerically. The modified cubic UAT tension B-spline is used as basis function, to find the required weighting coefficients. The resulting system of ODE has been solved by SSP-RK43 scheme. The proposed scheme is checked by five test examples.

Keywords—Uniform Algebraic Trigonometric (UAT) tension B-spline, 1D and 2D Reaction-Diffusion system, Differential quadrature method, SSP-RK 43 scheme.

I. INTRODUCTION

1D non-linear Reaction Diffusion system of equations is as follows:

\begin{align}
 u_t &= a_1 u_{xx} + h_1(u, v) \\
 v_t &= a_2 v_{xx} + h_2(u, v)
\end{align}

with Dirichlet and Neumann Boundary conditions in the computational domain \([a, b]\). Where \(u(x, t)\) and \(v(x, t)\) are the real valued functions, \(h_1\) and \(h_2\) are the arbitrary constants.

2D Reaction Diffusion Brusselator system of the non-linear system of partial differential equations is as follows

\begin{align}
 u_t &= \mu + u^2 v + \left[\lambda + 1\right]u + \beta [u_{xx} + u_{yy}] \\
 v_t &= \lambda u - u^2 v + \beta [v_{xx} + v_{yy}]
\end{align}

Where \(\lambda, \mu, \beta\) are the given constants. \(h_1(x, y), h_2(x, y)\) are the prescribed functions. Formulation of reaction-Diffusion systems has an important role in the study of the traits of chemical and biological processes. Reaction-Diffusion systems are very crucial in the chemical processes, which are related to a series of patterns like chemical exchange reactions, pattern formation in the biological phenomena etc. One of the crucial Reaction-Diffusion model is considered as Brusselator model, which represents the working process of the chemical Reaction-Diffusion system along with non-linear oscillatory pattern.

Brusselator model was developed by Brusselator school of Prigogine [1-4]. Basically, the analytic solutions are cumbersome to find for such models and therefore it is interesting problem from the numerical aspect. The literature regarding the numerical approximation of reaction-Diffusion systems has enriched a lot in the previous decades. Researchers have paid a lot of attention in the development of better numerical regimes for the solution of Reaction-Diffusion systems, like numerical approximation of reaction-Diffusion Brusselator model by decomposition method [5, 6], FD approach [7], collocation with radial basis function [8], dual-reciprocity boundary element scheme [9], Homotop Perturbation Method [10], Runge-Kutta-Chebyshev method [11] etc. Dehghan and Abbaszadeh [12] gave the variation multi scale element free Galerkin and Local discontinuous Galerkin scheme for getting the solution of 2D Brusselator Reaction-Diffusion system with cross diffusion and without cross diffusion. Gumel et al. [13], Sun et al. [14] Kumar et al. [15] also generated some techniques for solving the Brusselator model. Jiwari et al. [16, 17] elaborated two approaches for 2D Reaction-Diffusion Brusselator model. Jiwari et al. [16,17] confirmed that for the small values of...
diffusion coefficient, the steady state solution will converge to the equilibrium point.

Bellman and his associates [18] firstly introduced DQM to solve the differential equations. Thereafter Quan and Chang [19, 20] gave the improvised concept regarding DQM. In DQM, different test functions are used to generate novel regimes, so that the required weighting coefficients can be determined to approximate the partial derivatives of the considered function. B-spline functions, cubic B-spline, modified cubic B-spline, trigonometric B-spline, exponential B-spline, modified exponential B-spline, Sinc function, Lagrange polynomial function, Barycentric Lagrange interpolation function, Legendre polynomial, quartic B-spline, quintic B-spline and many more [21-23, 24, 25] test functions have been used to develop the novel regimes based upon DQM.

In present paper a new method “Modified UAT tension B-spline DQM” is developed to get the numerical approximation of 1D and 2D Reaction-Diffusion systems. In this scheme modified cubic UAT tension B-spline is implemented in the traditional DQM to fetch the weighting coefficients. This method transforms the Reaction-Diffusion system into the system of ordinary differential equations, which is tackled by using the SSP-RK43 scheme. In order to check the efficiency and accuracy of this scheme, five test problems are considered.

II. NUMERICAL METHODOLOGY

[Modified cubic UAT tension B-spline Differential Quadrature Method]

UAT tension B-spline with order-4 is defined as follows:

\[\text{UATB}_{i,4}(x) = \begin{cases}
\frac{\delta_{i-1} \delta_{i+1}}{\sin(\tau)} \left[(x-x_{i-2}) - \frac{\sin((x-x_{i-1}))}{\tau} \right], \\
\frac{\delta_{i} \delta_{i+2}}{\sin(\tau)} \left[(x_{i-1} - x_{i-2}) - \frac{\sin((x_{i-1}-x_{i-2}))}{\tau} \right] + (x-x_{i-1}) \\
\frac{\delta_{i} \delta_{i+1}}{\sin(\tau)} \left[(x-x_{i-1}) - \frac{\sin((x-x_{i-1}))}{\tau} \right] + \left(x_{1}, x_{2}, x_{3}, \ldots \ldots, x_{n} \right) \\
\frac{\delta_{i+1} \delta_{i+2}}{\sin(\tau)} \left[(x-x_{i-1}) - \frac{\sin((x-x_{i-1}))}{\tau} \right] + \left(x_{1}, x_{2}, x_{3}, \ldots \ldots, x_{n} \right) \\
\frac{\delta_{i+2} \delta_{i+3}}{\sin(\tau)} \left[(x_{i+1} - x_{i}) - \frac{\sin((x_{i+1}-x_{i}))}{\tau} \right] + \left(x_{1}, x_{2}, x_{3}, \ldots \ldots, x_{n} \right) \\
\frac{\delta_{i+3} \delta_{i+4}}{\sin(\tau)} \left[(x_{i+2} - x_{i+1}) - \frac{\sin((x_{i+2}-x_{i+1}))}{\tau} \right] + \left(x_{1}, x_{2}, x_{3}, \ldots \ldots, x_{n} \right) \\
0, \\
\end{cases} \]

\[i = 1, 2, 3, \ldots \ldots, n \]

In order to improve the results, modified cubic UAT tension B-spline can be implemented, in a way so that the obtained system of matrix will become “Diagonally dominant” [24]. Where by using following set of equations improvised values can be obtained.

\[\begin{align*}
\text{MUATB}_{i}(x) &= \text{UATB}_{i}(x) + 2 \text{UATB}_{0}(x) \\
\text{MUATB}_{2}(x) &= \text{UATB}_{2}(x) - \text{UATB}_{0}(x) \\
\text{MUATB}_{j}(x) &= \text{UATB}_{j}(x), \ (j = 3, 4, 5, \ldots \ldots, N - 2) \\
\text{MUATB}_{N-1}(x) &= \text{UATB}_{N-1}(x) - \text{UATB}_{N+1}(x) \\
\text{MUATB}_{N}(x) &= \text{UATB}_{N}(x) + 2 \text{UATB}_{N+1}(x)
\end{align*} \]

(12)

A. Determination of weighting coefficients by method (UAT tension B-spline based DQM)

\[\text{MUATB}_{k}^{(1)}(x_{i}) = \sum_{j=1}^{n} p_{ij} \text{MUATB}_{k}(x_{j}) \]

(13)

(Where \(i = 1, 2, 3, \ldots \ldots, n \) and \(k = 1, 2, 3, \ldots \ldots, n \).)

From above set of equation at grid point \(x_{i} \) and for the values of \(k = 1, 2, 3, \ldots \ldots, n \), following tridiagonal system of algebraic equations will be obtained:

\[\begin{pmatrix}
A_{11} & a_{1} & 0 & \cdots & 0 \\
a_{2} & A_{22} & a_{2} & \cdots & 0 \\
a_{3} & a_{3} & A_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n} & a_{n} & a_{n} & \cdots & A_{nn}
\end{pmatrix} \begin{pmatrix}
A_{1} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{pmatrix} = \begin{pmatrix}
A_{0} \\
a_{0} \\
a_{0} \\
\vdots \\
a_{0}
\end{pmatrix} \]

(11)

Table I: Value of UAT tension B-spline at different node points.

<table>
<thead>
<tr>
<th>(x_{i-2})</th>
<th>(x_{i-1})</th>
<th>(x_{i})</th>
<th>(x_{i+1})</th>
<th>(x_{i+2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(UATB_{i}(x))</td>
<td>0</td>
<td>(a_{1})</td>
<td>(a_{2})</td>
<td>(a_{3})</td>
</tr>
<tr>
<td>(UATB'_{i}(x))</td>
<td>0</td>
<td>(a_{4})</td>
<td>(a_{5})</td>
<td>0</td>
</tr>
</tbody>
</table>
order derivatives can be obtained by following formula [26],
\[d^{(r)}_{ij} = \frac{d^{(r-1)}_{ij}}{y_{r-y_{j}}} \] for \(i \neq j \) \hspace{1cm} (16)
Where \(i = 1, 2, 3, \ldots, N \) and \(r = 2, 3, 4, \ldots, N_2 - 1 \)
\[d^{(r)}_{ii} = -\sum_{j=1, j \neq i}^{N} a^{(r)}_{ij} \] for \(i = j \) \hspace{1cm} (17)

B. Implementation of scheme:
DQM approximations, in order to evaluate the weighting coefficients are provided as,
\[u_x^{(r)}(x_i) = \sum_{j=1}^{n} a^{(r)}_{ij} u(x_j) \] \hspace{1cm} (18)
\[u_y^{(r)}(x_i) = \sum_{j=1}^{n} b^{(r)}_{ij} u(x_j) \] \hspace{1cm} (19)
\[v_x^{(r)}(x_i) = \sum_{j=1}^{n} a^{(r)}_{ij} v(x_j) \] \hspace{1cm} (20)
\[v_y^{(r)}(x_i) = \sum_{j=1}^{n} b^{(r)}_{ij} v(x_j) \] \hspace{1cm} (21)
\[u_x^{(2)}(x_i) = \sum_{j=1}^{n} a^{(2)}_{ij} u(x_j) \] \hspace{1cm} (22)
\[v_x^{(2)}(x_i) = \sum_{j=1}^{n} a^{(2)}_{ij} v(x_j) \] \hspace{1cm} (23)

C. Implementation over 1D Reaction-Diffusion System:
\[\frac{du}{dt} = a_1 \sum_{j=1}^{n} a^{(2)}_{ij} u(x_j) + h_1(u, v) \] \hspace{1cm} (24)
\[\frac{dv}{dt} = a_1 \sum_{j=1}^{n} a^{(2)}_{ij} v(x_j) + h_2(u, v) \] \hspace{1cm} (25)

D. Implementation over 2D Reaction-Diffusion system:
\[\frac{du_{ij}}{dt} = \mu + u_{ij}^2 v_{ij} + (\lambda + 1) u_{ij} + \beta \sum_{j=1}^{n} a^{(2)}_{ij} u(x_j) + \sum_{j=1}^{n} b^{(2)}_{ij} v(x_j) \] \hspace{1cm} (26)
\[\frac{dv_{ij}}{dt} = \xi u_{ij} - u_{ij}^2 v_{ij} + \beta \sum_{j=1}^{n} a^{(2)}_{ij} v(x_j) + \sum_{j=1}^{n} b^{(2)}_{ij} v(x_j) \] \hspace{1cm} (27)

III. NUMERICAL EXAMPLES AND DISCUSSION

In Figures 1 and 2 Numerical approximation of U and V are provided graphically at the mentioned time levels. In Table II, Numerical U and V are provided at the time levels \(t = 1, 2 \) and 3 respectively. In Figure 3 and 4, Numerical U and V are provided graphically for \(N = 101, \Delta t = 0.0001, \tau = 0.01 \) and \(k = 0.9 \). In Figures 5 and 6, Numerical U and V are graphically represented at the time levels \(t = 10, 20, 30 \) and 40 respectively. In Table III, Numerical U and V are evaluated at \(t = 10, 20 \) and 30. In Figures 7 and 8 Numerical U and V are graphically presented at different time levels. In Table IV, Numerical values of U and V components is considered at \(t = 1 \) and \(t = 2 \). In Figures 9 and 10, Numerical
profiles of U and V components are provided at mentioned
time levels. In Table V, Numerical U and V are given at t =
0.1 and 1.0. In Table VI, Numerical profiles are provided at
time levels t = 5 and t = 10 respectively for N = 11, Delta t =
0.0001, r = 1, λ = 1, μ = 2, β = 0.002.

• 1D RD SYSTEM

Example 1:
Brusselator model [27] was proposed by Brussels school of
Prigogine. present model represents the Hypo-
 theoretical tri-
molecular natured reaction, having very important
traits in
the chemical science area. Problem is defined as follows [28],
[29],
\[
\begin{align*}
 u_t &= a_1 u_{xx} - (b_1 + 1)u + u^2 v + \eta_1 \\
 v_t &= a_2 v_{xx} + b_1 u - u^2 v
\end{align*}
\] (28)

Computational domain : [0, 1]

Initial conditions:
\[u(x, 0) = 0.5 \text{ and } v(x, 0) = 1 + 5x \] (30)

Boundary conditions:
Natural boundary conditions are considered
\[u(0, t) = 0, u(1, t) = 0, v(0, t) = 0, v(1, t) = 0 \] (31)

Example 2:
Isothermal chemical system is given as [29], [30]:
\[
\begin{align*}
 u_t &= u_{xx} - uv \\
 v_t &= v_{xx} - kv + uv
\end{align*}
\] (32)

Computational Domain: [0, 200]

Initial conditions:
\[u(x, 0) = 1 \] (34)
\[v(x, 0) = \exp(-x^2) \] (35)

Boundary conditions:
\[\frac{\partial u}{\partial x}(0, t) = 0, u(200, t) = 1, \frac{\partial v}{\partial x}(0, t) = 0, v(200, t) = 0 \] (36)

• 2D RD SYSTEM:

Example 3:
In present example, Brusselator system (3) and (4) is
considered along with the Neumann boundary conditions (7)-(10) along with the following initial conditions [32, 33].

Initial Conditions:
\[u(x, y, 0) = 0.5x^2 - \frac{1}{3}x^3, v(x, y, 0) = 0.5y^2 - \frac{1}{3}y^3 \] (38)

Example 5:
Considered Brusselator system (3) and (4) along with the
Neumann boundary conditions (7)-(10) along with the following initial conditions [32, 34].

Initial Conditions:
\[u(x, y, 0) = 2 + 0.25y, v(x, y, 0) = 1 + 0.8y \] (39)
Figure 1: Numerical approximations of $U(x, t)$ at mentioned time levels for $N = 11$, $\tau = 0.01$, $a_1 = 10^{-4}$, $a_2 = 10^{-4}$, $\eta_1 = 1$, $b_1 = 3.4$

Figure 2: Numerical approximations of $V(x, t)$ at mentioned time levels for $N = 11$, $\tau = 0.01$, $a_1 = 10^{-4}$, $a_2 = 10^{-4}$, $\eta_1 = 1$, $b_1 = 3.4$

Table II: Numerical values of $U(x, t)$ at time levels $t = 1$, $t = 2$ and $t = 3$ respectively for $N = 21$, $\Delta t = 0.0001$, $\tau = 0.001$, $a_1 = a_2 = 10^{-2}$, $\eta_1 = 2$, $b_1 = 3.5$

<table>
<thead>
<tr>
<th>x</th>
<th>Numerical U</th>
<th>Numerical V</th>
<th>Numerical U</th>
<th>Numerical V</th>
<th>Numerical U</th>
<th>Numerical V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$t = 1$</td>
<td>$t = 2$</td>
<td>$t = 3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>0.1</td>
<td>0.036</td>
<td>0.1</td>
<td>0.036</td>
<td>0.1</td>
<td>0.036</td>
</tr>
</tbody>
</table>
Figure 3: Numerical $U(x, t)$ at the mentioned time levels for $N = 101$, Delta $t = 0.0001$, $\tau = 0.01$ and $k = 0.9$.
Figure 4: Numerical $V(x, t)$ at the mentioned time levels for $N = 101$, $\Delta t = 0.0001$, $\tau = 0.01$ and $k = 0.9$.

Figure 5: Numerical solutions of $U(x, t)$ at $t = 10$, 20, 30, 40 and 50 respectively for $N = 201$, $\Delta t = 0.0001$, $\tau = 0.01$ and $k = 0.9$.
Figure 6: Numerical solutions of $V(x, t)$ at $t = 10, 20, 30, 40$ and 50 respectively for $N = 201, \Delta t = 0.0001, \tau = 0.01$ and $k = 0.9$

Table III: Numerical values of $U(x, t)$ and $V(x, t)$ at time levels $t = 10, 20$ and 30 respectively for $N = 51, \Delta t = 0.0001, \tau = 0.01$ and $k = 0.9$

<table>
<thead>
<tr>
<th>x</th>
<th>Numerical U</th>
<th>Numerical V</th>
<th>Numerical U</th>
<th>Numerical V</th>
<th>Numerical U</th>
<th>Numerical V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$t = 10$</td>
<td>$t = 20$</td>
<td>$t = 30$</td>
<td>$t = 20$</td>
<td>$t = 30$</td>
<td>$t = 30$</td>
</tr>
<tr>
<td>4</td>
<td>0.471</td>
<td>0.0004</td>
<td>0.3534</td>
<td>0</td>
<td>0.2941</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0.7769</td>
<td>0.0018</td>
<td>0.6321</td>
<td>0.0002</td>
<td>0.5437</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0.9257</td>
<td>0.0025</td>
<td>0.8123</td>
<td>0.0009</td>
<td>0.7265</td>
<td>0.0003</td>
</tr>
<tr>
<td>16</td>
<td>0.9826</td>
<td>0.0012</td>
<td>0.9105</td>
<td>0.0017</td>
<td>0.8416</td>
<td>0.0009</td>
</tr>
<tr>
<td>20</td>
<td>0.9978</td>
<td>0.0002</td>
<td>0.9608</td>
<td>0.0016</td>
<td>0.9071</td>
<td>0.0018</td>
</tr>
<tr>
<td>24</td>
<td>0.9999</td>
<td>0</td>
<td>0.9857</td>
<td>0.0009</td>
<td>0.9458</td>
<td>0.0022</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>0.9961</td>
<td>0.0003</td>
<td>0.9711</td>
<td>0.0018</td>
</tr>
</tbody>
</table>
Figure 7: Numerical approximations of $U(x, y, t)$ at the different time levels for $N = 11$, $\Delta t = 0.0001$, $\tau = 1$, $\lambda = 1$, $\mu = 3.4$ and $\beta = 0.002$

Figure 8: Numerical approximations of $V(x, y, t)$ at the different time levels for $N = 11$, $\Delta t = 0.0001$, $\tau = 1$, $\lambda = 1$, $\mu = 3.4$ and $\beta = 0.002$
Table IV: Numerical values of $U(x, y, t)$ and $V(x, y, t)$ at time levels $t = 1$ and $t = 2$ respectively for $N = 11$, $\Delta t = 0.0001$, $\tau = 1$, $\lambda = 1$, $\mu = 3.4$ and $\beta = 0.002$

<table>
<thead>
<tr>
<th>(x, y)</th>
<th>Numerical U</th>
<th>Numerical V</th>
<th>Numerical U</th>
<th>Numerical V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0.1, 0.3)$</td>
<td>2.763392</td>
<td>0.368878</td>
<td>2.806566</td>
<td>0.344901</td>
</tr>
<tr>
<td>$(0.2, 0.3)$</td>
<td>3.364048</td>
<td>0.302191</td>
<td>3.366181</td>
<td>0.2985</td>
</tr>
<tr>
<td>$(0.3, 0.5)$</td>
<td>3.597465</td>
<td>0.276740</td>
<td>3.465287</td>
<td>0.287846</td>
</tr>
<tr>
<td>$(0.3, 0.7)$</td>
<td>3.623658</td>
<td>0.274304</td>
<td>3.472867</td>
<td>0.286998</td>
</tr>
<tr>
<td>$(0.5, 0.7)$</td>
<td>4.020891</td>
<td>0.246011</td>
<td>3.609703</td>
<td>0.275433</td>
</tr>
</tbody>
</table>

Figure 9: Numerical solutions of $U(x, y, t)$ at different time levels for $N = 11$, $\Delta t = 0.0001$, $\tau = 0.0001$, $\lambda = 0.5$, $\mu = 1$ and $\beta = 0.005$
Figure 10: Numerical solutions of $V(x, y, t)$ at different time levels for $N = 11, \Delta t = 0.0001, \tau = 0.0001, \lambda = 0.5, \mu = 1$ and $\beta = 0.005$

Table V: Numerical approximations of $U(x, y, t)$ and $V(x, y, t)$ at $t = 0.1$ and 1.0 respectively for $N = 11, \Delta t = 0.0001, \tau = 0.01, \lambda = 0.5, \mu = 1$ and $\beta = 0.005$

<table>
<thead>
<tr>
<th>(x, y)</th>
<th>Numerical U</th>
<th>Numerical V</th>
<th>Numerical U</th>
<th>Numerical V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$t = 0.1$</td>
<td>$t = 0.1$</td>
<td>$t = 1.0$</td>
<td>$t = 1.0$</td>
</tr>
<tr>
<td>$(0.2, 0.3)$</td>
<td>0.108314</td>
<td>0.039536</td>
<td>0.528485</td>
<td>0.182735</td>
</tr>
<tr>
<td>$(0.3, 0.5)$</td>
<td>0.124121</td>
<td>0.087284</td>
<td>0.543129</td>
<td>0.231628</td>
</tr>
<tr>
<td>$(0.5, 0.3)$</td>
<td>0.16464</td>
<td>0.042389</td>
<td>0.550896</td>
<td>0.201343</td>
</tr>
<tr>
<td>$(0.7, 0.5)$</td>
<td>0.205336</td>
<td>0.091472</td>
<td>0.567449</td>
<td>0.248876</td>
</tr>
<tr>
<td>$(0.7, 0.8)$</td>
<td>0.206191</td>
<td>0.157643</td>
<td>0.564561</td>
<td>0.289206</td>
</tr>
</tbody>
</table>
Figure 11: Numerical profiles of $U(x, y, t)$ at the mentioned time levels for $N = 11$, $\Delta t = 0.0001$, $\tau = 1$, $\lambda = 1$, $\mu = 2$ and $\beta = 0.002$

Figure 12: Numerical profiles of $V(x, y, t)$ at the mentioned time levels for $N = 11$, $\Delta t = 0.0001$, $\tau = 1$, $\lambda = 1$, $\mu = 2$ and $\beta = 0.002$

Table VI: Numerical profiles at time levels $t = 5$ and $t = 10$ respectively for $N = 11$, $\Delta t = 0.0001$, $\tau = 1$, $\lambda = 1$, $\mu = 2$, $\beta = 0.002$

<table>
<thead>
<tr>
<th>(x, y)</th>
<th>Numerical U</th>
<th>Numerical V</th>
<th>Numerical U</th>
<th>Numerical V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$t = 5$</td>
<td>$t = 10$</td>
<td>$t = 5$</td>
<td>$t = 10$</td>
</tr>
<tr>
<td>$(0.1, 0.1)$</td>
<td>1.279069</td>
<td>0.607734</td>
<td>1.279639</td>
<td>0.60771</td>
</tr>
<tr>
<td>$(0.3, 0.3)$</td>
<td>1.997259</td>
<td>0.50023</td>
<td>1.99661</td>
<td>0.500535</td>
</tr>
</tbody>
</table>
IV. CONCLUSION

In this paper, a novel regime, “modified cubic UAT tension B-spline DQM” is implemented to solve 1D and 2D Reaction-Diffusion system. Modified cubic UAT tension B-spline is used as the basis function. Obtained system of Ode is solved by SSP-RK43 scheme. Numerical approximation and it’s graphical results are provided in the form of tables and figures. This scheme is helpful while getting the numerical approximation of complex non-linear partial differential equations, mostly, where analytical solution are not available.

REFERENCES

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en_US