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Abstract- Many methods have been proposed
to remove artifacts from EEG recordings es-
pecially those arising from eye movements and
blinks. Often regression in time and frequency
domain on parallel EEG and electrooculographic
recordings is used, but this approach can become
problematic in some cases. Use of Principal Com-
ponent Analysis (PCA) has been proposed to re-
move eye artifacts from multichannel EEG. This
method is not effective when the activations from
cerebral activity and artifacts have comparable
amplitudes. In this paper it is presented a gener-
ally applicable method for removing a wide vari-
ety of artifacts from EEG recordings based on In-
dependent Component Analysis (ICA) with high-
order statistics. The method is applied with good
results in the analysis of a sample lowpass event
-related potentials (ERP) data.

Keywords- Artifacts removing, blind source
separation, EEG analysis, independent compo-
nent analysis, high-order statistics.

I. Introduction

T
HE eye movements, eye blinks, muscle noise, heart
signals, and line noise often produce large and

distracting artifacts in electroencephalographic (EEG)
recordings. Rejecting EEG segments with artifacts
larger then an arbitrarily preset value is the most com-
monly used method for dealing with artifacts removing.
When limited data are available, or blinks and muscle
movements occur too frequently, the amount of data lost
to artifact rejection may be unacceptable.

Several methods have been proposed to remove arti-
facts from EEG recordings, especially those arising from
eye movements and blinks. Often regression in time [1],
or frequency domain [2], is performed on parallel EEG
and electrooculographic (EOG) recordings to derive pa-
rameters for the appearance or spread of EOG artifacts
in the EEG channels. Regression methods become prob-
lematic when a good regressing channel is not available

for each artifact source, as in the case of muscle arti-
facts. Use of Principal Component Analysis (PCA) has
been proposed to remove eye artifacts from multichannel
EEG [3]. However, PCA cannot completely separate eye
artifacts from brain signals, especially when they have
comparable amplitudes.

To solve a such problem, there are several software
packages and toolboxes that can be used for EEG sig-
nal analysis. Examples are the very comprehensive
EEGLAB software package [4], LORETA (low-resolution
brain electromagnetic tomography) [5], ASA cognitive
software [6], and the BIOSIG open-source software tool
for biomedical signal processing [7]. Some of the tools
evaluate not only EEG but also EMG, for example Brain-
Storm [8]. A few pattern recognition toolboxes are also
available, e.g. PRTools [9]. These tools are in most cases
very narrowly specialized, and each has its limitations.

Here we present a generally applicable method for
removing a wide variety of artifacts from EEG records
based on Independent Component Analysis (ICA), sug-
gested by Makeig et al [10], and starting from a neural
network learning algorithm [11]. They showed that the
ICA algorithms can be used to separate neural activity
frommuscle and blink artifacts in spontaneous EEG data
and reported its use for finding components of EEG and
event-related potentials (ERP).

ICA method applied in this paper is based on the
assumptions that the signals recorded on the scalp are
mixtures of time courses of temporally independent cere-
bral and artifactual sources, that the potential arising
from different parts of the brain, scalp and body are
summed linearly at the electrodes, and that propagation
delays are negligible. The method uses spatial filters de-
rived by ICA algorithms, and does not require reference
channels for each artifact source. Once the independent
time courses of different brain and artifact sources are
extracted from the data, ”corrected” EEG signals can
be derived by eliminating the contributions of artifac-
tual sources.

The outline of this paper is as follows. In Section
2, the proposed approach is presented, including prob-
lem formulation and artifact removing from EEG data,

Received: March 15, 2021. Revised: April 1, 2021. Accepted: April 2, 2021. Published: April 8, 2021.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES 
DOI: 10.46300/9101.2021.15.11 Volume 15, 2021

E-ISSN: 1998-0140 76



resulting the artifact-”corrected” EEG recordings. Also,
we give the description of the main tool used for artifacts
removing from EEG signals, ICA, including models and
algorithms used. Section 3 presents a case study having
as subject analysis of EEG recordings collected from 13
scalp and 1 EOG electrodes, applied to sample lowpass
ERP data for 2 epochs, a data set from literature.

II. Artifact removing from EEG recordings

using ICA

A. Preliminary

Independent Component Analysis represents the
main tool in Blind Source Separation (BSS) [12], with
application to signal analysis in many application areas.
It offers, also, a promising area of applications for elec-
troencephalograms (EEG) and magnetoencephalograms
(MEG), which are recordings of electric and magnetic
fields of signals emerging from neural currents within the
brain.

The EEG data represent a matrix, X, containing the
EEG signals recorded at different electrodes placed on
the scalp. The rows of this matrix are EEG signals and
the columns are measurements recorded al different time
points. The EEG activity is contaminated by eye move-
ments, blinks, muscle, heart and line noise, which rep-
resent a problem for interpretation and analysis of these
signals. The main approaches used to remove these ar-
tifacts consisted of [13]:

• Rejecting contaminated EEG epochs from the sig-
nals, having as effect loss of information.

• Regression in time of frequency domain on EEG
and electrooculographic (EOG) recordings simulta-
neously. This could have as effect subtracting a por-
tion of relevant EEG signal from each recording.

• Due to many noise sources, have no clear reference
channels, the approach based on regression methods
cannot be used.

The approach proposed in [14], [15] consists to ap-
ply ICA to multichannel EEG signals and remove the
complex artifacts from recorded original EEG signals. It
is proved that this approach is able to detect, separate
and remove activity induced in EEG signals from a large
variety of artifact sources.

The application of ICA to EEG signals analysis as-
sumes that several conditions are verified, at least ap-
proximately: the existence of statistically independent
source signals, their instantaneous linear mixing at the
sensors, and the stationarity of the mixing and the inde-
pendent components (ICs).

The independence criterion considers solely the sta-
tistical relations between the amplitude distributions of
the signals involved, and not the morphology or physi-
ology of neural structures. Thus its validity depends on
the experimental situation, and cannot be considered in
general.

Because most of the energy in EEG signals lies below
1 kHz, each time instance can be considered separately

and the propagation of the signals is immediate, there is
no need for introducing any time-delay, and the instan-
taneous mixing is valid.

When considering the underlying source signals as
stochastic processes, the requirement of stationarity is
in theory necessary to guaranty the existence of a repre-
sentative distribution of the ICs. In implementation of
batch ICA algorithms, the data are considered as random
variables, and their distributions are estimated from the
whole data set. Thus, the nonstationarity of the signals
is not really a violation of the assumptions of the model,
but the stationarity of the mixing matrix is crucial [12].

Therefore, ICA-based artifact correction is able to
separate and remove a wide variety of artifacts from EEG
data by linear decomposition. To conclude, it is based on
the following assumptions, on the EEG signals, recorded
on the scalp:

• The EEG signals are spatially stable mixtures of
the activities of independent cerebral and artifact
sources

• The sum of potentials, at the electrodes, coming
from different parts of the brain, scalp, and body
is linear

• Propagation delays from the sources to the elec-
trodes are insignificant

The last two assumptions are quite reasonable in the
case of EEG or MEG data. For enough input data, also
the first assumption is reasonable. The presented ap-
proach, makes use of spatial filters, provided by ICA al-
gorithms, and does not need a reference channel for each
artifact source. After the independent time courses of
different brain and artifact sources are estimated, they
are extracted from the original EEG data, resulting the
artifact-corrected EEG signals, to be used for further in-
vestigations.

B. Signal model for ICA

ICA is closely related to the method BSS, or blind sig-
nal separation [12]. A ”source” means here an original
signal, i.e. independent component. ”Blind” means that
we have very little, if anything, information on the mix-
ing matrix, and make little assumptions on the source
signals. ICA is one method, perhaps the most widely
used, for performing blind source separation. BSS deals
with the problem of recovering multiple independent
sources from their mixtures. ICA is one method, per-
haps the most widely used, for performing blind source
separation. The simple model for BSS assumes the ex-
istence of n independent signals s1(t), . . . ,sn(t) and the
observation of as many mixtures x1(t), . . . , xn(t), these
mixtures being linear and instantaneous, i.e.

xi(t) =

n
∑

j=1

aijsj(t) + ni(t) (1)

for each i = 1, n. This is compactly represented by the
mixing equation
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ŝ1
...
ŝn
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Fig. 1: Mixing and separating. Unobserved signals: s;
observations: x; estimated source signals: ŝ

x(t) = As(t) + n(t) (2)

where s(t) = [s1(t), . . . , sn(t)]
T is an n×1 column vector

collecting the source signals, while vector x(t) collects
the n observed signals and the square n × n ”mixing
matrix” A contains the mixture coefficients.

In the case of convoluted mixtures [16], the model has
the following form:

xi(t) =
n
∑

j=1

P
∑

τ=0

aijτ sj(t− τ) + ni(t) (3)

for each i = 1, n, or compactly

x(t) =
P
∑

τ=0

A(τ)s(t − τ) + n(t) (4)

The BSS consists in recovering the source vector s(t)
using only the observed data x(t), the assumption of in-
dependence between the entries of the input vector s(t)
and possible some a priori information about the prob-
ability distribution of the inputs. It can be formulated
as the computation of an n× n ”separating matrix” W
whose output ŝ(t) is an estimate of the vector s(t) of the
source signals, and has the form:

ŝ(t) = Wx(t) (5)

in the case of an instantaneous mixture and

ŝ(t) =

Q
∑

τ=0

W(τ)x(t − τ) (6)

in the case of a convolved mixture.
As we mentioned above, the problem of convoluted

mixture of the sources do not rise in the case of EEG
signals analysis.

C. Identificability of the ICA model

The identificability of the noise-free ICA model has
been treated in [17]. By imposing the following fun-
damental restrictions (in addition to the basic assump-
tion of statistical independence), the identifiability of the
model can be assured:

1) All the independent components si with the possible
exception of one component, must be non-Gaussian.

2) The number of the observed linear mixtures m must
be at least as large as the number of independent
components n, i.e. m ≥ n.

3) The matrix A must be of full column rank.

For some algorithm classes these assumptions are not
necessary. Usually, it is also assumed that x and s are
centered. If x and s are interpreted as stochastic pro-
cesses instead of simply random variables, additional re-
strictions are necessary. At the minimum, one has to as-
sume that the stochastic processes are stationary in the
strict sense. Some restriction of ergodicity with respect
to the quantities estimated are also necessary.

In the ICA model of eq. (2), it is easy to see that the
following ambiguities will hold:

1) We cannot determine the variances (energies) of the
independent components. The reason is that, both
s and A being unknown, any scalar multiplier in
one of the sources si could always be cancelled by
dividing the corresponding column ai in A by the
same scalar. As a consequence we may quite as well
fix the magnitudes of the independent components;
as they are random variables, the most natural way
to do this is to assume that each has unit variance:
E[s2i ] = 1. Then the matrix A will be adapted in
the ICA solution methods to take into account this
restriction.

2) We cannot determine the order of the independent
components. The reason is that, again both s and
A being unknown, we can freely change the order
of the terms in the sum (1), and call any of the
independent components the first one.

D. Algorithms for ICA

Though many papers purport to introduce ”new”
methods of solution, the existing framework (and solu-
tions) for blind source separation are often the same [18].
The problem of blind source separation is reduced to a
mathematical optimization problem, for which a multi-
tude of techniques are reported. The main differences
rest on the varieties of cost functions utilized, based on
the kurtosis, mutual information, cross power-spectra,
neg-entropy and log-likelihood. In many cases these ap-
proaches are the result of different formalisms, and can
be shown to be mathematically equivalent [12].

When the signals are temporal coherent, it is possible
to solve BSS problem using only the second-order statis-
tics. If the signals are temporal white or have identical
normalized spectral densities, without any information
on a priori source distributions, the solution will need
higher-order statistics. If the source signal distributions
are known, the problem could be solved by maximum
likelihood method.

When the BSS problem is solved using only the
second-order statistics, it is obtained an algorithm sobi
that estimates the original sources based on autocorre-
lations with several time lags and joint approximate di-
agonalization [19]. This technique has the virtue that
it is usually fairly easy to apply and leads, in many
cases, to linear solutions that are simple to compute us-
ing standard numerical techniques. On the other hand,
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one can claim that techniques based on second-order
statistics are optimal for Gaussian signals only. This
is because they neglect the extra information contained
in higher-order statistics, which is needed in describing
non-Gaussian data. The methods, using higher-order in-
formation, allow independent components to have iden-
tical distribution.

Concerning the second class of algorithms, based on
high-order statistics, with possible application in EEG
artifact removing, it can be mentioned: runica algo-
rithm, [20], jader algorithm, [21] and fastica algorithm,
[22]. All these algorithms are implemented in EEGLB
toolbox [4].

In general, the physiological significance of any differ-
ences in the results of different algorithms (or different
parameter choices in the various algorithms) have not
been tested. Applied to simulated, relatively low dimen-
sional data sets for which all the assumptions of ICA
are exactly fulfilled, all these algorithms return near-
equivalent components.

The runica algorithm, that blindly separates mix-
tures of independent sources using infomax principle,
gives stable decompositions with up to hundred of
channels. The jader algorithm uses 4th-order mo-
ments (whereas infomax uses implicitly a combination of
higher-order moments), but the storage required for all
4th-order moments become impractical for datasets with
more than approximate 50 channels. The fastica algo-
rithm, based on a fixed-point technique, quickly com-
putes individual components (one by one). However, the
order of the components it finds cannot be known in ad-
vance, and performing a complete decomposition is not
necessarily faster than infomax. It seems that it may be
less stable than infomax for high-dimensional data sets
[4].

The component order returned by runica and jader
is in decreasing order of the EEG variance accounted for
each component. In other words, the lower the order
of the component, the more data (neural and/or arti-
factual) it accounts for. In some cases ICA decomposi-
tions with runica and fastica, when run twice on the
same data, will differ slightly, because ICA decomposi-
tion starts with a random weight matrix, so the conver-
gence is slightly different every time.

Concerning the performance measurement in source
separation, several measures of distortion are given in
[23], which take into account interference from the other
sources as well as noise and algorithmic artifacts, and
define the performance criteria that measure separately
these contributions.

Beyond the variety of the proposed approaches, it
appears that the key for their common success resides in
the proper design of the statistical criteria according to
which separation is forced.

E. ICA applied to EEG signals

The ICA algorithms are highly effective at perform-
ing source separation in domains where the following as-
sumptions are fulfilled:

1) The mixing medium is linear and propagation delays
are negligible.

2) The time courses of the sources are independent.

3) The number of sources is the same as the number
of sensors; that is, if there are n sensors, the ICA
algorithms can separate n sources.

In the case of EEG signals, we assume that the multi-
channel EEG recordings are mixtures of underlying brain
and artifactual signals. Because volume conduction is
thought to be linear and instantaneous, assumption (1)
is satisfied. Assumption (2) is also reasonable because
the sources of eye and muscle activity, line noise, and car-
diac signals are not generally time locked to the sources
of EEG activity. Assumption (3) is questionable, because
we do not know the effective number of statistically in-
dependent signals contributing to the EEG activity.

For EEG analysis, the rows of the input x(t) are the
EEG signals recorded at different electrodes, the rows of
the output data ŝ(t) = Bx(t) are the time courses of acti-
vation of the ICA, and the columns of the inverse matrix
B−1 give the proiection strengths of the respective com-
ponents onto the scalp sensors. The scalp topographies
of the components provide information about the loca-
tion of the sources. ”Corrected” EEG signals can then
be derived as x′(t) = B−1ŝ′(t), where ŝ′(t) is the matrix
of activation waveforms, ŝ(t), with rows representing ar-
tifactual components set to zero.

The ICA algorithms are related to PCA. Singular
value decomposition, [24] is used to derive the principal
component of EEG signals. Multichannel EEG record-
ings can be expressed by am (time points)× n (channels)
matrix, E, and descomposed as a product of three ma-
trices, E = USVT , where U is an m × n matrix such
that UTU = I, S is an n× n diagonal matrix, and V is
an n× n matrix such that VTV = VVT = I. If E is an
EEG epoch of n channels and m time points, U contains
its n normalized principal component waveforms that are
decorrelated linearly and can be remixed to reconstruct
the original EEG. S contains the n amplitudes of the n

principal components waveforms. The eigenvector ma-
trix, V, is essentially a set of topographic scalp maps,
similar to the columns of the B−1 matrix found by ICA.

PCA finds orthogonal directions of greatest variance
in the data, whereas ICA component maps may be
nonorthogonal. In general, there is no reason why neu-
robiologically distinct EEG sources should be spatially
orthogonal to one another. Therefore, PCA should not
in general effectively segregate each EEG source such as
brain, cardiac, and eye movement generators, into a sep-
arate component.

III. Experimental results

The data used in this case study represent an EEG
time series collected from 13 scalp and 1 EOG electrodes.
The ICA analysis is applied to sample lowpass ERP data
for 2 epochs and 312 frames per data epoch, at 312.5 Hz
sampling rate. The data are used in many case studies
(see [4], among others).
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The original EEG data for 2 conditions, are shown in
Fig. 2 and Fig. 3 for the channels 1-7 (Fz, Cz, Pz, Oz,
F3, F4, C3) and for the channels 8-14 (C4, T3, T4, P3,
P4, Fpz, EOG), respectively.

Fig. 4 and Fig. 5 present the derived ICA component
activations, when jader algorithm has been used.

Starting from these results we decided that sources
3,4,5,6,9 and 11 could represent artifactuals components.
After eliminating of these 6 components, by zeroing out
the corresponding rows of the activation matrix s(t) and
projecting the remaining components onto the scalp elec-
trodes, the ”corrected” EEG data (Fig. 6 and Fig. 7)
were free of artifactual components.

To evaluate the effect of artifact removing by inde-
pendent component analysis, we present in Fig. 8 and
Fig. 9 the ERP filtered data with channel locations on
the scalp, for 2 epochs, before and after after artifact
removing, respectively.

Similar, in Fig. 10 and Fig. 11 are presented the
ERP filtered data for all channels, for 2 epochs, before
and after after artifact removing, respectively.

From Fig. 5, Fig. 6, Fig. 7 and Fig. 8 can be noted
the effect of artifact removing, resulting a reduction in
ERP signal amplitude for all channels, as the effect of ar-
tifact components removing in ”corrected” EEG signals.

IV. Conclusions

Although the neural mechanisms that generate EEG
are not fully known, the assumptions of the ICA algo-
rithms are generally compatible with a widely assumed
model where EEG data recorded at multiple scalp sen-
sors are a linear sum at the scalp electrodes of ac-
tivations, generated by distinct neural and artifactual
sources. ICA opens new perspectives into many brain
and non-brain phenomena analysis, contained in multi-
channel EEG records, by separating data into a sum of
temporally independent components. ICA appears to be
a generally applicable and effective method for removing
a wide variety of artifacts from EEG records, because
their time courses are generally temporally independent
and spatially distinct from sources of cerebral activity.
In addition to EEG artifact removal, ICA decomposition
can be equally applicable to other types of multichannel
biomedical data for which linear summation of the acti-
vations can be assumed.
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Fig. 2: ERP filtered data for 2 epochs, channels 1-7
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Fig. 3: ERP filtered data for 2 epochs, channels 8-14
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Fig. 4: Estimated sources 1-7 for 2 epochs
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Fig. 5: Estimated sources 8-14 for 2 epochs
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Fig. 6: ERP filtered data after artifact removing for 2
epochs, channels 1-7
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epochs, channels 8-14
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