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The Smilarity Index lower and upper bounds:
Theoretical Considerations and Experimental
Verification
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Abstract—In this paper the Smilarity Index variability
range is investigated. Depending on the recognition rates of
abstract-level classifiers, the lower and upper bounds of the of
the Smilarity Index variability range is theoretically analysed.
The experimental tests, carried out in the field of handwritten
numeral classification, confirm the theoretical findings.
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I. INTRODUCTION

he collective behaviour of classifiersis a topic which has

recently attracted the interest of a continuously growing
research community. In fact, it is well-known that many
difficult classification problems can be solved effectively by
combining weakly similar classifiers, whereas no useful result
can be obtained from the combination of very similar
classifiers. As matter of this fact, much research has been
devoted to design weakly similar classifiers based different
classification methods, random selection of feature sets and
resampling techniques of the training data[2, 5, 7, 11, 14, 15].
Several measures of similarity (or dissimilarity) have been
also considered so far, to investigate on the collective
behaviour of classifiers [9]. They have been applied to the
selection of the most valuable subset of classifiers to be
combined [6] and to the prediction of the performance of
combination methods, depending on the characteristics of the
combined classifiers [1]. Some measures work on a pairwise
basis and then average the results [1, 5] , others work on the
whole set of classifiers[4, §].
Although several similarity (or dissimilarity) measures have
been proposed, little formal work has been done on theoretical
analysis of similarity among classifiers and several important
aspects must be investigated yet. Among the others, it is very
important to determine to what extent the interval of possible
values of dsimilarity (or dissimilarity) depends on the
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recognition rates of the individua classifiers. In fact, any
similarity (or dissimilarity) value must be interpreted in
respect to the similarity (or dissimilarity) variability range as
well as the comparison of different similarity (or dissimilarity)
values is only possible on the basis of the theoretical limits of
the corresponding ranges of variability [12].

This paper presents a theoretical analysis on similarity among
abstract-level classifiers. For this purpose, the Similarity Index
is used to estimate the similarity among abstract-level
classifiers and the lower and upper bounds of the Smilarity
Index variability range is determined, depending on the
recognition rates of the individual Cclassifiers. The
experimental results, which have been carried out in the field
of hand-written numeral recognition, confirm the theoretical
findings.

The paper is organised as follows. Section 2 describes the
Smilarity Index, as an estimator of similarity among
classifiers. The theoretical analysis of the lower and upper
bounds of the Smilarity Index is reported in Section 3. Section
4 shows the experimental results. The conclusion of the paper
isreported in Section 5.

[1. THE SIMILARITY INDEX

The Smilarity Index is an estimator of similarity between
abstract-level classifiers, which measures the average
agreements between their decisions [1].

Let A={g |i=1,2,....K} be aset of abstract-level classifiers
and P={p;| t=1,2,...,N} aset of patterns each one belonging to
one of the m possible classes Q={ w;,wy,...,0n} . Moreover let
i(p)=w; (0eQ) be the decision of geA for a pattern pieP
(it isassumed that classifiers cannot reject).

The Similarity Index for A isdefined as:

D Pl

b = IJI=<JK (1)
(%)

where:

Plous = %;Q(si (P).&;(P)) @
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1 if &s(p)=¢;(P) (3
Q(gi(pt)’gj(pt)):{o if ei(pt);tsj(pt)()

Figure 1a shows the decisions of four classifiers g;, €5, €3,
€4, for the patterns py,p,,...p1o. Recognitions are indicated by
the symbol “R” in white cells, misclassifications by shaded
cells. Different shading denotes misclassifications by different
class labels. Figure 1b reports the Similarity Index values for
each pair of classifiers of Figure la. Inthiscaseit results that
Pe1, 2,3, 4 = (0.740.4+0.5+0.6+0.7+0.7) /6=0.6.
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Fig. 1a Outputs of abstract-level classifiers.
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Fig. 1b Similarity Index values.

I1l. ON THE VARIABILITY OF THE SIMILARITY INDEX

In this section, the theoretical analysis on the variability
interval of the Smilarity Index is presented. In particular, the
lower and upper bounds of the interval, in which the Similarity
Index can range, are theoretically determined on the basis of
the recognition rates of the classifiers.

Preliminarily, let A={e,, e,} be a set of two classifiers and
P={p, | t=1,2,...,N} the set of N input patterns. Moreover, let
B; and B, be two subsets of P which contain the patterns
recognised by e; and e, respectively (hence the recognition
rate of €; and ¢, is Ry=card(B,)/card(P), R,=card(B,)/card(P)).
Depending on the agreement between the decisions of ¢; and
g in classifying the patterns peP, the following five
conditions can occur [1]:

» prismisclassified by €; and is recognised by e5;
» prisrecognised by both g, and ¢,;
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» prisrecognised by €; and is misclassified by e5;
» p is misclassified by both ¢; and ¢,, and furthermore

ea(P)# e2(py)
» p is misclassified by both ¢; and ¢, and furthermore

e1(P)= e2(py)-
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Fig. 2 Analysis of agreements between two classifiers.

Hence, the set P can be partitioned into the following five
subsets, asfig. 2 shows:

O C={ peP | p By and peB, } (i.e. VpeCy: p; is
misclassified by €; and recognised by &),

QO C= {peP | p eB; and peB, } (i.e. VpieCy p; is
recognised both by ¢; and ¢,),

O GCg= {PeP | p: €B; and p¢gB, } (i.e. VpeCs p is
recognised by g; and misclassified by ¢5),

O Cs~{ pcP | pr ¢By and pB,} (i.e. VpeCy p is
misclassified both by ¢; and &,). Of course, C, can be
divided into two subsets C, and C,” (C,= C, U C4 ),
with:

% C4 ={ peP | ex(p)= exp) } (i.e. Vpe Cy: g and &,
misclassify p, differently);

% Ci ={peP| ep)=e(p) } (i-e Vpre Ci 2 g1 and &
misclassify p, with the same class label).

Now, if f=card(C,)/card(B,), it results that:
» Cad(Cy)=Cad(By) - f=N-Ry-f;
and
> Card(C1)=Card(Bz)-Card(C2)= N-R, - N-R, - f= NRz(l'
f);
> Card(C3)=Card(Bl)'Card(C2)= N-R; - N'Rs - f= N'(Rl'
Ro-f).
1. Finaly, from the consideration that
N=Card(P)=Card(C;)+Card(C,)+Card(Cs) +Card(C,)
it follows that
» Card(C,)=N-Card(C,)-Card(C,)-Card(Cz)=N-[N-R,-(1-
AIHAN-R;- f]{N-(R-Rxf)] =
=N-[1- Ry(1-f) = Ry- f (Ri-Rof)]=N- [ 1- R, =Ry + Ryf] =
=N- [ 1-(1-f )-RyR]=N- [ (1-Ry )- Ry - (1-f)].

Of course, the Smilarity Index reported in eq. 1, for the
set of classifiers A, isequal to:
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- [Card(Cz)+Card(C4“)J (4)
Pa= Card(P)
and it results that:

v, (CadC)] ooy
Card(P)

(thisis the case in which Vp, P so that ¢; and &, misclassify

P, then e;(p)= ex(py))-

C4**=®! (5)

S e RTHR)SR - D1 RER)H 2R

y if C4*k=C4 (6)
(this is the case in which Vp, €P so that & and ¢,
misclassify p; , then e:(p)= e2(py)).

Morein genera, let A={g; | i=1,2,...,K} be aset of abstract-
level classifiers, and R; the recognition rate of g, i=1,2,..,.K
(hereafter it is supposed that Ri<1, i=1,2,...,K, since, if there
exists one individua classifier g for which R=1, other
classifiers are no longer necessary [15]), it results that

4+ Smilarity Index: Lower Bound
kl
k'R'+ K
min _—2,Wherek’= ZRiJ and R

£oa = [Kj L

2

- 3R {ZK:RJ= > R-K.

i i=1

Thisresult is demonstrated in section 3.1;

+ Smilarity Index: Upper Bound

5

Thisresult is demonstrated in section 3.2.

pAMaX =1-—

A. The Smilarity Index: Lower Bound

Theorem 1 (Similarity Index Lower Bound)

Let A={g|i=12,..K} be a set of classifiers, R, the
recognition rate of g;, i=1,2,..,K, and let P={p; | t=1,2,...,N} a
set of N patterns. Furthermore, let k' and R’ be respectively
the integer part and the decimal part of the sum of the
recognition rates of all classifiersincluded in A:
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It can be shown that the Smilarity Index pa is minimum iff a

partition* { Sy, S} of P exists for which it results that:

= Card(Sp)=N-R' and Vp, €Sy p; is recognised by k'+1
classifiers out of K;

=  Card(S)=N-(1-R) and V p; €Sy : p; is recognised by k'
classifiers out of K;

and V p; eP :if g and g misclassify p;, then &(p)# &(py),

vij=1,2,....K, i#.

Proof Theorem 1
Theorem 1 is proved by induction on K.

Base of induction

Let A={ey, e} be a set of two classifiers, B, and B, the

subsets of P containing the patterns recognised by ¢; and e,

respectively (see Fig.2). If f=card(B;nB,)/card(B,), €q.(4)

provides the Smilarity Index of A and the minimum occur for

C, =@ and f as small as possible (see eqg. (5)). The following

cases must be distinguished:

A) if Ri+Ry<1, then f minimum is equal to 0 and occurs for
B,cP-B; (Fig. 3a). In this case the hypothesis of the
theorem is satisfied for the partition {S",,S";} of P and the
parameters k" and R" defined as: S'y=B;UB,, S'1=P-S",
and k"= R;+R, =0, R"=R;+R,.

B) if Ri+R,=1, then f minimum is equal to 0 and occurs for
B,=P-B; (Fig. 3b). In this case the hypothesis of the
theorem is satisfied for the partition {S",,S";} of P and the
parameters k" and R" defined as. S'»=&, S'=P, and
k"= Ri+RzJ=1, R"=R;+Ry-1=0.

C) if Ri+Ry>1, then f minimum is equa to (R;+R»-1)/R, and
occurs for P-B;cB, (Fig. 3¢). In this case the hypothesis
of the theorem is satisfied for the partition {S',,S";} of P
and the parameters k" and R" defined as: S';=B;nB,,
S"=P-S", and k"=l R;+R, =1, R"=R;+R,-1.

&
- -
]]I L
i
1]
i
1]
1]
(a) R1+Ra<1

1 {S1,S,....S\ (N>1) is a partition of P iff: (@) Vij=1,2,...N: i#

N
=5nS$=2; () JS=P.
i=1
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Fig. 3 Lower Bound of ps: Base of Induction

Induction hypothesis

Let Theorem 1 be true for K=k; we have to verify it for
K=k+1. For this purpose, let A={¢g; | i=1,2,...,.k} be a set of k
classifiers satisfying the hypothesis of Theorem 1 (with the
partition {S,, S} of P and the parameters k' and R"). Let g4
be an extra classifier (recognition rate Ry.;) joined to A, By.q
the subset of P containing the patterns recognised by gy.;. If
f=card(SonBy.1)/card (By+1), from similar considerations of
those used for Fig. 2, we have that the contribution to the
Smilarity Index due to g, depends on the quantity

K(1-HRe+H(K+D)Rea=(K +f ) Reea, ®)
where:
o Kk'(1-f)Ry4+; derives from the patterns in S; which are
recognised by .1
o (k'+1)fRy.; derives from the patterns in Sy which are
recognised by gy.1.
Note that no contribution to the Smilarity Index is given by
the patterns misclassified by .1 In fact, asin eq. (5), it must
result that Vvp, P so that g and g, misclassify p, then
&i(P)#ex(Py)-
Now, the minimum of eq. (8) occurs for f as small as possible.
The following cases must be distinguished:
A) if R+Ry.1<1, then f minimum is equal to 0 and occurs for
Br1cS1 (Fig. 4d). In this case the hypothesis of the
theorem is satisfied for the partition {S",,S";} of P and the
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parameters k" and R" defined as: S"y=SqUBy.1, S'1=P-S",
and k"=k' , R"=R'+R,.

B) if R+Ry.1=1, then f minimum is equal to 0 and occurs for
Bw:1=S1 (Fig. 4b). In this case the hypothesis of the
theorem is satisfied for the partition {S",,S"} of P and the
parameters k" and R" defined as. S'=&, S'=P, and
k"=k'+1, R"=0.

C) if R+Ry.>1, then f minimum is equal to (R’ +Ry+1-1)/Ry+1
and occurs for Si;cBys1 (Fig. 4c). In this case the
hypothesis of the theorem is satisfied for the partition
{S's,S"} of P and the parameters k" and R" defined as:
S'v=SoBy:1, S"1=P-S", and k"=k'+1, R"=R+Ry,;-1.
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Fig.4. Lower Bound of p,: Induction Hypothesis

QE.D.
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Lemmal

Let A={g |i=1,2,....K} be aset of abstract-level classifiers, R;
the recognition rate of g;, i=1,2,..,K, and let P={p; | t=1,2,...,N}
be a set of N patterns. The lower bound of the Smilarity
Index pa™" for the set A is given by:

(5)

2

where k' and R' are the same as those in eq. (7).

La 9)

Proof Lemmal

Substituting eq. (2) in eq. (1) and considering a set A
satisfying the conditions of Theorem 1, it follows that the
Similarity Index pa™" for A is equal to:

Z ZQ(S(H) £;(P))

pAmln — I<J K =
2
72 > Q& (P). £;(P))
_ t 1|J|<1 K -
= i <
2
% > > Qs (P). £, (P))

eS'yusSy | i,j=1,..K
i<j

(10)

K
2

(2)

Moreover, Theorem 1 states that if we let p, be an input
pattern p.eS), p is recognised by k'+1 classifiers out of K
while the remaining K-(k'+1) classifiers misclassify p; with
different class labels. Hence, for a pattern p,e Syit results that:

k'+1
>, Q(é‘i(pt),g,-(pt))Z[ - ] (12)

i,j_=1,....K 2
i<j
where [ K ;]j isdueto the k'+1 classifiers that recognise p;;

) -

kl
where ( > isdueto the k' classifiers that recognise py;

Similarly, for a pattern p,e S it results that:

Z Q(&'(pt) & (pt))_

i,j=1,..K
i<j

Substituting egs. (11) and (12) in eq.(10) it results that:
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aElasl)
(%)
_ L. caracsy) [ "glﬂ+;-<:ard(3'l)-[[ ﬂ_
LB
) % NR‘[kglj + % N(1— R‘)[I;j )
BOE
rials)reml)-
o
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B. The Smilarity Index: Upper Bound

Theorem 2 (Similarity Index Upper Bound)

Let A={g]i=12,...K} be a set of classifiers, R the
recognition rate of g;, i=1,2,..,K. Without loss in generality, let
R<Ri. i1=1,2,...,K-1. The Smilarity Index for A is maximum
iff apartition {So, S, S2, ..., Sp1, Sp, ..., Sk} of P exists
for which it results that:
Card(S'o)=NRl and V Pt eSy :
classifiersout of K;
card(S1)=N- (R,-Ry) and V p, €S’ : prisrecognised by K-
1 classifiersout of K;
card(S,)=N- (Rs-Ry) and V p, €S, : p;isrecognised by K-
2 classifiersout of K;

p: is recognised by K

card(Sp.1)=N-(Ry-Rp-1) and VpieSpa:p: is recognised by
K-(p-1) classifiers out of K;

card(Sp)=N- (Ry+1-Rp) and V' p; €S|, : py is recognised by
K-p classifiers out of K;

card(Sk.1)=N- (Rk-Rk.1) and V p; €Sk.1
by 1 classifier out of K;
Card(S'K)=N (1-RK) and V Pt eSk
classifiersout of K;
and Vp; eP: if g and g misclassify p; , then &(p) =¢;(py),
vij=1,2,....K, i#.

: pr is recognised

. pyisrecognised by 0
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&

Proof Theorem 2
Theorem 2 is proved by induction on K.
Base of induction
Let A={g,, &, } be aset of two classifiers, B; and B, be the
subsets of P containing the patterns recognised by €; and e,
respectively (see Fig.2). If f=card(B;nB,)/card(B,), €q.(4)
provides the Smilarity Index of A and the maximum of pp
occurs for C, =& and f as large as possible (see eq. (6)). The
following cases must be distinguished:
A) if Ri<R,, then f maximum is equal to card(B;)/card(B,)
and occurs for B;cB, (Fig. 53). In this case the hypothesis
of the theorem is satisfied for the partition {S',S"1, S"}
of P defined as: S"():Bl,S"]_:BZ'Bl, SHZZP'Bz.
B) if Ri=R,, then f maximum is equal to card(B,)/card(B,)=1
and occurs for B;=B, (Fig. 5b). In this case the hypothesis
of the theorem is satisfied for the partition {S',S"1, S"}
of P defined as: S's=B,, S"1=J, S",=P-B;.
C) if R<Ry, then f maximum is equal to card(B,)/card(B,)=1
and occurs for B,cB;(Fig. 5¢). In this case the hypothesis
of the theorem is satisfied for the partition {S'o,S"1, S"}
of P defined as: S'=B,, S"'1=B;-B,, S",=P-B;.

2
»: 2 4
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Fig5. Upper Bound of pA: Base of Induction

Induction hypothesis

Let Theorem 2 be true for K=k; we have to verify it for
K=k+1. Let A={g]i=1,2,...k} be a set of k classifiers
(without loss of generality we assume that R<R;q, i=1,2,....k-
1) satisfying the hypothesis of Theorem 1 (with the partition
{So, S1. S, ... , Sp1, Sp s ..., Sk} of P) and let g be an
extra classifier (recognition rate Ry.;) that is joined to A.
Moreover, let B; be the subset of P containing the patterns
recognised by g;, i=1,2,...,k+1. If fi=card(BiB \.1)/card(By+1),
i=1,2,....k, from similar considerations to those used in Fig.2 it
results that the contribution to the Smilarity Index due to g.;
depends on the quantity:

k k
21[(Rk+1fi)+(1—a)—Rk+1(1— fi)kg[l—(a+a+o+2Rk+lfi]

(13
where:
o Ry fi derives from the patterns recognised both by g;
and gy

o (1-R)-Ry+1(1-f;) derives from the patterns misclassified
both by g and &1 (as for eq.(6), it must result that
VpeP so that g and gu; misclassify p;, then
&i(P)=ex1(P)-

The maximum of the quantity in eq. (13) occurs for f; as
large as possible, i=1,2,...,k. The following cases must be
distinguished:

A) if Ri< Ry, then f; maximum occurs for By, B, i=1,...,k
(Fig. 6a). In this case the hypothesis of the theorem is
setisfied for the partition {S"o, S'1, S'2, ... , S'p1, S, -1,
SIK’ S"K+l} of P defined as S"():Bk+1, SIIJ_:Bl'BkH_,
Slzsz-Bl, ey S"p-lzBp—l'Bp—Z , S"p:Bp'Bp—l ) ey Sllk_]_:
Bi1-Bk2 , S"=Bi-Bi1 » S"11=P-Bx .

B) if an index p exists s0 that Rpi<Rwi<R,, then f;

maximum occurs for (Fig. 6b):

» Bic By, fori=1,2,...,p-1

»  Byac B, fori=p,... k.

In this case the hypothesis of the theorem is satisfied for the
partltlon {S"o, Sul, 5"2, vee S"p—la S"p . S"K, SIIK+1} of P
defined as: S'=B;, S'1=B»-B4, S'»=B3-B,, ..., S"p—lsz+1'Bp—2
, Slp:Bp'BkH_ ) ey S"k_]_: Bk-l'Bk—Z , S"k:Bk'Bk-l , S'|k+1:P-Bk .
C) if Ri€Ryq, then f; maximum occurs for By.1<B;, i=1,...,K

(Fig. 6¢). In this case the hypothesis of the theorem is

B3

D3
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setisfied for the partition {S"o, S*, S", ... , S'p1, S'p 1o,
SIK’ S"K+l} of P defined as: SHOZB]_, S"]_:BZ'B]_, S"2:Bg'
Bz... ,S'p1=By-Bp1, S'5=Bpi1-Bp,....S'«1=Bk-Bk1, S'%=
Bi+1-Bi s S's1=P-Bya.
A A A A m : :l : :l : A
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(c) R<Ri+1
Fig. 6. Upper Bound of pa: Induction Hypothesis
Q.E.D.

Lemma 2

Let A={g; |i=1,2,...,K} be aset of abstract-level classifiers,
R; the recognition rate of g, R<R i=1,2,...,K-1, and let
P={p; | t=1,2,...,N} be aset of N patterns. The upper bound of
the Similarity Index p,™® for the set A isgiven by:
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[Zgi R-K +1)2R} (14)

(%)
Proof Lemma 2

2
Substituting eg. (2) in eq. (1) and considering a set A
satisfying the conditions of Theorem 1, it follows that the
Similarity Index paM® for A isequal to:

z ZQ(g (P, & (pP))

PAMaX =1-

M i,j=1,...K
Oa ax _ i<j < =
=)
72 > _Q&(P).&;(P))
i,j=1,..K
i<j =
K
2
> > Qe (P, ()
- R eSuS w...uS i,ji=<l,j...K (15)
K
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Moreover Theorem 2 states that if we let p; be an input
pattern preSk.p, Pt iS recognised by p classifiers out of K,
while the remaining K-p classifiers misclassify p, with the
same class label. Hence, for the pattern p; it results:

227}

>, Q&(p).g;(P)) =

i, j =1,..K
<]
where
[ Sj isdueto the p classifiers that recognise p;;
K-p
2
misclassify p.
Substituting eq.(16) in eq.(15) it results that:
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Figure 7 shows the lower and the upper bounds (obtained
by eg. (9) and (14), respectively) of the Smilarity Index
variability range for two classifiers, depending on the
recognition rates.

1—

QE.D.

(a) Lower Bound
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(b) Upper Bound

Fig.7. Upper and Lower boundary for the Similarity Index

IV. EXPERIMENTAL RESULTS

The experimental results have been carried out in the field
of hand-written numeral classifiers. Table 1 reports the set
A={¢4, &, €3, €4, €5, ¢ } Of the distance-based classifiers used
for the tests, whose complete description can be found in ref.
[3]. The classifiers were trained and tested using the patterns
from the CEDAR database (training patterns. 18468 hand-
written numerals; test patterns. 2711 hand-written numerals).
Table 1 also reports the recognition rates of the individua
classifiers at zero rejections.

Table 2 reports the Smilarity Index for each subset of
classifiers K classifiers picked up from A, K=2,3,4,56. It
results that, for K=2, the most complementary sets of
classifiers are A:{ €1, 83} and A:{ €1, 84} (pA :076), the least
complementary set is A={es, g} (pa =0.86). For K=3, the
most complementary set is A={ej, &, €4} (pa =0.78); the least
complementary set is A={es, €s, €g} (pa =0.86). For K=4, the
most complementary set is A={e, € &3 €4} (pa =0.80); the
least complementary set is A={e3, €4, €5, €6} (pa=0.85). For
K=5, the most complementary set is A={ej, &, €3 €4 &g}
(pa=0.81); the least complementary set is A={¢,, €3, €4, €5,
&} (Pa=0.85).

When the Smilarity Index values are compared to the
variability range, determined by egs.(9) and (14), the result is
reported in Figure 8a. The subsets are ordered along the x axis
for increasing values of the Smilarity Index. Figure 8b shows
the Similarity Index values for the case in which the range of
variability is normalized to [0,1]. This results, which allows
the comparison among Smilarity Index values belonging to
different variability ranges, makes evident that even though
classifiers use features of various types, the Smilarity Index
ranges for sets of real classifiers ranges in a very reduced
interval and no set among those available has a degree of
similarity very close to the minimum.
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Classifier Recognition Rate
®)
51 template matching 81.7%
23 slope of the contour profile 86.3%
& projection histograms in the four main directions 89.7%
& characteristic loci technique 89.8%
& distribution of foreground pixels in different zones of the pattem image 90.4%,
& distribution in the pattem image of 3x3 templates of foreground pixels 90.6%

Table 1: Experimental Results: Numeral Classifiers

K=2 E=3 K=4 _—
pa Pa A Pa P~ 1
0,83 0,87 ArA:ALAs | 087 088 AAsAATAAS
0:36 0.87 ALAzALAs 0.88 089
D:S?‘ 0,87 pA4As | 088 088
D:Sf-‘ 0.37 AzAsAzAs | 083 05
D:SS ArAz A 0.88 0.89 0.8
D:SS AsA-Ag 0.88 0,89 ALAsAALA: 050
083 ALAzAs | 088 080
D;SS ALAs A 0.88 0.89
0,89 AjAsAs | 088 039
0.00 0.9 0.9
0,50 0.89 0.89
0.91 0.89 0.90
0.92 0.90 050
0,92 0.90 0.91
0.93 0.90 0.91
0,51
091

Az ALAs 0.91
A AL A 0,51
0,92

Table 2. Similarity Index value for sets of classifiers
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(b) normalized values

Figure 8: Similarity Index value vs variability range
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V. CONCLUSIONS

In this paper the lower and upper bounds of the Similarity
Index are theoreticaly determined, depending on the
recognition rates of the individual classifiers. The
experimental tests, carried out in the field of handwritten
numerals recognition, confirm the theoretical findings.

The results, which offer new insights to the analysis of
similarity among abstract-level classifiers, can allow a deeper
comprehension of other open questionsin the area of classifier
combination and multi-expert system design.
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