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Abstract—In this paper the Similarity Index variability 

range is investigated. Depending on the recognition rates of 
abstract-level classifiers, the lower and upper bounds of the of 
the Similarity Index variability range is theoretically analysed. 
The experimental tests, carried out in the field of handwritten 
numeral classification, confirm the theoretical findings. 
 

I. INTRODUCTION 
he collective behaviour of classifiers is a topic which has 
recently attracted the interest of a continuously growing 

research community. In fact, it is well-known that many 
difficult classification problems can be solved effectively by 
combining weakly similar classifiers, whereas no useful result 
can be obtained from the combination of very similar 
classifiers.  As matter of this fact, much research has been 
devoted to design weakly similar classifiers based different 
classification methods, random selection of feature sets and 
resampling techniques of the training data [2, 5, 7, 11, 14, 15].  
Several measures of similarity (or dissimilarity) have been 
also considered so far, to investigate on the collective 
behaviour of classifiers [9]. They have been applied to the 
selection of the most valuable subset of classifiers to be 
combined [6] and to the prediction of the performance of 
combination methods, depending on the characteristics of the 
combined classifiers [1]. Some measures work on a pairwise 
basis and then average the results [1, 5] , others work on the 
whole set of classifiers [4, 8].  
Although several similarity (or dissimilarity) measures have 
been proposed, little formal work has been done on theoretical 
analysis of similarity among classifiers and  several important 
aspects must be investigated yet. Among the others, it is very 
important to determine to what extent the interval of possible 
values of similarity (or dissimilarity) depends on the 
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recognition rates of the individual classifiers. In fact, any 
similarity (or dissimilarity) value must be interpreted in 
respect to the similarity (or dissimilarity) variability range as 
well as the comparison of different similarity (or dissimilarity) 
values is only possible on the basis of the theoretical limits of 
the corresponding ranges of variability [12]. 
This paper presents a theoretical analysis on similarity among 
abstract-level classifiers. For this purpose, the Similarity Index 
is used to estimate the similarity among abstract-level 
classifiers and the lower and upper bounds of the Similarity 
Index variability range is determined, depending on the 
recognition rates of the individual classifiers. The 
experimental results, which have been carried out in the field 
of hand-written numeral recognition, confirm the theoretical 
findings.  
The paper is organised as follows. Section 2 describes the 
Similarity Index, as an estimator of similarity among 
classifiers. The theoretical analysis of the lower and upper 
bounds of the Similarity Index is reported in Section 3. Section 
4 shows the experimental results. The conclusion of the paper 
is reported in  Section 5.  

II. THE SIMILARITY INDEX 
The Similarity Index is an estimator of similarity between 

abstract-level classifiers, which measures the average 
agreements between their decisions [1]. 

Let A={εi i=1,2,...,K} be a set of abstract-level classifiers 
and P={pt | t=1,2,...,N} a set of patterns each one belonging to 
one of the m possible classes Ω={ω1,ω2,…,ωm}. Moreover let 
εi(pt)=ωj (ωj∈Ω)  be the decision of  εi∈A for a pattern pt∈P  
(it is assumed that classifiers cannot reject).  

The Similarity Index for A is defined as:   
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Figure 1a shows the decisions of four classifiers ε1, ε2, ε3, 

ε4, for the patterns p1,p2,…p10. Recognitions are indicated by 
the symbol “R” in white cells, misclassifications by shaded 
cells. Different shading denotes misclassifications by different 
class labels. Figure 1b reports the Similarity Index values for 
each pair of classifiers  of  Figure 1a. In this case it results that 
ρ{ε1, ε2, ε3, ε4} = (0.7+0.4+0.5+0.6+0.7+0.7) /6=0.6. 

 

 
Fig. 1a Outputs of abstract-level classifiers. 

 

 
Fig. 1b Similarity Index values. 

 

III. ON THE VARIABILITY OF THE SIMILARITY INDEX 
In this section, the theoretical analysis on the variability 

interval of the Similarity Index is presented. In particular, the 
lower and upper bounds of the interval, in which the Similarity 
Index can range, are theoretically determined on the basis of 
the recognition rates of the classifiers.  

Preliminarily, let A={ε1, ε2} be a set of two classifiers and 
P={pt | t=1,2,...,N} the set of N input patterns. Moreover, let 
B1 and B2 be two subsets of P which contain the patterns 
recognised by ε1 and ε2, respectively (hence the recognition 
rate of ε1 and ε2 is R1=card(B1)/card(P), R2=card(B2)/card(P)). 
Depending on the agreement between the decisions of ε1 and 
ε2 in classifying the patterns pt∈P, the following five 
conditions can occur [1]: 
 pt is misclassified by ε1 and is recognised by ε2; 
 pt is recognised by both ε1 and ε2; 

 pt is recognised by ε1 and is misclassified by ε2; 
 pt is misclassified by both ε1 and ε2, and furthermore 

ε1(pt)≠ ε2(pt) 
 pt is misclassified by both ε1 and ε2, and furthermore 

ε1(pt)= ε2(pt). 
 

 
Fig. 2 Analysis of agreements between two classifiers. 

 
 
Hence, the set P can be partitioned into the following five 

subsets, as fig. 2 shows: 
 C1={ pt∈P | pt ∉B1 and pt∈B2 } (i.e. ∀pt∈C1: pt  is 

misclassified by ε1 and recognised by ε2),  
 C2= {pt∈P | pt ∈B1 and pt∈B2 } (i.e. ∀pt∈C2: pt is 

recognised both by ε1 and ε2),  
 C3= {Pt∈P | pt ∈B1 and pt∉B2 } (i.e. ∀pt∈C3: pt is 

recognised by ε1 and misclassified by ε2),  
 C4={ pt∈P | pt ∉B1 and pt∉B2} (i.e. ∀pt∈C4: pt is 

misclassified both by ε1 and ε2). Of course, C4 can be 
divided into two subsets C4

* and C4
** (C4= C4

*∪ C4
**), 

with:  
 C4

* = { pt∈P | ε1(pt)≠ ε2(pt) } (i.e. ∀pt∈ C4
*: ε1 and ε2 

misclassify pt differently);  
 C4

** = { pt∈P |  ε1(pt)= ε2(pt) } (i.e. ∀pt∈ C4
**: ε1 and ε2 

misclassify pt  with the same class label). 
 

Now, if f=card(C2)/card(B2), it results that: 
 Card(C2)= Card(B2) ⋅ f = N ⋅ R2 ⋅ f; 
and  
 Card(C1)=Card(B2)-Card(C2)= N⋅R2 - N⋅R2 ⋅ f = N⋅R2⋅(1-

f); 
 Card(C3)=Card(B1)-Card(C2)= N⋅R1 - N⋅R2 ⋅ f = N⋅(R1-

R2⋅f). 
1.  Finally, from the consideration that  

N=Card(P)=Card(C1)+Card(C2)+Card(C3) +Card(C4) 
it follows that  

 Card(C4)=N-Card(C1)-Card(C2)-Card(C3)=N-[N⋅R2⋅(1-
f)]–[N⋅R2 ⋅ f]–[N⋅(R1-R2⋅f)] = 

=N⋅[1- R2⋅(1-f) – R2 ⋅ f –(R1-R2⋅f)]=N⋅ [ 1- R2  – R1 + R2⋅f] =  
=N⋅ [ 1-(1-f )⋅R2–R1]=N⋅ [ (1-R1 )- R2 ⋅ (1- f )]. 
 
 Of course, the Similarity Index reported in eq. 1, for the 

set of classifiers A, is equal to: 
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(this is the case in which ∀pt ∈P so that ε1 and ε2 misclassify 
pt , then ε1(pt)≠ ε2(pt)). 
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(this is the case in which ∀pt ∈P so that ε1 and ε2 
misclassify pt , then ε1(pt)= ε2(pt)). 

 
More in general, let A={εii=1,2,...,K} be a set of abstract-

level classifiers, and Ri the recognition rate of εi, i=1,2,..,K 
(hereafter it is supposed that Ri<1, i=1,2,…,K,  since, if there 
exists one individual classifier εi for which Ri=1, other 
classifiers are no longer necessary [15]), it results that  

 
 Similarity Index: Lower Bound 
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This result is demonstrated in section 3.1; 
 
 

 Similarity Index: Upper Bound 
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This result is demonstrated in section 3.2. 
 

A. The Similarity Index: Lower Bound 
 
Theorem 1 (Similarity Index Lower Bound) 
Let A={εii=1,2,...,K} be a set of classifiers, Ri the 
recognition rate of εi, i=1,2,..,K, and let P={pt | t=1,2,...,N} a 
set of  N patterns. Furthermore, let k’ and R’ be respectively 
the integer part and the decimal part of the sum of the 
recognition rates of all classifiers included in A:  
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It can be shown that the Similarity Index ρA is minimum iff  a 
partition1

 Card(S'0)=N⋅R' and ∀pt ∈S'0: pt is recognised by k'+1 
classifiers out of K; 

 {S'0, S'1} of  P exists for which it results that: 

 Card(S'1)=N⋅(1-R') and ∀ pt ∈S'1  : pt is recognised by k' 
classifiers out of K; 

and ∀ pt ∈P  : if εi and εj misclassify pt,  then εi(pt)≠ εj(pt),   
∀i,j=1,2,…,K, i≠j. 
 
Proof  Theorem 1 
 Theorem 1 is proved by induction on K. 
Base of induction  
Let A={ε1, ε2} be a set of two classifiers, B1 and B2 the 
subsets of P containing the patterns recognised by ε1 and ε2, 
respectively (see Fig.2). If f=card(B1∩B2)/card(B2), eq.(4) 
provides the Similarity Index of A and the minimum occur for 
C4

**=∅ and f as small as possible (see eq. (5)). The following 
cases must be distinguished:  
A) if R1+R2<1, then f minimum is equal to 0 and occurs for 

B2⊂P-B1 (Fig. 3a). In this case the hypothesis of the 
theorem is satisfied for the partition {S''o,S''1} of P and the 
parameters k'' and R'' defined as: S''0=B1∪B2, S''1=P-S''0, 
and k''=R1+R2=0, R''=R1+R2. 

B) if R1+R2=1, then f minimum is equal to 0 and occurs for 
B2=P-B1 (Fig. 3b). In this case the hypothesis of the 
theorem is satisfied for the partition {S''o,S''1} of P and the 
parameters k'' and R'' defined as: S''0=∅, S''1=P, and 
k''=R1+R2=1, R''=R1+R2-1=0. 

C) if R1+R2>1, then f minimum is equal to (R1+R2-1)/R2 and 
occurs for P-B1⊂B2 (Fig. 3c). In this case the hypothesis 
of the theorem is satisfied for the partition {S''o,S''1} of P 
and the parameters k'' and R'' defined as: S''0=B1∩B2, 
S''1=P-S''0, and k''=R1+R2=1, R''=R1+R2-1. 
 

 
 

 
1 {S1,S2,…,SN} (N>1) is a partition of P iff: (a) ∀i,j=1,2,…,N:  i≠j 

⇒Si∩Sj=∅; (b) PS
N

i
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=


1
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Fig. 3 Lower Bound of ρA: Base of Induction 
 
 Induction hypothesis  
 Let Theorem 1 be true for K=k; we have to verify it for 
K=k+1. For this purpose, let A={εii=1,2,...,k} be a set of k 
classifiers satisfying the hypothesis of  Theorem 1 (with the 
partition {S'0,S'1} of P and the parameters k' and R'). Let εk+1 
be an extra classifier (recognition rate Rk+1) joined to A, Bk+1 
the subset of P containing the patterns recognised by εk+1. If 
f=card(S'0∩Bk+1)/card (Bk+1), from similar considerations of 
those used for Fig. 2, we have that the contribution to the 
Similarity Index due to εk+1 depends on the quantity  
 

k'(1-f)Rk+1+(k'+1)fRk+1=(k’+f ) Rk+1,        (8) 
 
where:  

• k'(1-f)Rk+1 derives from the patterns in S'1 which are 
recognised by εk+1 

• (k'+1)fRk+1 derives from the patterns in S'0 which are 
recognised by εk+1. 

Note that no contribution to the Similarity Index is given by 
the patterns misclassified by εk+1. In fact, as in eq. (5), it must 
result that  ∀pt ∈P so that εi and εk+1 misclassify pt, then 
εi(pt)≠εk+1(pt). 
Now, the minimum of eq. (8) occurs for f as small as possible. 
The following cases must be distinguished: 
A) if R'+Rk+1<1, then f minimum is equal to 0 and occurs for 

Bk+1⊂S'1 (Fig. 4a). In this case the hypothesis of the 
theorem is satisfied for the partition {S''o,S''1} of P and the 

parameters k'' and R'' defined as: S''0=S'0∪Bk+1, S''1=P-S''0, 
and k''=k' , R''=R'+Rk+1. 

B) if R'+Rk+1=1, then f minimum is equal to 0 and occurs for 
Bk+1=S'1 (Fig. 4b). In this case the hypothesis of the 
theorem is satisfied for the partition {S''o,S''1} of P and the 
parameters k'' and R'' defined as: S''0=∅, S''1=P, and 
k''=k'+1, R''=0. 

C) if R'+Rk+1>1, then f minimum is equal to (R’+Rk+1-1)/Rk+1 
and occurs for S'1⊂Bk+1 (Fig. 4c). In this case the 
hypothesis of the theorem is satisfied for the partition 
{S''o,S''1} of P and the parameters k'' and R'' defined as: 
S''0=S'0∩Bk+1, S''1=P-S''0, and k''=k'+1, R"=R'+Rk+1-1. 
 

 

 
 

 
 Fig.4. Lower Bound of ρA: Induction Hypothesis  

Q.E.D. 
 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 7, 2013 685



 

 

 
Lemma 1 
Let A={εii=1,2,...,K} be a set of abstract-level classifiers, Ri 
the recognition rate of εi, i=1,2,..,K, and let P={pt | t=1,2,...,N} 
be a set of  N patterns. The lower bound of the Similarity 
Index  ρA

min  for the set A is given by:  
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where k' and R' are the same as those in eq. (7).  
 
Proof  Lemma 1  
Substituting eq. (2) in eq. (1) and considering a set A 
satisfying the conditions of Theorem 1, it follows that the 
Similarity Index ρA

min for A is equal to:  
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Moreover, Theorem 1 states that if we let pt be an input 
pattern pt∈S'0, pt is recognised by k'+1 classifiers out of K 
while the remaining K-(k'+1) classifiers misclassify pt with 
different class labels. Hence, for a pattern pt∈S'0 it results that:  
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is due to the k'+1 classifiers that recognise pt; 

Similarly, for a pattern pt∈S'1 it results that:  
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Substituting eqs. (11) and (12) in eq.(10) it results that: 


























+















 +

=
∑∑
∈∈

2

2
'1

2
1'1

10 ''min

K

k
N

k
N SPSP

A
ttρ

= 

=


























⋅⋅+















 +
⋅⋅

2

2
'

)'(1
2

1'
)'(1

10

K

k
SCard

N
k

SCard
N = 

=


















−+







 +

2

2
'

)'1(1
2

1'
'1

K

k
RN

N
k

NR
N = 

=


















−+








−
+

2

2
'

)'1(
2
'

1'
1''

K

k
R

k
k
kR = 

=


















+








−

2

2
'

2
'

1'
2'

K

kk
k

R
=


















+

−
−

2

2
'

2
)1'('

1'
2'

K

kkk
k

R
=


















+

2

2
'

''

K

k
Rk

 

Q.E.D. 
 

B. The Similarity Index: Upper Bound 
 
Theorem 2 (Similarity Index Upper Bound) 
Let A={εii=1,2,...,K} be a set of classifiers, Ri the 

recognition rate of εi, i=1,2,..,K. Without loss in generality, let 
Ri≤Ri+1, i=1,2,…,K-1. The Similarity Index for A is maximum 
iff  a partition {S'0, S'1, S'2, … , S'p-1, S'p , …, S'K} of P exists 
for which it results that: 
 card(S'0)=N⋅R1 and ∀ pt ∈S'0 : pt is recognised by K 

classifiers out of K;  
 card(S'1)=N⋅ (R2-R1) and ∀ pt ∈S'1 : pt is recognised by K-

1 classifiers out of K; 
 card(S'2)=N⋅ (R3-R2) and ∀ pt ∈S'2 : pt is recognised by K-

2 classifiers out of K; 
 … 
 card(S'p-1)=N⋅(Rp-Rp-1) and ∀pt∈S'p-1:pt is recognised by 

K-(p-1) classifiers out of K;  
 card(S'p)=N⋅ (Rp+1-Rp) and ∀ pt ∈S'p  : pt is recognised by 

K-p classifiers out of K;  
 … 
 card(S'K-1)=N⋅ (RK-RK-1) and ∀ pt ∈S'K-1  : pt is recognised 

by 1 classifier out of K; 
 card(S'K)=N⋅ (1-RK) and ∀ pt ∈S'K  : pt is recognised by 0 

classifiers out of K; 
and ∀pt ∈P:  if εi and εj misclassify pt , then εi(pt) =εj(pt),   

∀i,j=1,2,…,K, i≠j. 
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Proof Theorem 2 
Theorem 2 is proved by induction on K. 
Base of induction 
Let A={ε1, ε2 } be a set of two classifiers, B1 and B2 be the 

subsets of P containing the patterns recognised by ε1 and ε2, 
respectively (see Fig.2). If f=card(B1∩B2)/card(B2), eq.(4) 
provides the Similarity Index of A and the maximum of ρA 
occurs for C4

*=∅  and f as large as possible (see eq. (6)). The 
following cases must be distinguished:  
A) if R1<R2 , then f maximum is equal to card(B1)/card(B2) 

and occurs for B1⊂B2 (Fig. 5a). In this case the hypothesis 
of the theorem is satisfied for the partition {S''0,S''1, S''2} 
of P defined as: S''0=B1,S''1=B2-B1, S''2=P-B2.  

B) if R1=R2, then f maximum is equal to card(B2)/card(B2)=1 
and occurs for B1=B2 (Fig. 5b). In this case the hypothesis 
of the theorem is satisfied for the partition {S''0,S''1, S''2} 
of P defined as: S''0=B1, S''1=∅, S''2=P-B1. 

C) if R2<R1, then f maximum is equal to card(B2)/card(B2)=1 
and occurs for B2⊂B1(Fig. 5c). In this case the hypothesis 
of the theorem is satisfied for the partition {S''0,S''1, S''2} 
of  P defined as: S''0=B2, S''1=B1-B2, S''2=P-B1. 

 

 

 

 
Fig5. Upper Bound of ρA: Base of Induction 
 
Induction hypothesis 
Let Theorem 2 be true for K=k; we have to verify it for 

K=k+1. Let A={εii=1,2,...,k} be a set of k classifiers 
(without loss of generality we assume that Ri≤Ri+1, i=1,2,...,k-
1) satisfying the hypothesis of Theorem 1 (with the partition 
{S'0, S'1, S'2, … , S'p-1, S'p , …, S'K} of P) and let εk+1 be an 
extra classifier  (recognition rate Rk+1) that is joined to A. 
Moreover, let Bi be the subset of P containing the patterns 
recognised by εi, i=1,2,…,k+1. If fi=card(Bi∩B k+1)/card(Bk+1), 
i=1,2,...,k, from similar considerations to those used in Fig.2 it 
results that the contribution to the Similarity Index due to εk+1 
depends on the quantity: 

[ ] [ ]∑∑
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1
11

1
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                       (13) 

where:  
• Rk+1 fi derives from the patterns recognised both by εi 

and εk+1 
• (1-Ri)-Rk+1(1-fi) derives from the patterns misclassified 

both by εi and εk+1 (as for eq.(6), it must result that 
∀pt∈P so that εi and εk+1 misclassify pt, then 
εi(pt)=εk+1(pt)).  

The maximum of the quantity in eq. (13) occurs for fi as 
large as possible, i=1,2,…,k. The following cases must be 
distinguished:  
A) if Rk+1≤ R1, then fi maximum occurs for Bk+1⊆ Bi, i=1,…,k 

(Fig. 6a). In this case the hypothesis of the theorem is 
satisfied for the partition {S''0, S''1, S''2, … , S''p-1, S''p , …, 
S''K, S''K+1} of P defined as: S''0=Bk+1, S''1=B1-Bk+1, 
S''2=B2-B1, … , S''p-1=Bp-1-Bp-2 , S''p=Bp-Bp-1 , …, S''k-1= 
Bk-1-Bk-2 , S''k=Bk-Bk-1 , S''k+1=P-Bk . 

B) if an index p exists so that Rp-1≤Rk+1≤Rp, then fi  
maximum occurs for (Fig. 6b): 

 Bi⊆ Bk+1,  for i=1,2,…,p-1 
 Bk+1⊆ Bi, for i=p,…,k.  

In this case the hypothesis of the theorem is satisfied for the 
partition {S''0, S''1, S''2, … , S''p-1, S''p , …, S''K, S''K+1} of P 
defined as:  S''0=B1, S''1=B2-B1, S''2=B3-B2, … , S''p-1=Bk+1-Bp-2 
, S''p=Bp-Bk+1 , …, S''k-1= Bk-1-Bk-2 , S''k=Bk-Bk-1 , S''k+1=P-Bk . 
C) if Rk≤Rk+1, then fi  maximum occurs for Bk+1⊆Bi, i=1,…,k 

(Fig. 6c). In this case the hypothesis of the theorem is 
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satisfied for the partition {S''0, S''1, S''2, … , S''p-1, S''p ,…, 
S''K, S''K+1} of P defined as: S''0=B1, S''1=B2-B1, S''2=B3-
B2,… ,S''p-1=Bp-Bp-1, S''p=Bp+1-Bp,…,S''k-1=Bk-Bk-1, S''k= 
Bk+1-Bk , S''k+1=P-Bk+1.  

 

 

  

 

Fig. 6. Upper Bound of ρA: Induction Hypothesis 

Q.E.D. 

Lemma 2 
Let A={εii=1,2,...,K} be a set of abstract-level classifiers, 

Ri the recognition rate of εi, Ri≤Ri+1, i=1,2,…,K-1, and let 
P={pt | t=1,2,...,N} be a set of  N patterns. The upper bound of 
the Similarity Index  ρA

Max  for the set A is given by: 
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Proof Lemma 2 
Substituting eq. (2) in eq. (1) and considering a set A 

satisfying the conditions of Theorem 1, it follows that the 
Similarity Index ρA

Max for A is equal to: 
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Moreover Theorem 2 states that if we let pt  be an input 
pattern pt∈S'K-p, pt is recognised by p classifiers out of K, 
while the remaining K-p classifiers misclassify pt with the 
same class label. Hence, for the pattern pt it results:  
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where 
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is due to the p classifiers that recognise pt;  
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 is due to the K-p classifiers that 

misclassify pt. 
Substituting eq.(16) in eq.(15) it results that:  
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Q.E.D. 
 
Figure 7 shows the lower and the upper bounds (obtained 

by eq. (9) and (14), respectively) of the Similarity Index 
variability range for two classifiers, depending on the 
recognition rates. 
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(b) Upper Bound   
 

Fig.7. Upper and Lower boundary for the Similarity Index 

IV. EXPERIMENTAL RESULTS 
The experimental results have been carried out in the field 

of hand-written numeral classifiers. Table 1 reports the set 
A={ε1, ε2, ε3, ε4, ε5 , ε6 } of the distance-based classifiers used 
for the tests, whose complete description can be found in ref. 
[3]. The classifiers were trained and tested using the patterns 
from the CEDAR database (training patterns: 18468 hand-
written numerals; test patterns: 2711 hand-written numerals). 
Table 1 also reports the recognition rates of the individual 
classifiers at zero rejections.  

Table 2 reports the Similarity Index for each subset of 
classifiers K classifiers picked up from A, K=2,3,4,5,6. It 
results that, for K=2, the most complementary sets of 
classifiers are A={ε1, ε3} and A={ε1, ε4} (ρA =0.76); the least 
complementary set is A={ε5, ε6} (ρA =0.86). For K=3, the 
most complementary set is A={ε1, ε2, ε4} (ρA =0.78); the least 
complementary set is A={ε3, ε5, ε6} (ρA =0.86). For K=4, the 
most complementary set is A={ε1, ε2, ε3, ε4} (ρA =0.80); the 
least complementary set is A={ε3, ε4, ε5, ε6} (ρA=0.85). For 
K=5, the most complementary set is A={ε1, ε2, ε3, ε4, ε6} 
(ρA=0.81); the least complementary set is A={ε2, ε3, ε4, ε5, 
ε6}(ρA=0.85). 

When the Similarity Index values are compared to the 
variability range, determined by eqs.(9) and (14), the result is 
reported in Figure 8a. The subsets are ordered along the x axis 
for increasing values of the Similarity Index. Figure 8b shows 
the Similarity Index values for the case in which the range of 
variability is normalized to [0,1]. This results, which allows 
the comparison  among Similarity Index values belonging to 
different variability ranges, makes evident that even though 
classifiers use features of various types,  the Similarity Index 
ranges for sets of real classifiers ranges in a very reduced 
interval and no set among those available has a degree of 
similarity very  close to the minimum.  
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Table 1: Experimental Results: Numeral Classifiers 
 

Table 2. Similarity Index value for sets of classifiers 
 

(a) absolute values 
 

(b) normalized values 
Figure 8: Similarity Index value vs variability range 
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V. CONCLUSIONS 
In this paper the lower and upper bounds of the Similarity 

Index are theoretically determined, depending on the 
recognition rates of the individual classifiers. The 
experimental tests, carried out in the field  of handwritten 
numerals recognition, confirm the  theoretical findings. 

The results, which offer new insights to the analysis of 
similarity among abstract-level classifiers,  can allow a deeper 
comprehension of other open questions in the area of classifier 
combination and multi-expert system design.  
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