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Abstract—- It is recognized that, apart from a few cases, the No-
Tension assumption yields a effective model for structural assessment 
of masonry structures. The theory is briefly illustrated, and its 
application to vaults is explained in detail, leading to a Monge-
Ampere equation ruling the static regime through a membrane stress 
surface. 

 

I. INTRODUCTION 
asonry is not properly a "material" in the strict sense of 
the word. It consists in the (generally man-made) 
assemblage of a basic component (the stones) simply 

laid on each other or, more often, jointed by mortar. Stones 
and mortar may have very variable mechanical properties, and 
the way in which the stones are organized in the masonry 
volume may (the masonry "texture") may be very different, 
and is subject to the skill and the  creativity of the designer 
and/or of the builder. 

So, "masonry" has not a uniquely defined object, and it is 
very difficult to set up a mechanical model able to closely 
reproduce the properties of masonry, fitting all the possible 
variety of masonry assortment and texture. Anyway, in all 
structural analyses the engineer is forced to balance the trend 
to reproduce the material (and consequently the structural 
behaviour) as closely as possible, with the practical 
manageability of the analytical tools. Linear theory of 
structures applied to steel, reinforced concrete and even to 
masonry,  is a successful example of such effort. In all cases 
the basic theory should include the major features of the 
behaviour, possibly neglecting many details that poorly 
influence structural safety assessment, and/or are 
uncontrollable.  

The first step is then to identify the major properties, that 
are more or less common to all masonry types. The basic 
knowledge can be achieved through simple experiments. Uni-
axial compression/tension tests can be performed on some 
Representative Volume Element (RVE) of a typical masonry.  

After some experiments, it is possible to conclude that: i) 
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the masonry has different elastic moduli in tension (Et) and 
compression (Ec); ii) the masonry has different limit stresses in 
tension (σt) and compression (σc); iii) the limit stress in 
tension is much smaller than the limit strength in compression 
(σt << σc); iv) the behaviour at failure in compression has 
some degree of ductility; v) the behaviour at failure in tension 
is definitely brittle, so tensile strength cannot be recovered 
absolutely.  

Moreover, surprisingly the limit strength in compression of 
masonry is larger than the strength of the weak element (the 
mortar) and is bounded from above by the limit strength of the 
strong component (the stones); this is due to some complex 
phenomenon of stress interaction and transverse deformation 
of mortar with respect to stones. It is also easy to understand 
that if the axis of the stress is rotated by an angle, say 90°, the 
results of the experiment may significantly change, in 
particular as regards the tensile strength. Some similar 
conclusions can be drawn from biaxial tests (see e.g. [1,2]). 
Experimental limit strength domains show a high capacity in 
compression and a very poor limit in tension without ductility. 

Summing up, masonry is a non-linear material, strongly 
hetero-resistant, anisotropic with respect to tensile strength, 
with compliance coefficients depending on the orientation of 
the stress axes and different in compression and tension, and 
with brittle failure at a very low tension threshold.  

Therefore, the prevalent feature that characterizes masonry 
structures, and makes them dissimilar from modern concrete 
and steel structures, is quite definitely their intrinsic inability 
to resist tensile stresses. So, it is natural that the material 
model, that is intended to be an "analogue" of real masonry, in 
principle cannot resist tensile stress, but, possibly, behaves 
elastically under pure compression, or plastically if some 
degree of ductility is ascertained. No-Tension solutions for 
masonry structures are a very significant reference point and a 
powerful tool for reliable structural assessment, for many 
reasons. The first reason is that the NT model is a stable 
behaviour, poorly subject to uncertainty and aging. Tensile 
strength is in any case small, uncertain, highly variable in the 
mass of a structure, not durable in time and so on; anyway 
neglecting tensile strength leads to a safe assessment. In other 
words, no doubt that the NT model is a simplified behaviour, 
that in some cases does not give account of some surprisingly 
good performance of masonry buildings, but it is also true that 
if a masonry structure does not pass through a NT check it 
remains a suspect structure. 

The basics for the foundation of a NT material theory are 
illustrated in [3], where the relevant principles for structural 
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analysis, mainly identified in the classic energy theorems, 
suitably adapted to the material at hand, are formulated. Limit 
Analysis  theorems and duality principles are discussed in [4]. 

In (apparently) simple cases, closed-form solutions can be 
obtained, or, at least, the solution process can be prepared after 
a preliminary screening of the equilibrium scenario [5]. 

Wider literature contributed on the subject by the authors 
and the Naples research group may be found in [6-11]. 

Masonry elements or components behaving like rigid 
blocks under dynamic action may be analysed by worst 
scenario approaches [12-14]. 

II. MASONRY AS A NO-TENSION MATERIAL 
In the previous section it has been recognized that in some 

cases a tensile capacity along some direction can be attributed 
to masonry. Anyway, masonry is brittle in tension; if  in any 
time in the life of the structure the stress σ exceeds this limit, 
the bricks crack, and the tensile strength decays to zero. On the 
other side, there is no doubt that the prevalent feature that 
characterizes masonry structures, and makes them dissimilar 
from modern concrete and steel structures, is quite definitely 
their intrinsic inability to resist tensile stresses. So, it is natural 
that the material model, that is intended to be an "analogue" of 
real masonry, cannot resist tensile stress, but, possibly, 
behaves elastically under pure compression. No-Tension 
solutions for masonry structures are however a very significant 
reference point and a powerful tool for reliable structural 
assessment, for many reasons. The first reason is that the NT 
model is a stable behaviour, poorly subject to uncertainty and 
aging. Tensile strength is in any case small, uncertain, highly 
variable in the mass of a structure, not durable in time and so 
on; anyway neglecting tensile strength leads to a safe 
assessment. In other words, no doubt that the NT model is a 
simplified behaviour, that in some cases does not give account 
of some surprisingly good performance of masonry buildings, 
but it is also true that if a masonry structure does not pass 
through a NT check it remains a suspect structure. In the 
following the basics for the foundation of a NT material theory 
are illustrated, and the relevant principles for structural 
analysis, mainly identified in the classic energy theorems, 
suitably adapted to the material at hand, are formulated. In 
(apparently) simple cases, closed-form solutions can be 
obtained, or, at least, the solution process can be prepared after 
a preliminary screening of the equilibrium scenario. 
 
A.  The standard No-Tension material 

In a NT solid the equilibrium against external loads is 
required to be satisfied by admissible stress fields, which 
imply pure compression everywhere in the solid. Compatibility 
of the strain field can be ensured by superposing to the elastic 
strain field an additional fracture field, that does not admit 
contraction in any point and along any direction; that is to say 
that the stress tensor σ must be negative semi-definite 
everywhere in the solid, while the fracture strain field εf is 
required to be positive semi-definite. 

The material shall, hence, satisfy the following conditions 
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where ra is the set of directions through the generic point in the 
solid, a is one of such directions, εf is the fracture strain that is 
assumed to superpose to the elastic strain εe in order to anneal 
tensile stresses if possible, and C denotes the tensor of elastic 
constants. Consider moreover that on every elementary surface 
with normal a, if εfa is strictly positive σa must be zero; by 
contrast if σa is strictly negative, εfa must be zero. If σo is the 
stress tensor in the point actually  associated with fractures εf, 
it follows that 

0=⋅ fo εσ                                  (2) 

The material admissibility conditions for strain and stress 
reported in (1) can be synthetically referred to by the set of 
inequalities ( ) 0h ≥ε fε  and ( ) 0h ≥σ σ  respectively. 

As a consequence of (1) and (2), the classical Drucker's 
rule holds for the fracture strain. With reference to the 
admissible domains quoted in (1), the normality Drucker's law 
for no-tension material can thus be written as 

 
( ) Σ∈∀≤⋅− σεσσ ο 0f                     (3) 

 
where Σ is the set of admissible stress tensors and σ is any 
admissible stress state other than the effective one σo.  
 
B.   Limit Analysis and fundamental theorems 

Let consider the body and surface forces, F acting on 
volume V and p acting on the free surface Sp, the displacement 
field u, the imposed displacement field uo characterizing the 
constrained part of the solid surface Su, the above mentioned 
strain field  ε = εe +  εf  = C σ + εf, the stress field σ. 

As clear from the above, fracture strains εf can be 
developed at the considered point only if the stress situation 
can be represented by a stress tensor σ laying on the surface of 
the material admissibility domain, which is defined for NT 
bodies by ( ) 0σ ≤σh ; obviously if some fracture does exist, it 
is developed according to the NT material 
inequalities ( ) 0h ≥ε fε .  

B.1..   General setup 
Denoting by U the set of possible displacement fields, the 

class of fracture admissible mechanisms is defined by the 
subset Uf of U containing displacement fields uf that are 
directly compatible with fracture strains εf apart from any 
elastic strain field 

εf = ∇ uf  ;  hε(ε f) >  0                            (4) 

Uf = {uf ∈ U : hε(∇uf) > 0 }                      (5) 

Collapse mechanisms can be defined as fracture admissible 
mechanisms uf such that the mechanical work developed by 
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the applied loads (p,F) is positive; this condition is analytically 
expressed by the inequality 

0>⋅+⋅ ∫∫
V

f
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f dVdS
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By the Principle of Virtual Work, a necessary condition for the 
existence of any admissible stress field σ equilibrating the 
applied loads is that 
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After (7) one can enounce the "Kinematical Theorem" of 
Limit Analysis for NT bodies: if any collapse mechanism 
exists under the applied loads, no solution can exist for the 
equilibrium of the NT solid. In other words: If any collapse 
mechanism exists, the solid collapses. 

On the other side, statically admissible stress fields σ can 
be defined as tensor fields equilibrating the applied loads and 
satisfying admissibility conditions, i.e. ( ) 0σ ≤σh  or σ∈Σ, 
where Σ is the admissible domain, everywhere in the solid. 
Assuming that under the load pattern (p,F) a statically 
admissible stress field σ exists for any mechanism uf, after (7) 
one gets 

ff
V

f
S

f UVddS
p

∈∀≤⋅+⋅ ∫∫ uuFup 0                (8) 

One can, thus, enounce the "Static Theorem" of Limit 
Analysis for NT bodies: if under the applied loads any 
statically admissible stress field σ exists, no collapse 
mechanism exists and the structure cannot collapse. 
 
B.2.  The one-multiplier load pattern. The safety factor 

Let assume the applied loads as given by the sum of a fixed 
component (Fo, po) and a variable component (sFv, spv) 
depending on the value assumed by the multiplier s (actually 
one thus assumes that only the portion Fv, pv, may be 
destabilizing and should be controlled) 
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and let define two fundamental classes of load multipliers s for 
NT bodies: the class of statically admissible multipliers β and 
the class of kinematically sufficient multipliers γ. After 
denoting by αn the unit outgoing vector normal to the surface 
Sp, load multipliers β are defined to be statically admissible if 
the following relations hold 
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      ( ) 0h ≤βσσ                                 (11) 

 
that is to say, if a stress field σβ exists equilibrating the applied 
loads with s=β and satisfying the NT material admissibility 
conditions. A stress field satisfying (10) and (11) is qualified 
as statically admissible.  

On the other side, load multipliers γ are defined to be 
kinematically sufficient if the following relations hold 
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( ) 0h ≥ε fε                                  (13) 
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(with ∇ the symmetrical gradient operator), that is to say, if 
any displacement field γ

fu  exists (a collapse mechanism) 

directly compatible with a NT admissible fracture strain γ
fε  

apart from any elastic strain field, and such that the condition 
stated by (14) is also satisfied. It is understood that the body is 
stable under the basic load pattern (Fo, po), and that (14) 
cannot be satisfied by any fracture strain field for γ = 0.  

In other terms it is assumed that the basic loads are suitably 
chosen in way that they cannot produce collapse.  

Extensions to NT continua of the fundamental static and 
kinematic theorems of Limit Analysis allow individuating the 
value s  of the load multipliers s, limiting the loading capacity 
of the body. 

On the basis of the static theorem, one can state that “the 
collapse multiplier s  represents the maximum of the statically 
admissible multipliers β” 

{ }oΒmaxs ∈β=                        (15) 

where Βo is the class of statically admissible multipliers. 
On the basis of the kinematic theorem, one can state that 

“the collapse multiplier s  represents the minimum of the 
kinematically sufficient multipliers γ” 

{ }os Γ∈γ= min                        (16) 

where Γo is the class of kinematically sufficient multipliers. 
Thereafter, by means of the static theorem, one can search 

for the collapse multiplier by implementing the problem 
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Or otherwise, by means of the kinematic theorem, by solving 
the problem 
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C. Variational principles for the NT equilibrium problem 

Analysis of no-tension structures proves that stress, strain 
and displacement fields obey extremum principles of the basic 
energy functionals.  Therefore the solution displacement and 
fracture strain fields are found as the constrained minimum of 
the Potential Energy functional, under the condition that the 
fracture field is positively semi-definite at any point. In other 
words, if ε and u are respectively the strain and the 
displacement fields such that 

ε = ∇u                                   (19) 

and p, F are the surface tractions and the body forces, it is 
possible to write down the Total Potential Energy (TPE) 
functional 
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with D the inverse tensor of C. The TPE functional E(u, εf) is 
made up by two terms, expressing the energy stored in the 
body L(u, εf) and the opposite of the work made by the applied 
loads P(u). It can be proved  that the solution uo, εfo satisfies 
the following condition 
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which is the minimum of the Potential Energy, conditioned 
upon admissibility of the fracture strain, with Φ the set of 
admissible fracture fields. Despite the quadratic functional 
L(u, εf) is positive definite, the minimum may be not unique if 
some mechanism exists such that P(u) = 0. 

The stress field can be found, in turn, as the constrained 
minimum of the Complementary Energy (CE) functional, 
under the condition that the stress field is in equilibrium with 
the applied loads and compressive everywhere. In other words, 
let 
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be the CE functional S (σ) defined on the set Σo of the 
admissible stress fields (Σo⊆ Σ) in equilibrium with the applied 
loads, with Lc(σ) the complementary energy stored in the body 
and R(σ) the work by the reactions times the settlements of the 
constrained points.  It can be proved that, if σο is the solution 
stress field, the following condition holds  
 

( ) ( ) o
Σσ

o
o

min SSS ==
∈

σσ                   (23) 

 
Equation (23) expresses the compatibility condition on the 

solution stress field, i.e. the constrained minimum of S (σ)  
yields the stress field σo such that the elastic strains Cσo can be 
made compatible with a continuous displacement field, by the 
superposition of a fracture strain field. Since σ⋅Cσ is positive 
definite in Σ, the solution is unique. 
 
D.   Convexity  of  the  energy  functionals  and  Limit Analysis 

as  a  tool  for  existence  of  the solution. 
It is easy to prove that the Total Potential Energy and the 

Complementary Energy functionals are both defined on 
convex sets. The respective sets of definition are: i) the space 
of couples (u,εf), with u a displacement vector function 
compatible with the external constraints and εf a semi-
positively valued tensor field; ii) the space of semi-negatively 
valued tensor fields in equilibrium with the applied loads. 
Because of convexity, both minima exist if the respective 
definition sets, U× Φ on one side and Σo on the other side, are 
not empty. For Σo to be not empty it is necessary and sufficient 
that the structure is under the collapse threshold; in this case a 
unique minimal point exists for S (σ). U and Φ are intrinsically 
not empty, in that the first is the set of three-components 
vector fields and the second is the space of semi-positive 
definite 3rd-order tensor fields. The displacement/fracture 
solution may be not unique if a mechanism exists such that the 
external work is zero. Anyway, if any collapse mechanism 
exists, E (u,εf) diverges, and the minimum does not exist.  

It can be concluded that the solution of the NT equilibrium 
problem exists iff the structure is under the collapse threshold. 

III. THE NT SOLUTION FOR MASONRY ARCHES AND BARREL 
VAULTS 

NT solutions have been investigated since many years and 
many results have been produced, also yielding successful 
comparison with experimental results. As an example, consider 
the portal arch in Fig. 1a, that has been tested under an 
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horizontal force acting on top of the right pillar, as in Fig. 1b. 
In Fig. 2 the comparison between the experimental and 
numerical results is plotted, proving a very good agreement of 
the NT theory with practice. 

         
Fig. 1: Experimental and mechanical model: a) The laboratory arch-

portal tested under the horizontal force F; b) The mechanical NT 
model for calculations 
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Fig. 2: Experimental and mechanical model: Plot of numerical and 

experimental results 
 
It is recognized that the NT model is generally capable to 

find solutions also yielding credible provisions for the fracture 
distribution, in agreement with technical expectation, as it can 
be recognized observing the two-span arch-bridge in Fig. 3, 
subject to a vertical downward settlement of the central pier.  

More details on NT arches and vaults theoretical and 
experimental assessment can be found in [15]. 

It should be remembered however that in some cases, due 
to particular masonry texture, a significant degree of tensile 
capacity can be attributed to masonry, thus explaining some 
surprisingly good performance of some structural  pattern, like 
e.g. the so called cantilever stairs [16-18].  

Reinforcement and safe consolidation of structures 
requiring additional tensile strength to be stable can be 
provided today by the new technology of Fiber Reinforced 
Composites (FRP) [19] and the effectiveness can be checked 
by implementing mechanical models coupling the basic 
masonry as a NT material with tension-resistant FRP strips 
[20-22]. 

 
Fig. 3:  Sample results from NT model: 

a) The arcade and the experimental set up;  
b) The  arcade in the original configuration and with downward 

settlement of the central pier;  
c) Pressure line and fractures without settlement;  

d) Stresses without settlement;  
e) Pressure line and fractures with settlement;  

f) Stresses with settlement 

IV. NO-TENSION MODEL FOR MASONRY-LIKE   SHELLS AND 
DOMES 

Equilibrium fields for No-Tension vaults can be built upon 
the assumption that a membrane stress-surface is considered, 
included in the profile of the vault, displaying compressive 
forces along all directions. The idea is not new, it was put 
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forward by Heyman [23], but there are few doubts that it 
represents a powerful approach to search stresses in masonry 
vaults, as the 3D direct counterpart of the traditional historical 
method based on the funicular line of the loads in 2D structural 
problems (Fig. 4).  
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Fig. 4: a) Arch equilibrium analysis: the pressure line;  

b) Vault equilibrium analysis: the membrane stress surface 
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Fig. 5: a) The membrane surface.    

b)  The vault and its mid-surface under purely vertical loads. 
 
 
Modelling a large variety of equilibrium stress fields is the 

preliminary step to find a final solution, yielding a credible 
pattern.  

In the following an approach is outlined to identify 
membrane stress surfaces both responding to the requirements 
of stress admissibility and equilibrium with active loads. 

It has been proved in [9] that given a vaulted masonry 
roofing whose extrados and intrados surfaces are respectively   
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with  

( ) ( ) ( )y,xzy,xzy,xz 21 ≤≤                 (26) 

yields a set of NT equilibrium vertical load patterns that are 
admissible for the vault.  

The relevant internal forces  are as in the classical Pucher 
approach 
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with the angles θ and ϕ as in Fig 5a and the internal forces are 
as in Fig. 5b 
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where Q is the thrust factor, and the admissible load pattern 
zp is projection onto the plane xy of pz, i.e.  the actual vertical 

load acting on the vault. 
The function z(x,y) is the membrane surface yielding the 

internal forces and equilibrating the applied load pz. 
Note that (25) includes the condition that both second 

derivatives of the membrane function z(x,y) are jointly 
positive or negative definite.  Any load zp  can be reproduced 
by the function z(x,y) and by its opposite –z(x,y). One of them, 
say z(x,y), has positive second derivatives, yielding a convex 
function, the other has negative second derivatives, yielding a 
concave function. If z1(x,y) and z2(x,y) are convex, as is the 
case if they pertain to a masonry vault, inequalities in (3) select 
the convex membrane. In this case (28) yields a internal force 
field that is characterized by pure compression thus producing 
a NT solution. 
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In other words, any equilibrium stress field is intrinsically 
admissible. This result supports the statement by Thomas 
Young (reported in [24]) namely: “The construction of the 
dome is less difficult than that of an arch since the tendency of 
each arch to fall is counteracted not only by the pressure of 
the parts above and below but also by the resistance of those 
which are situated on each side…..”.  

Summing up, solutions of the basic Vault Inequality 
System (25-26) define convex functions z(x,y) included in the 
profile of the vault, and enjoy the following property [25]: If 
zi(x,y) (i = 1,…,N) are N functions, each verifying the possibly 
homogeneous equation in (25), any convex combination of 
such functions also yields a member of the solution set of the 
vault inequality with the strict inequality sign. The 
homogeneous VIS is the same as (25) with the sign of equality 
in the first row ( 0=zp ). 

V. EQUILIBRIUM OF VAULTS THROUGH THE MONGE-AMPÈRE 
EQUATION 

If one aims at finding admissible stress fields in 
equilibrium with a given load pattern pz(x,y), one can search 
for solutions of the equation (2) rewritten in the form 

( ) ( ) 0=−⋅ y,xpy,xQ zzH                     (30) 

under the condition (26), with Q a positive factor. Equation 
(30) represents the simplest form of the well known Monge-
Ampère equation [26], and quite clearly plays a key role in the 
statics of NT vaults [25].   

It is possible to build up a number N of solutions zi(x,y) (i 
= 1,…,N)  of the homogeneous or non-homogeneous VIS, so 
that solutions of the z-equilibrium equation (30) can be 
searched in the form 

( ) ( )∑
=

=
M

i
iii y,xzccy,xz

1
                    (31) 

where each of the basic functions zi(x,y) is assumed to comply 
with the VIS (30), in homogeneous or non-homogeneous form. 
Coefficients ci yielding, possibly approximate, solutions of 
(30) correspond to the minimum of the error function 

( ) ( ) ( )[ ]∫ −=
X

dxdyy,xpc|y,xQQ,c zizio
2HE     (32) 

All load patterns ( )yxpz ,  such that coefficients ci 
resulting in Eo=0 exist, are called manageable load patterns 
with respect to the assumed form for the function z(x,y|ci). If 
the applied load is manageable, equilibrium can be exactly 
satisfied. Otherwise, equilibrium can be approximately 
verified, to some extent, depending on the choice of the basic 
functions zi(x,y), and the load pattern is qualified as non-
manageable. 

Details and applications are illustrated in [9,25]. 
Interaction with the reciprocal problem, i.e. No-Compression 
double curvature structures, can give fruitful contributes to 
new developments (see e.g. [27]). 

VI. CONCLUSIONS 
Historical masonry vaults and/or cupolas exhibit a large 

variety of typological assets. Often masonry is well operated, 
with strong stones and effectively adhesive mortar; in many 
cases masonry is in worse working order; in other cases a poor 
masonry is encountered. 

Anyway, double-curvature structures can appeal to many 
equilibrium patterns to sustain at least their own weight plus 
some light additional loads. So they are, in general, stable 
systems, provided that their supports are strong and able to 
contrast thrust forces. Vaults are in general characterized by 
their shape, and a lot of types can be listed (see e.g. [28]), that 
have been conceived to be included in any simple or complex 
architectural design. But the equilibrium paths are also driven 
by the way masonry is interwoven. In some cases, a masterly 
design of the masonry tissue and of the vault apparatus may 
help in improving the structure's stability, and sometimes even 
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in preventing fractures. It should be realized, by contrast, that 
fractures are almost always a physiological feature of masonry; 
since almost always it does not possess significant tensile 
strength, it cannot expand by tension and, when necessary to 
comply with congruence of the overall deformation, dilatation 
is provided by fractures. 

Anyway, the poor consistency of the tensile resistance of 
the masonry material, its brittle, desultory and time-aging 
character, the difficulty in identifying non-zero reliable values, 
possibly led the ancient builders to introject empirical rules 
aiming, more or less consciously, at organizing structures in 
way that they are able to equilibrate loads without needing 
tensile stresses in the material. A susceptibility that has not 
been disproved by any analysis performed by modern powerful 
theoretical, numerical and electronic equipments. After a 
similar survey, Heyman, in 1966 [29], demonstrated that the 
failure of the masonry structures was substantially due to the 
activation of a collapse mechanism, rather than to the 
probability of crushing in compression. 

Many efforts have been devoted to approach masonry 
structures, both on the side of Anelastic Equilibrium and of 
Limit Analysis, and many FEM models have been and are 
currently attempted (see e.g. [30-32]). Actually by referring to 
the collapse condition, one can just obtain some indications 
about the safety margins, whilst nothing about the fracture 
distribution or the behaviour evolution with increasing loads 
can be predicted. 

Under such perspective, even if the NT model still 
represents an idealization of the real behaviour, one can follow 
the fracture evolution, assuming the small localized fractures 
as a phenomenological feature of the masonry material, 
besides the cases when the crack situation is such to 
compromise the local material resistance or to activate a 
collapse mechanism.  

Definitely, the solution of the structural problem is based 
on a suitable re-formulation of the energetic theorems, which, 
by reflecting the non-linear character of the mechanical model, 
translates into constrained extremum principles the ordinary 
conditions of stress equilibrium on one side, and of strain 
congruence on the other side. In such a way, the final state of 
the structural solid under different load levels can be identified 
up to the collapse situation, which can be predicted, as 
mentioned in the above, by means of the fundamental theorems 
of Limit Analysis, suitably re-formulated. As far as two-
dimensional structural systems are concerned (walls,  arches, 
plane models of masonry bridges and so on), and some their 
combinations, theory and practice are in a well established 
state of the art. 

Application to the statics of vaults and cupolas is today 
largely investigated by many authors. The present paper is far 
from aiming at an exhaustive review, and only a few papers are 
referenced here, among the manifold that would deserve to be 
mentioned. It is clear however that the problem is much harder 
than for plane structures; in this regard it may be enough to 
consider the intrinsic difficulties to identify collapse 
mechanisms in applying the kinematic approach of Limit 
Analysis to double-curvature vaults.  

A common feature, however, is that in most cases the main 
objective is to extend to double-curvature roofing the methods 
that have historically developed with reference to single 
curvature arches or analogues, to find admissible stress 
distributions.  The approach illustrated in Secs. 3-4, originally 
elaborated by the writers, aims at this purpose, on one side 
providing solution to the collapse problem from the point of 
view of the static theorem, and on the other side solving the 
preliminary step to find solutions including compatible strain 
and fracture fields in agreement with field engineering surveys.  

The Monge-Ampere equation, introduced in Sec. 4, is 
essentially the double-curvature counterpart of the equation of 
the funicular line. The equation has widely been investigated 
by mathematicians; nevertheless only a few solutions are 
available in the literature, so that solutions effective for the 
problem at hand shall be sought by specific and/or numerical 
methods. A Ritz-Galerkin type approach, requiring a previous 
identification of a number of basic functions, has been 
specifically issued in Sec. 4, proving its manageability  in 
practical examples. 
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