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Discrete Mathematical Model of Diffraction on
Pre-Cantor Set of Slits in Impedance Plane and
Numerical Experiment

Kateryna V. Nesvit

Abstract — The significance of this work is directed towards
research and mathematical modeling of TE wave diffraction on pre-
Cantor structures. The total electromagnetic (EM) field is represented
as a superposition of two independent fields in the case of E and H
polarization for the solution of two-dimensional problems in the
mathematical theory of diffraction. In our case the stationary
Maxwell equations are reduced to the solution of two independent
boundary-value problems of Dirichlet and Neumann for Helmholtz
equation. In this paper the diffraction problem of E-polarized plane
EM wave on pre-Cantor set of slits in the impedance plane has been
investigated. The boundary-value problem was reduced to a system
of boundary singular integral equations (SIEs) with supplementary
conditions and a Fredholm equation of the 2-nd kind. It was done
using the method of parametric representations of integral operators.
A discrete mathematical model of this boundary SIE with the help of
an efficient Discrete Singularities Method (DSM) has been
implemented. Several numerical experiments have been carried out to
investigate the performance of the developed technique for pre-
Cantor grating of different degree and variable impedance of the
metallic strips.

Keywords — Diffraction problem, integral equation, numerical
experiment, pre-Cantor grating.

I. INTRODUCTION

Wave diffraction on the pre-Cantor sets of slits is a good
model of a wide range of classic diffraction problems.
The considered diffraction structure consists of 2™ slits,
where N is the order of pre-Cantor grating. Use of the pre-
fractal structures in wave diffraction problems is a recent
direction of research. In papers [1], [2] and [3], the different,
not pre-fractal gratings are studied. The pre-Cantor set is a
particular case of the pre-fractal set. From the application
viewpoint, we may state that the model which is considered in
this paper is an approximation of a real fractal antenna in 2D.
Fractal antennas are used in a variety of modern mobile
devices due to their compact size and broadband properties,
which have made them essential in wireless communication,
Bluetooth, Wi-Fi and GSM standards.
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Fig. 1. Using of the fractal antennas.

From the mathematical viewpoint, the boundary-value
problem of boundary integral equations (IEs) for the stationary
wave equation was reduced SIEs with supplementary
conditions and the Fredholm equation of the 2-nd kind.. These
singularities have been resolved with the help of special
quadrature formulas with nodes in the nulls of Chebychev
polynomials. We have successfully built a discrete
mathematical model based on the SIEs and carried out several
numerical experiments with the help of an efficient DSM.

I1.PROBLEM FORMULATION
In the 2D case the total EM field is represented as a
superposition of two fields: the E-polarized E(EX,, 0, 0) ,
H(o,H, . H,), the E(.E,.E,),

and H-polarized

ﬁ(HX,,O,O) . Here the time dependence is given by the factor

e’i”’t) . In this case a unique independent component (out of
E, =u(y,z)
H, =u(y’,z) field satisfies the 2D Helmholtz equation
without of the strips [1-3], [6]:

Au(y', z)+k?u(y,z)=0, k= %

six) of either the electric or the magnetic

Besides, as will be demonstrated later, the total field u(y’,z’)

should satisfy the boundary conditions on the strips, the
Sommerfeld radiation conditions and the Meixner edge
condition.
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The non-zero electric (TM case) or magnetic (TE case) field
components are expressed by Maxwell's equations:

TE case:
Hy':'i a/EX” Hz’:_-i a!EX"
iou oz iou oy
TM case:
Loy ety
lwe 0z iwe Oy

The considered grating is based on a pre-Cantor set. Let us
define the sets of pre-Cantor intervals, which are obtained by
constructing a Cantor set on the N-th step (see Fig.1).
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Fig. 2. Pre-Cantor sets for N=0,1,2,3.

Consider an E-polarized plane EM wave with a unit
amplitude and an angle « to fall from infinity onto the
diffraction structure (see Fig. 3):

Fig. 3. Propagation of the plane electromagnetic
wave in TE case.

u!ﬁc(y’,z’) = EX/(y’,z/) _ eik(y’sina—z’cosa)_ "

In the case of E-polarization the propagation direction of a
plane wave is given by direction of the wave vector k.
Cartesian coordinate system is chosen so that the set of strips
is located in the X'Y’ plane, and the X' axis is parallel to the
strips” edges (see Fig. 4):
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Fig. 4. Schematic of the considered diffraction
structure.

Slits™) = {(x', y,2)eRy es™M,z = O},

(2
2N
Ny _ N RN
S =U (aq by )
q=1
where
P-1 1 P, -1
R R
k N
Pp2=23-Pu. ,,R=1q=12"-1

It is convenient to introduce to dimensionless coordinates:

N N
X' y' 7 N9 N bq
X=—,y="—,2=—, 0, =—,f, =—,
| | | | I
" N1
N N N
x=kl, Sl =U(aq,,8q),
g=1
i VA
y K
i
') o "R o

Fig. 5. Cross section of the diffraction structure
in YZ plane.

We seek the total field u(N’(y, Z) , which results from the
scattering of E-polarized monochromatic plane wave on the

considered diffraction structure (see Fig. 3). The total field is
considered to have the following form:
ut (y,z)+ul(y,z), z>0,
u™(y,2) = ®3)
uM(y,z), z<0,
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uy'(y,z) is a known solution of the Helmholtz

equation representing the sum of the incident and reflected
waves in half-space z > 0 when the slits are closed. The

ul(y,z), ut(y,2) will
ul(y,z),uM(y,z) eC?

where

functions be determined,

The total field (3) must satisfy the following conditions [1-3]:

o the Helmholtz equation off of the impedance strips:
I
AN (y,2) + U™ (y,2) =0, k=2 (4)
c

o the boundary conditions on the strips:

au(N)

——(y,+0)- Au™M(y,+0)=0, y eCSI™ =R\ SI™,
(y:+0)

(5)
ou™
oz

where

(y-0)+ Au™(y~0)=0,yeCSI™, ()

> K,

y
()=
Z, 1+|

—iNK? =22, <K
A=ix=2, a’#c

Ho
Zc 80 ,

Z. is impedance of metal, Z, is |mpedance of free space, p. is
magnetic permittivity of metal, o, is magnetic conductivity of
metal, g, is dielectric constant, p, is magnetic constant, o is
angular frequency;

o the conditions of conjugation in the slits:

u™(y,+0) =u™(y,-0), yesI™, )

GU(N) (y 0)— au(N)
a l

o the Sommerfeld radiation condition at infinity:

N —
%§4mzr4mfwl)={§%} F=ly,z> ;@)

(y,-0), yesI™; (®)

o the Meixner edge condition in an integral form (the
condition of local energy limited):

21N 2 N 2
[ U (y.2) P+ VUl (y. ) o <o, (a0)
Q
where Q is any boundary field in R?.
The initial field u(;q (Y,2) can be written in the form:
N _ Aix(ysina—zcosa)
u, (y,z)=e +
’ (12)

+ M pix(ysina-+zcosa)
ixcosa — A
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and the sought functions are considered as Fourier series in the
integral form:

ul (y,2) = [ CY (e 7" d2, 2>0,
= (12)

u"(y,2)= [ CM (2 da, 2 <0,

These series satisfy all the aforementioned conditions (4)-

(8). The radiation condition will be satisfied if
y(A) =vA* —k? is  given by Re y(1) =0,

Imy(1)<0,1eR.
As shown in [1], [2] we have obtained two coupled integral
equations using the definitions (11), (12) and the conditions

4 -(®):
ifo Y () -cM Wy () + A)eda=0, yecsi™
(13)
Tler@y-cr@leda=-u) (y+0), yesi™,
ety + Wl + Aedi=0, yecsi™,
(14)

ifw Y+ )]y (nevdr = 2 (y,+0), yesI,

I1l. SIE WITH SUPPLEMENTARY CONDITIONS AND FREDHOLM
EQUATION OF 2-ND KIND

Let us define

Bl (2) =[cr (W) -C W)+ A, (15)
and write down the coupled integral equation (13) in the
following form:
[ BN(1)e™da=0, yeCSI™,
(16)
[ B (A)e"” —%r = -up (y,+0), y  SI™.
Next, let us introduce the new unknown function:
GM(y)= [ Bl (A)e™dA, yeR. 17
The first equation in (16) has the following property:
G'(y)=0, yeCSI™. (18)
The Fourier representation for the function (17):
1 i
BN () === [ G'(¢)e*de. (19)

7T g

By differentiating the second equation in (16) we can write
down:
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j B (i Zeda+

A

Myd/l—
Jl”{ @ hiP

-0

(20)

N
0

(y,+0), yesSI™,

Using a parametric representation of the Hilbert operator

[1], [2]:
F(&)= ffc C(A)e*dA,

(21)
e™dA.

1 F(¢)de
T g s-y

= .FC(/I)I

W

For the equation (20), using an explicit expression (19) for
BM™(A) and after simple transformations (17) for the

unknown function G{"’(y), and finally from (20), we obtain
a singular integral equation:

iy

.
le Oy

dA +
)

+ J].'O BlN (ﬂ)eily ; _ i d/'i — (22)
< r(A+A  y(4)
:—u(')“(y,+0), ¥ eSIN,

where K'(y,&), f,N(y) are known functions.

Further, we can write down a supplementary condition for
(22)'

(/”t)

+T81” wem[l_ 1 Jdﬂ: (23)
. y(A+A y(4)

=-uy'(§,40), ¥eSI™

where V are centers of the slits.

Using the parametric representation [1], [2]:
U(é)= i C(4)e*da,

h (24)
L THO(e -y = [ 22 eaz,
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and with the help of (23), (24) we have obtained a
supplementary conditions for SIE (22):

5 | ATl (e

L le(g){l*f( 11

2°\r(AD+A y(A)

Jeil(y—ﬁ)dl}dg, (25)

By virtue of the fact that IEs (25) have a singularity only if
E= )7 , using the Hankel series expansions [8] and with the

help of Bessel function of 1-st kind, we can separate the
singularity from (25). All the remaining equations can be then
written in the form of remainder series which do not include a
singularity Thus, the supplementary conditions have the form:

= _|' In|¢ - |G (&)d¢& +

AN ()
_ _ (26)
+ j GlN (§)K2N (%Za y)dég = sz (Y)’
S y eSI™,
where K)(y,&), £,Y(¥) are known functions.
By denoting
BY (1) =[cr () +C* )]+ A, (27)

We can write down a coupled integral equation (14) in the
form:

[ B)(1)e™dA=0, yeCSI™

B (e¥da-A I f(g(f; ed) = (28)
= (y,40), y e SIMV,
A new unknown function for (28) is introduced:
G (y)= [ B (Me™da, ye, (29)
and suggests the following property of the first equation in
(28): G)'(y)=0, yeCS™,
The Fourier representation for function (29) is:
1 ¥
B () === [ G (¢)e e (30)
7T sio
Using (30) and the parametric representation (24) we obtain
the Fredholm equation of the 2-nd kind from the second
integral equation in (28):

900
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G (-2 [ HEldy-¢e! @)s -

i)

(31)

== [ Ku(y,6)6) (©)de =

sI(N)

= ' (y), yesI™,
where K(y,&), f(y) are known functions.

Considering the asymptotic expansion of the Hankel
function and after several simple transformations the formula
(31) can be written in the form:

Gy (y) =% [ Ily-£Gy(£)ds +
+2 ] KN(1.£)6) ()ds = 2

= (y), yesI™,
where KX (y,&), f.'(y) are known functions.

Finally, we obtain a system of SIEs with supplementary
conditions and the Fredholm equation of the 2-nd kind:

L] et | GMOK (v, §)de =

f."(y), yesI®™,

| In|y - &G (&)de +

N |-

sItN)

1 ] G (OKN (. )de (39)

N

=£,'(y) yesI™,
G (=% [ Inly-£G;(£)ds +

+2 ] GEK(y.£)ds =

sItn

=f,'(y), yeSI™,

where

BV () == (y+0), £ () =u, (7,+0),

£ (y) = 2 (y,40),

KlN (y 5 % I(}/MHA )evl(y f)dﬂ”

+00

K3 (V.)= %L(m — 1 )e 09z,

K (§,8) = -4 HEO (& - 7])-In|e - §| - KX (7, 9).
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Let us introduce the restrictions of functions
N (y).i=13 G"(£)i=12 £'(F) G}'(y),

on the intervals S = (a(;“ ,,BQN) q=12"-1,

fiN(yxyesqjN) = fi,Np (Y)! GiN (5)

fesi™ T Gi,,\‘q (9:)'
(34)

=fN

fZN (y)yes|gw) 2,p(y)' GZN (y) = GZNp(y)
The Meixner edge condition will be satisfied if functions
G (¢)i=12 q=12"-1 G} (y)

are represented as:

yesign

vy (&)
Gly(¢) = T e s,
T eYe=at] -
vy (y)
Gy (y) ===, yeSI{".
B =y)ly-eap)
Thus (33) can be written in the formof P = 1,2V -1 -
N
IS de N
ot By e)leap)
2N
Ml Y, gK)Vl q(éf)
+ T N dé -
q—l a ﬁq g
N N
= £, (y), yesI{V,
N _. ﬂN
lz ! f In| &~ V‘V{\‘lq(f) d§+
=N () e
N BN N
+i221 f MZI\‘,p(va)Vll\,‘q(f) d(: _
Cr= R N e e
— fN ({7 v (N)
- f2,p(y)’ yESIp '
By .
V2, p () —AJ In|y—&[v) , (&) d§+
p-vlv-ab) 7 oy Iy -elle-ap)
2N g N N
1 J‘ M3 (¥, £)vz 4 () df _ (36)
—_ fN (N)
L_ f3,p(y)l yESIp 1
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where

KlN(y’f)a yESIEN),

SESI,()N)v p=aq,

M (y,¢) =
2 +K(y.8), yesIV,

§€S|éN), p#q,

Ky (V.8), Yesiv,
éjesli(jN), p:q,

In[y - &]+K;' (¥,8),
yesIiV, £esI™, p=aq.

AKZ' (y,8), yeSiyV,
gesly”, p=q,

M3 (v.€) =
— Alnjy - &+ AK}' (v, $),
yeSIM, £esI™, p=aq.

Consider a standard interval of (-1,1) and use it to represent
the intervals S = (", B) g =1....2" ~1, such that

o+ (11) > (e )) -

N

(N) ﬁN—a Bl +al
t - g{"t)=" e 2

By making a substitution for q=1,...,2" -1,

=g, y=9™() ¥=9"()

t,to,ﬂ e[-11], ¢e (a:‘ ,ﬂqN ), (38)
y.yelay.B))
and then for =12, [t/ <1, ft,|<1:
2™ (g (t))
Gl (00 (0)= S
i (B —al W1t o
2v2“fp(gE,N)(t0))

G;p(géN)(to)): (ﬂN —aN)\/]_—tz )
P p 0

and finally denoting
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w1 =v' (g™ ®)i=12,
Wl () =¥, 0°()
N @) = £ (90 @,))i =13,

(@) = 1400 @)

Q(t,,t)= MM g™ (1), 0" (1))

e+ MY (g™ (§), g™ (1))
—~ p_q1

Q;'(t)= )
MY (™ (&),0MV () p=q,
N2 M2 (g (t), 0 (1))
p=q,

QzN(toyt):
M2 (g™ (t),080(1) p=aq.

We have obtained a system of SIEs with supplementary
conditions and the Fredholm equation of the 2-nd kind on the

standard interval for  [to| <L[f| <1 p=12" -1

i j AL
s ﬁp ,ap e t— to 1—t2

N1l

1 N N at
T qZ::l ;lel (to’t)Wl,q(t)W -

= fl,Np(tO)’
f I N
1 _ dt
2 ] Infe = Ewa, (t) 72
N g1
%Z::_I tot)qu()JLZ
= fN o (),
2 Wy (to WZp
yr 1—ﬁ——fln|t Y
<t wl (40)
+1 z IQ3 (to, )= zall =, (1),
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where QM (t,,t), fAinp(tO),i =13, Q' (1), fAz',\lp () are

known functions.

IV. DISCRETE MATHEMATICAL MODEL

We have built a discrete mathematical model of a system of
SIEs with the supplementary conditions and Fredholm
equation of the 2-nd kind based on a mathematical model (40),
and discretized the boundary IEs (40) with the help of specific
quadrature formulas [4]. Then we have interpolated the
unknown functions

Wi',\‘q,(n—l) (t)’ q :11 2N _11

by Lagrange polynomials

Wi',\lq,(n—l) (t)’ q :1’ 2N _1!

in the nodes, which are the nulls of Chebyshev polynomials of
the 1-st kind. Finally, we have obtained a system for
approximate solutions and a system of linear algebraic
equations (SLAE) for

n
1 2 Z er\“p‘(nfl)(tl?) n
n BN _gh
P % k=1

ty —tg;

2V 1 n
+% z Z QlN (t(;lj ’tl?)wl'?‘q,(n—l) (tl?) =
g=1 k=1

= 1?1,'\lrn(tfr31j)’ j=1n-1,

S N o) )[In2+ZZT( g E">}+

k=1

N1n

2 -
+% qZ=:l |<Z=:1Q2N (to’tE)Wl’?lq,(nfl) (tl?) =

=1, (%), j=n,

2wy

NN
By —ap

n
A
17“?)2 Ry n kleZ p,(n-1) (t )X

x[|n2+2r§Tr(tj")M}+

2N-1n

2 L Wa (HQ3 (1. 1) = (41)

=), j=1n,
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where

t, =cos(Z27z),k=1...,n

are the nulls of Chebyshev polynomial of the 1-st kind of the
n-th degree,

) =costd ), j=Ln -1

are the nulls of Chebyshev polynomial of the 2-nd kind of the
(n-1) degree.

By solving the SLAE (41) we find the values of unknown
functions in the node points and calculate the unknown
coefficients (19), (30) to obtain the scattered and diffracted
fields. The discretization of these coefficients has been done:

2N71 n

c(2)= ZZ[ Wi q,(n 1)(9<§N)( ))+W2q(n 1)(91(1N)( ))]X

g=1 k=1
e—iigé’“)(tk") -1
>< N L
y(A)+A

zN-1 n

C. " 4n ZZ[

g=1 k=1

e—i/lgé,N) (tE) -1
X| — |
y(A)+ A
Thus, using the asymptotic representation of the Hankel

function we derive the expressions for the radiation patterns of
scattered and diffracted fields in the far zone:

(42)

(1) iy oy (0 ()<

(n-1) gq
(43)

N
Di(?’):"mL_’g’»”, Yy +1z
= [2 )
Hg" (k1) ~ ,/iei(mﬂ,
KT
ul (r,p) ~ JC! (e ey,

ui\l (r’(p) _ J.C_N (i)eir(icosw—x/xz—/lz sin (p)dﬂ,,

(44)

Using the results of [1], [2], [8], we can evaluate a
convergence rate of the approximate solutions to the exact
ones in the Hilbert metric and in the uniform metric for
physical quantities.

903
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V. NUMERICAL EXPERIMENTS these radiation patterns are omnidirectional.

A numerical experiment with the help of an efficient DSM
[1], [5], [9] has been performed. A few results shows in [7].
Figs. 4 show radiation patterns (RPs) of the scattered field in
the far zone. The RPs are obtained from the numerical solution
of SLAE (41) and the calculated coefficients (42), (43). Both
plots in Fig. 4 show the dependence of the RPs on the N-th
order of pre-Cantor grating and the impedance of strips
material: Niobium (Ni), Stannum (Sn) and Plumbum (Pb).

N=2
0.33]
0.32
0.31
0.3

0.36

0.34]
0.32]
0.3

7

)

Fig. 6. Dependence of RP D, (@) on N in far field where
material of grating is Ni, T/Tg= 0.7 (T4=9.25° K),

f=11.2GHz, 0=0°,  Zc=1.99122-10"+4.52763-107%,
1=0.05m.
4 2 0 2 4
N=4
70EeM l | 0.45]
P I\ Stannum (Sn) I\
| |
30EM / \( Niobium (Nb) ”/ \\ "
2004
el
WEMM TN A Ly M

0 20 58] ] 120

Fig. 7. Dependence of RP D, (@) on impedance in far

field of material Zc (Pb, Sn, Ni) where, T/T,= 0.7 4 2 0 2 H
(T4=9.25° K), f=11.2GHz, 0:=0°, 1=0.05m, N=3.

Fig. 8. Near zone of the total fields and diffraction patterns
for strips from Constantan where N=2,3,4, f=2GHz, 1=0,1 m,
0=45°.

As for the radiation properties, Fig. 6 and Fig. 7 give an
overview of the diffraction structure behavior. Note here, that
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TABLE NEAR FIELDS FOR CONSIDERED DIFFRACTION STRUCTURE FOR CONSTANTAN STRIPS.

Order of pre-Cantor grating N

I N=2 [ N=3 [ -4
Total fields and diffraction patterns

0.145 0.15 0.18
0.14 o1
: 0.14
0.16]
0.133]
0.13) 0.15
0.13
0.14
0.12)
%
Lq 0.125 o.13
011 0.12
032 2 > P 2 2 -4 =2 ) 2 4 4 2 ) 2 4

0

“ 2 0 2 4 - 2 0 2 4

Scattered fields and diffraction patterns

0.01 0,02 0.05

82107 0,04
0,015
6x107") 003
0.01
ax107 0.0
%107}
¢ :“ 2x1077) 0ol

.
,.I-
“ E 0 2 4 4 2 0 2 4 “ 2 0 2 ‘
%

Absolute value of the magnetic components
3.76x107 375x107 3.76x107
375x10-4 37410

373x107 374107
3.74x107"
= 4
m 3.72x10
373107 4
371107 3.72¢10
4
3.72x10 -
-4 4 4
3 L 7x10
37040 8 = 0 s [ T = 0 s T i -5 0 5 10
32107 5x10 $x107°
i 6x107°
2x107
n 3x10°"
m 4x10”°]
2210
1107
o
2x10
1107 :
‘* 10 -5 0 3 10 - 10 -5 0 5 10 -10 -5 0 5 10
Surface charge density of total fields
0.0115 0.012 0.014
0011 0.013}
0011
=
m 0.0105] 0,012
0.01
0.01 0.011]
9.5x10” 9410 001

10 5 0 5

>

10 -5 0 5
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The main results of this work are the investigation of
diffraction problem TE wave in near and far fields. If we look
at the Fig. 8 we can see that the maximum evaluate of the total
fields have increases with N. These results are calculated for
frequency 2 GHz and all next results for 0.9 GHz, 1=0,1 m,
0=45°. Some interesting phenomena are depicted in Table: the
total, scattered fields and its diffraction patterns of electric
component E, , the absolute value of the magnetic components
H, , H, . In additions to the aforesaid has been calculated a
surface charge density of total fields for different values of the
order of pre-Cantor grating at three last figures in Table.

VI. CONCLUSIONS

The overall aim of this paper was to build a discrete
mathematical model of the diffraction problem on pre-Cantor
grating and perform a broad numerical experiment. In the
previous works on this topic, this problem had not been carried
out to a numerical solution and thus it is new and actual. From
the mathematical point of view the problem has been reduced
to SIEs with supplementary conditions and the Fredholm IE of
the 2-nd kind. The singularities in the kernels of considered
IEs have been avoided with the help of specific quadrature
formulas and DSM. To summarize, we can conclude that the
aim of this work has been achieved.

As a straightforward follow-up of this work we consider the
development of a discrete mathematical model of the
diffraction problem on pre-Cantor grating with a flat screen
reflector or a screened dielectric layer, supported by a broad
range of numerical experiments.
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