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Abstract — The significance of this work is directed towards 

research and mathematical modeling of TE wave diffraction on pre-

Cantor structures. The total electromagnetic (EM) field is represented 

as a superposition of two independent fields in the case of E and H 

polarization for the solution of two-dimensional problems in the 

mathematical theory of diffraction. In our case the stationary 

Maxwell equations are reduced to the solution of two independent 

boundary-value problems of Dirichlet and Neumann for Helmholtz 

equation. In this paper the diffraction problem of E-polarized plane 

EM wave on pre-Cantor set of slits in the impedance plane has been 

investigated. The boundary-value problem was reduced to a system 

of boundary singular integral equations (SIEs) with supplementary 

conditions and a Fredholm equation of the 2-nd kind. It was done 

using the method of parametric representations of integral operators. 

A discrete mathematical model of this boundary SIE with the help of 

an efficient Discrete Singularities Method (DSM) has been 

implemented. Several numerical experiments have been carried out to 

investigate the performance of the developed technique for pre-

Cantor grating of different degree and variable impedance of the 

metallic strips. 

 

Keywords — Diffraction problem, integral equation, numerical 

experiment, pre-Cantor grating.  

 

I. INTRODUCTION 

ave diffraction on the pre-Cantor sets of slits is a good 

model of a wide range of classic diffraction problems. 

The considered diffraction structure consists of 2
(N-1)

 slits, 

where N is the order of pre-Cantor grating. Use of the pre-

fractal structures in wave diffraction problems is a recent 

direction of research. In papers [1], [2] and [3], the different, 

not pre-fractal gratings are studied. The pre-Cantor set is a 

particular case of the pre-fractal set. From the application 

viewpoint, we may state that the model which is considered in 

this paper is an approximation of a real fractal antenna in 2D. 

Fractal antennas are used in a variety of modern mobile 

devices due to their compact size and broadband properties, 

which have made them essential in wireless communication, 

Bluetooth, Wi-Fi and GSM standards. 
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From the mathematical viewpoint, the boundary-value 

problem of boundary integral equations (IEs) for the stationary 

wave equation was reduced SIEs with supplementary 

conditions and the Fredholm equation of the 2-nd kind.. These 

singularities have been resolved with the help of special 

quadrature formulas with nodes in the nulls of Chebychev 

polynomials. We have successfully built a discrete 

mathematical model based on the SIEs and carried out several 

numerical experiments with the help of an efficient DSM. 

II. PROBLEM FORMULATION 

In the 2D case the total EM field is represented as a 

superposition of two fields: the E-polarized  0,0,xEE   ,  

 zy HHH  ,,0 , and the H-polarized ),,,0( zy EEE 
 

)0,0,( xHH 
. Here the time dependence is given by the factor 

)tie 
. In this case a unique independent component (out of 

six) of either the electric  ),( zyuEx
   or the magnetic  

),( zyuHx
  field satisfies the 2D Helmholtz equation 

without of the strips [1-3], [6]: 

.,0),(),( 2

c
kzyukzyu


   

Besides, as will be demonstrated later, the total field ),( zyu   

should satisfy the boundary conditions on the strips, the 

Sommerfeld radiation conditions and the Meixner edge 

condition. 
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Fig. 1. Using of the fractal antennas. 
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The non-zero electric (TM case) or magnetic (TE case) field 

components are expressed by Maxwell's equations: 

 

TE case: 
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TM case: 

.
1

   ,
1

xzxy H
yi

EH
zi

E 











 

 

The considered grating is based on a pre-Cantor set. Let us 

define the sets of pre-Cantor intervals, which are obtained by 

constructing a Cantor set on the N-th step (see Fig.1). 

 

 

Consider an E-polarized plane EM wave with a unit 

amplitude and an angle   to fall from infinity onto the 

diffraction structure (see Fig. 3): 

 

 

uinc
N y,z  Ex y,z  eik y sin zcos .   #   

 (1) 

 

In the case of E-polarization the propagation direction of a 

plane wave is given by direction of the wave vector k. 

Cartesian coordinate system is chosen so that the set of strips 

is located in the X′Y′ plane, and the X′ axis is parallel to the 

strips’ edges (see Fig. 4): 
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It is convenient to introduce to dimensionless coordinates: 
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We seek the total field ),()( zyu N
, which results from the 

scattering of E-polarized monochromatic plane wave on the 

considered diffraction structure (see Fig. 3). The total field is 

considered to have the following form: 
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Fig.  4. Schematic of the considered diffraction 

structure. 

 
 

Fig. 3. Propagation of the plane electromagnetic  

wave in TE case. 

 

 
Fig.  2. Pre-Cantor sets for N=0,1,2,3. 

 
 

Fig. 5. Cross section of the diffraction structure  

in YZ plane. 
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where  ),(0 zyu N
  is a known solution of the Helmholtz 

equation representing the sum of the incident and reflected 

waves in half-space z ≥ 0 when the slits are closed. The 

functions  ),(),,( zyuzyu NN

    will be determined,  

.),(),,( 2Czyuzyu NN   

 

The total field (3) must satisfy the following conditions [1-3]: 

 the Helmholtz equation off of the impedance strips: 
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 the boundary conditions on the strips: 
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Zc is impedance of metal, Z0  is impedance of free space, μc is 

magnetic permittivity of metal, σc is magnetic conductivity of 

metal, ε0 is dielectric constant, μ0 is magnetic constant, ω is 

angular frequency; 

 the conditions of conjugation in the slits: 

,),0,()0,( )()()( NNN Slyyuyu   (7) 
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 the Sommerfeld radiation condition at infinity: 
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 the Meixner edge condition in an integral form (the 

condition of local energy limited): 

     ,|),(||),(| 222 
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 (10) 

where Ω is any boundary field in 2 . 

The initial field  ),(0 zyu N
 can be written in the form:  
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and the sought functions are considered as Fourier series in the 

integral form: 
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These series satisfy all the aforementioned conditions (4)-

(8). The radiation condition will be satisfied if  

22)(    is given by 0)(Re  , 

0)(Im  ,  . 

As shown in [1], [2] we have obtained two coupled integral 

equations using the definitions (11), (12) and the conditions 

(4) – (8): 
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III. SIE WITH SUPPLEMENTARY CONDITIONS AND FREDHOLM 

EQUATION OF 2-ND KIND 

Let us define  

  ),)(()()()(1 ACCB NNN     (15) 

and write down the coupled integral equation (13) in the 

following form: 
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Next, let us introduce the new unknown function: 
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The first equation in (16) has the following property: 
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The Fourier representation for the function (17): 

  .
2

1
)( 11

)(




  deGB iN

Sl

N

N



  (19) 

By differentiating the second equation in (16) we can write 

down: 
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Using a parametric representation of the Hilbert operator 

[1], [2]: 
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For the equation (20), using an explicit expression (19) for  

)()(

1 NB  and after simple transformations (17) for the 

unknown function  )()(

1 yG N
, and finally from (20), we obtain 

a singular integral equation: 

.~),0,~(

)(

1

)(

1
)(

)(
)(

)(

0

~

1

~

1

NN

yiN

yi
N

Slyyu

d
A

eB

d
e

B












































 (22) 

where    )(,, 11 yfyK NN    are known functions. 

 

Further, we can write down a supplementary condition for 

(22): 
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where  y~   are centers of the slits. 

 

Using the parametric representation [1], [2]: 
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and with the help of (23), (24) we have obtained a 

supplementary conditions for SIE (22): 
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By virtue of the fact that IEs (25) have a singularity only if 

y~ , using the Hankel series expansions [8] and with the 

help of Bessel function of 1-st kind, we can separate the 

singularity from (25). All the remaining equations can be then 

written in the form of remainder series which do not include a 

singularity. Thus, the supplementary conditions have the form: 
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 where    )~(,,~
22 yfyK NN    are known functions. 

By denoting 

  ),)(()()()(2 ACCB NNN     (27) 

We can write down a coupled integral equation (14) in the 

form: 
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A new unknown function for (28) is introduced: 
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Using (30) and the parametric representation (24) we obtain 

the Fredholm equation of the 2-nd kind from the second 

integral equation in (28): 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 11, Volume 7, 2013 900



 

 

 

 

,),(

)(,

)(
2

)(

)(

3

222

2

)1(

02

)(

)(

NN

NN

Sl

N

Sl

N

Slyyf

dGyK
A

dGyH
Ai

yG

N

N
















 (31)   

where    )(,, 322 yfyK NN    are known functions.  

Considering the asymptotic expansion of the Hankel 

function and after several simple transformations the formula 

(31) can be written in the form: 
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where    )(,, 32 yfyK NN    are known functions. 

Finally, we obtain a system of SIEs with supplementary 
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The Meixner edge condition will be satisfied if functions   
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 Thus (33) can be written in the form of  p  1,2N  1  : 
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Consider a standard interval of (-1,1) and use it to represent 
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We have obtained a system of SIEs with supplementary 

conditions and the Fredholm equation of the 2-nd kind on the 
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IV. DISCRETE MATHEMATICAL MODEL 

We have built a discrete mathematical model of a system of 

SIEs with the supplementary conditions and Fredholm 

equation of the 2-nd kind based on a mathematical model (40), 

and discretized the boundary IEs (40) with the help of specific 

quadrature formulas [4]. Then we have interpolated the 
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where    
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2
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are the nulls of Chebyshev polynomial of the 1-st kind of  the 

n-th degree,   
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j  ,   

are the nulls of Chebyshev polynomial of the 2-nd kind of the 

(n-1) degree. 

 

By solving the SLAE (41) we find the values of unknown 

functions in the node points and calculate the unknown 

coefficients (19), (30) to obtain the scattered and diffracted 

fields. The discretization of these coefficients has been done: 
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Thus, using the asymptotic representation of the Hankel 

function we derive the expressions for the radiation patterns of 

scattered and diffracted fields in the far zone: 
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Using the results of [1], [2], [8], we can evaluate a 

convergence rate of the approximate solutions to the exact 

ones in the Hilbert metric and in the uniform metric for 

physical quantities. 
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V.   NUMERICAL EXPERIMENTS 

A numerical experiment with the help of an efficient DSM 

[1], [5], [9] has been performed. A few results shows in  [7]. 

Figs. 4 show radiation patterns (RPs) of the scattered field in 

the far zone. The RPs are obtained from the numerical solution 

of SLAE (41) and the calculated coefficients (42), (43). Both 

plots in Fig. 4 show the dependence of the RPs on the N-th 

order of pre-Cantor grating and the impedance of strips 

material: Niobium (Ni), Stannum (Sn) and Plumbum (Pb). 

 

 

 

As for the radiation properties, Fig. 6 and Fig. 7 give an 

overview of the diffraction structure behavior. Note here, that 

these radiation patterns are omnidirectional. 

 

 
 

 
 

 
 

Fig. 8.  Near zone of the total fields and diffraction patterns 

for strips from Constantan where N=2,3,4, f=2GHz,  l=0,1 m, 

α=45
0
.

 
 

Fig. 7. Dependence of RP )(D  on impedance in far 

field of material Zc (Pb, Sn, Ni) where, T/Tcr= 0.7 

(Tcr=9.25
0
 K),  f=11.2GHz, =0

0
, l=0.05m, N=3. 

 
 

Fig.  6. Dependence of RP )(D  on N in far field where 

material of grating is Ni, T/Tcr= 0.7 (Tcr=9.25
0
 K),  

f=11.2GHz, =0
0
, Zc=1.99122·10

-4
+4.52763·10

-3
i, 

l=0.05m. 
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TABLE    NEAR  FIELDS  FOR  CONSIDERED  DIFFRACTION  STRUCTURE  FOR  CONSTANTAN  STRIPS. 
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The main results of this work are the investigation of 

diffraction problem TE wave in near and far fields. If we look 

at the Fig. 8 we can see that the maximum evaluate of the total 

fields have increases with N. These results are calculated for 

frequency 2 GHz and all next results for 0.9 GHz,  l=0,1 m, 

α=45
0
. Some interesting phenomena are depicted in Table: the 

total, scattered fields and its diffraction patterns of electric 

component Ex , the absolute value of the magnetic components 

Hy , Hz . In additions to the aforesaid has been calculated a 

surface charge density of total fields for different values of the 

order of pre-Cantor grating at three last figures in Table. 

VI. CONCLUSIONS 

The overall aim of this paper was to build a discrete 

mathematical model of the diffraction problem on pre-Cantor 

grating and perform a broad numerical experiment. In the 

previous works on this topic, this problem had not been carried 

out to a numerical solution and thus it is new and actual. From 

the mathematical point of view the problem has been reduced 

to SIEs with supplementary conditions and the Fredholm IE of 

the 2-nd kind. The singularities in the kernels of considered 

IEs have been avoided with the help of specific quadrature 

formulas and DSM. To summarize, we can conclude that the 

aim of this work has been achieved.  

As a straightforward follow-up of this work we consider the 

development of a discrete mathematical model of the 

diffraction problem on pre-Cantor grating with a flat screen 

reflector or a screened dielectric layer, supported by a broad 

range of numerical experiments. 
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