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Abstract— In this paper we propose a portfolio choice problem 

under the hypothesis of Markovian returns. In particular, we assume 

stable Paretian distributed returns which imports a more flexible 

environment rather than the traditional Gaussian modeling. Therefore 

under these assumptions we perform an ex-post analysis to 

investigate the real benefit of our approach and draw some 

remarkable conclusions. 

 

Keywords— dynamic portfolio selection, stable Paretian 

distributions, Markov chain, market stochastic bounds.  

I. INTRODUCTION 

N this paper we propose a methodology to optimize 

portfolio value in a choice problem framework using a 

markovian structure to model the asset portfolio returns. A 

comparison between different portfolio selection strategies is 

provided. The proposed methodology is tested in an ex-post 

analysis and the last crisis period data are used to assess the 

goodness of the method. 

A normal distribution of asset returns is a traditional and 

basic assumption in many theoretical financial studies. 

However, many empirical studies reject the hypothesis that 

asset returns are normally distributed (see the fundamental 

works of Mandelbrot (1963) and Fama (1965) and, among 

others, Rachev and Mittnik (2000), Rachev et al. (2007) and 

the references therein). Moreover, many financial events are 

considered as real witnesses of failure of normal distribution 

hypothesis in the financial returns (i.e. stock market crash in 

October 1987, Asian financial crisis in 1997, highly volatile 

period after September 11, 2001, and the most recent sub-

prime mortgage crisis and credit risk crisis (2008-2010)). 

Therefore a flexibility and statistical reliability in financial 

model are required to cope with that unrealistic hypothesis. 

Researchers have spent many efforts to improve methods and 

propose better models for financial markets. Among the 

numerous models proposed a fruitful research field appears to 

be the stable Paretian framework (e.g., Samorodnitsky and 

Taqqu, 1994) which assumes a financial return distribution 
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more flexible than the traditional one. 

Any portfolio dynamic model has to take into account for: 

a) Heavy tails and asymmetric shape in returns distribution. 

b) A multivariate distribution of underlying asset returns and 

correlation among asset returns more flexible than the 

simple Pearson linear correlation. 

c) A dynamic portfolio strategy has to be based on the entire 

sample paths. 

In this paper we discuss a portfolio selection model for 

financial markets based on these three themes with a particular 

attention to theme c). In order to evaluate and estimate the path 

dependent portfolio strategies we approximate the return time 

evolution by using Markovian trees. This approach, originally 

developed in the option theory (see Cox et al.(1979)), can be 

efficiently used for portfolio selection problems (as shown by 

Angelelli and Ortobelli (2009), Iaquinta et al. (2010, 2011) 

Angelelli et al. (2013)) and in sever other financial fields as 

discussed by D’Amico et al. (2010). In this framework the 

evolution of the wealth is derived as a non parametric Markov 

process. The Markovian approach allows to compute: the 

statistical distribution of any contingent claim, the distribution 

of stopping times or first passage time (see Angelelli and 

Ortobelli (2009) and Angelelli et al. (2011)), and the joint 

Markov distributions of risky variables. The portfolio selection 

strategies based on Markovian trees import several results 

obtained in option theory: path dependent portfolio selection 

strategies, arbitrage strategies for hedge funds, and strategies 

based on stopping times of the random wealth process. In 

order to account of the dependence structure we use the 

methodology discussed in Ortobelli et al. (2011) and Angelelli 

et al. (2011). The dependence structure allows us to solve two 

distinct problems in portfolio choice: 

 Account for the common behavior of the returns in the 

portfolio choices: fundamental in any portfolio choice 

consistent with investor's preferences, since every investor 

sorts admissible portfolios with respect to his/her 

preferences and, doing so, he/she should account for the 

common behavior of the returns. 

 Reduce the dimensionality of the large scale portfolio 

problem: it is well known that the number of observations 

necessary in optimization problems increases 

proportionally with the number of the random variables 

(see, among others, Papp et al. (2005), Kondor et al. 

(2007)). Therefore, we deal with the curse of 

dimensionality. To reduce the dimensionality we use the 
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same preselection approach developed from Ortobelli et 

al. (2010b) which preselects an adequate number of assets 

considering their forecasted future performance. Then we 

use a non-Gaussian factor analysis that accounts the joint 

Markov evolution of returns and their asymptotic 

behavior. 

In the empirical comparison we analyzes the impact of some 

proposed portfolio selection strategies applied to US market 

stock returns data. The ex-post analysis provided is based on 

two different datasets: the last ten years and the last six 

months. The use of the two different datasets allows to value 

the impact of the most recent firms on portfolio selection 

problems. On these assets the Ortobelli et al. (2011) 

techniques of dimensionality reduction are applied. Then, the 

optimal portfolios of different reward-risk strategies are 

determined. Finally, it is evaluated the impact of considering 

heavy tails comparing the sample paths of the ex-post wealth 

obtained from the different portfolio strategies. The paper is 

organized as follows. In Section II we discuss how modeling 

return series and introduce a set of performance ratios. Section 

III deals with the ex-post comparison among different 

portfolio strategies. Finally Section IV draws some remarkable 

conclusions. 

II. PORTFOLIO SELECTION PROBLEM AND STRATEGIES 

A. A non parametric Markovian framework 

In this section we deal with the returns modelization by 

Markov process with heavy tailed distributions. We show how 

to determine the future wealth distribution. Let us introduce 

some notation. We consider a discrete sequence of investor 

wealth kW  equally spaced in time Tk ,,1,0   (e.g. days). 

The initial wealth (i.e. 10 W ) is invested at time 0k  in n 

risky assets. The gross returns on date 1t  of the n assets are 

denoted as ]',,[ 1,1,11   tntt zzz  . Generally, we assume the 

standard definition of gross return between time t  and time 

1t  of asset i , as 
ti

ttiti

ti
s

ds
z

,

]1,[,1,

1,






 , where tis ,  is the 

price of the i-th asset at time t and  ]1,[, ttid   is the total amount 

of cash dividends paid by the asset between t  and  1t . We 

distinguish the definition of gross return from the definition of 

return, i.e., 1, tiz  or the alternative definition of log return 

titi zr ,, log .  The vector ]',,[ 1 nxxx   indicates the 

positions taken in the n assets. Assuming that no short sales are 

allowed, the vector x of portfolio weights belongs to the 

)1( n -dimensional simplex }0;1|{ 1   ii

n

i

n xxxS . 

The portfolio weight ix  represents the percentage of wealth 

invested in the i-th asset. In a dynamic framework the 

percentage of wealth invested in each asset could change over 

time. However, for sake of simplicity, in this paper we study 

and describe all admissible wealth processes     
0


tt xWxW  

depending on an initial portfolio of weights Sx  that is 

assumed constant over time. Moreover, we assume that these 

wealth processes are adapted processes defined on a filtered 

probability space   Pr,,,
0 


tt . Thus, the gross return of 

a portfolio x during a period ]1,[ tt  is given by 

  1,111, '   tii

n

ittx zxzxz . From a financial model point of 

view we assume that the gross returns have a Markovian 

behavior and can be modeled with an homogeneous Markov 

chain. Thus, we have to discretize the support of any portfolio. 

Given a set     }1,,0|{)( ,   Hhzx hx   of H past 

observations of the portfolio gross returns, we define N  states 

denoted as    
 

 
 ]',,[ 1 N

xx
zzxZ   in the interval 

))(max);((min xx   where w.l.o.g. we assume  
 

 
 1 s

x

s

x
zz  

for 1,,1  Ns  . In general, the wealth obtained with the 

portfolio Sx  at time ,2,1k  is a random variable 

)(xWk  with a number of possible values increasing as a 

polynomial of order N  in variable k . In order to keep the 

complexity of the computation reasonable, we first divide the 

portfolio support ))(max);((min xx   in N  intervals 

    ),( 1,, ixix aa  where   ixa ,  (decreasing with index i) is given 

by:  
 
 

  Nix
x

x
a

Ni

ix ,,1,0max
max

min
/

, 













 ; then, we 

compute the return associated to each state as the geometric 

average of the extremes of the interval     ),( 1,, ixix aa  that is 

 
 

     
 
 

N

s

sxsx

s

x
x

x
xYaaz

2

21

1,,
min

max
max



 













 , Ns ,,2,1   

As a consequence,  
 

 
  s

x

s

x
uzz  11  where 

 
 

1
min

max





 N

x

x
u  

and the wealth  xWk  obtained along a path after k  steps (i.e. 

at time k ) can only assume kN )1(1   distinct values instead 

of )( NkO . We denote such property as the recombining 

effect. 

Thanks to the recombining effect of the wealth )(xW , the 

possible values of )(xWk  up to time T  ),,1( Tk   can be 

stored in a matrix with T  columns and TN )1(1   rows 

resulting in )( 2NTO  memory space requirement. The 

transition matrix Njikjik xpxP  ,1;, )]([)(  valued at time k  

measures the probabilities )(;, xp kji  (valued at time k ) of the 

transition process from state  
 i
x

z  at time k  to state  
 j
x

z  at 

time 1k . In this paper we only consider homogeneous 

Markov chains, so transition matrix does not depend on time 

and it can be simply denoted by )(xP . 

In order to simplify the notation, when the choice of the 

portfolio can be tacitly understood, we omit the reference to 

the portfolio x . Thus, the transition matrix will be denoted 

simply as P  and similarly we get the probability jip , , the 
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wealth kW , the state  sz  and so on. Moreover with a little 

abuse of notation we will use the terms " s-th state" or "state s" 

of the Markov chain to point both the return  sz  and the index 

s itself; context will make clear the meaning of the term. 

The entries jip ,  of matrix P  are estimated using the 

maximum likelihood estimates 
i

ij

jip



,

ˆ  where ij  is the 

number of historical observations that transit from the state i  

to the state j  (i.e. from  iz  to  jz ) and i  is the number of 

historical observations in state i . 

The   11  kN  values of the wealth   
  111

, ][  kNl

kl

k wW  

after k  periods can be computed by the formula: 

         11,,1,.11,  kNluzw lkkl    (1) 

thus, the l-th node at time k of the wealth-tree corresponds to 

wealth  klw , . The procedure to compute the distribution 

function of the future gross returns is strictly connected to the 

recombining feature of the wealth-tree. 

Under these assumptions Iaquinta and Ortobelli (2006), have 

shown how to compute the unconditional and conditional 

(conditional on the initial state 0s , i.e. 
)( 0s

z ) probability of 

each node of the future wealth. 

 

Fig.1: wealth-tree state representation and transition 

probabilities 

 

In Fig.1 we provide a graphical representation of the wealth-

tree and the corresponding probabilities after 2 steps, when we 

assume the return evolves (starting from state 1) following a 

simple homogeneous 3-state process. Nodes represent the 

possible values of wealth ),( klw . Namely, in column 2,1,0k  

are represented the possible values of wealth after k steps. The 

vector of the wealth after two steps is given by 

]',,,,[ )2,5()2,4()2,3()2,2()2,1(

2 wwwwwW  . In each node of the 

wealth-tree the 3 states of the Markov chain are emphasized. 

Arcs connecting nodes represent the transition from a state i to 

a state j and are labelled with the corresponding 

probability jip , . Note that some states are not reachable in 

some nodes of the tree. 

B. The asymptotic behaviour of the log returns 

Many empirical findings show that log returns present a 

distribution with heavier tail than distributions with finite 

variance. Several empirical investigations show that  

)(~)|)ln(Pr(| )( uLuuz x

  as u     (2) 

 where 20   and )(uL  is a slowly varying function at 

infinity, i.e., 1
)(

)(
lim 

 uL

cuL

u
 for all 0c , see, among others, 

Rachev and Mittnik (2000) and the references therein. The tail 

behavior of returns implies that the vector of log-returns is in 

the domain of attraction of a n-dimensional stable law. 

Moreover, since in all observed data we get 21  , then 

the relation (2) implies that log returns )ln( )()( xx zr   admit 

finite mean and not finite variance. This tail condition also 

implies that the portfolio log return )( xr  is in the domain of 

attraction of an α-stable law. A simple way to traduce the 

asymptotic behavior of data consists in assuming the log 

wealth to be α stable distributed. That is, for each portfolio 

Sx  the forecasted log wealth ( )ln())(ln( ),(1 tx

T

tT zxW  ) at 

a given future time T is in the domain of attraction of an )(x  

stable distribution. Under this assumption we implicitly 

assume that all optimal choices are identified by four 

parameters and the forecasted log wealth of every portfolio can 

be well approximated by a stable distribution, i.e.: 

))(),(),(())(ln( )( xxxSxW x

d

T   where ]2,0()( x  is the 

index of stability, )(x  is the scale parameter, )(x  is the 

location parameter and )(x  is the skewness parameter. The 

estimation of the stable Paretian parameters can be done 

efficiently in a negligible computational time by applying the 

consistent quantile McCulloch's method (see McCulloch 

(1986)). In particular, McCulloch's method requires the 

knowledge of 5%, 25%, 50%, 75%, 95% quantiles of the log 

wealth ))(ln( xWT  to obtain these estimates in an acceptable 

computational time for any portfolio. Then, applying some 

simple algorithms to compute reward and risk measures with 

stable distributions we can easily get optimal portfolio 

strategies that account the Markovian and asymptotic behavior 

of the final wealth. 

C. Portfolio large scale strategies 

The classic static portfolio selection problem when no short 

sales are allowed, can be represented as the maximization of a 

functional f:(Ω,ℑ,P)↦ℝ applied to the random portfolio of 

gross returns 1),( kxz  subject to the portfolio weights 

belonging to the (n-1)-dimensional simplex S, i.e., 
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 )(max )(xSx zf  

 

Typically, the functional f(.) is a performance measure or an 

utility functional. In both cases the functional f(.) should be 

isotonic with a particular ordering of preference ≽, that is, if X 

is preferred to Y (X≽Y), then f(X)≥f(Y). The choice of the 

functional f(.) plays a crucial role in the portfolio strategy. 

Isotonic utility functionals with non satiable and risk averse 

preferences have been used in many financial applications. In 

these cases we have f(X)=E(v(X)) where v is an increasing and 

concave utility function. However, as suggested in behavioural 

finance, while all investors prefer more to less they could be 

neither risk averse nor risk lover. For this reason it makes 

sense to consider functionals that are monotone, even though 

they are not consistent with an uncertainty/aggressive order 

(see, among others, Rachev et al. (2008)). We call OA 

performance (utility) functional any functional computed 

under the assumption that the gross return of each portfolio 

follows a Markov chain with N  states. In this paper we will 

use and describe only some OA functionals that consider the 

forecasted wealth at time T . That is, investors have to 

periodically (every T  periods) compute the portfolio  Sx  

solution of the problem:  

 )(max xWf T
Sx

        (3) 

Remark: The vector of weights x solution of the problem (3) 

represents the percentage of wealth that should be invested in 

each asset during the period [0,T]. Since the value of the assets 

change during the period [0,T], then even an OA portfolio 

strategy generally implies that the wealth could be recalibrated 

more times during the period [0,T] in order to maintain 

constant the percentages of the wealth invested in each asset. If 

T is very large and we do not recalibrate the portfolio 

periodically (the period should be the same used in the 

valuation) these percentages invested in the assets could be 

completely different at the end of investor's temporal horizon. 

This point has not been explicitly addressed in Angelelli and 

Ortobelli's analysis (2009) and could have a very big impact in 

portfolio choices. 

In order to determine optimal solution for OA functionals we 

have to choose different portfolio strategies for non satiable 

investors which account for asymptotic behaviour of returns. 

In the following subsection we present some OA functionals 

used in the empirical comparisons. 

In portfolio literature more than one hundred static reward-risk 

performance measures have been proposed (see Cogneau and 

Hübner (2009a, 2009b)). Here, we list the Sharpe static 

strategy and some OA performance functionals isotonic with 

choices of non satiable investors that will be object of the 

following empirical analysis. For all the OA portfolio 

strategies we assume that investors have temporal horizon 

equal to T . 

OA-Sharpe ratio (OA-SR). The classic version of the Sharpe 

ratio (see Sharpe (1994)) values the expected excess return for 

unity of risk (standard deviation). With the OA-Sharpe ratio 

we value the expected excess final wealth for unity of risk, i.e.,  

)()(

))()((
))((SROA

bTT rWxW

bTT

T

rWxWE
xW







   (4) 

where )( bT rW  is the final wealth at time T  we obtain 

investing in the benchmark br . In the Markovian framework 

we should consider the bivariate evolution of the vector 

))()(( bTT rWxW   to value the standard deviation 

)()( bTT rWxW   of )()( bTT rWxW  . Yet, in the following 

analyses we assume that the riskless asset is not allowed, thus, 

the OA-Sharpe Ratio is simply given by 
)(

)1)((

xW

T

T

xWE




. When 

the benchmark br  is the risk free rate, the Sharpe ratio is 

isotonic with non-satiable risk averse preferences. However, 

using Sharpe type measures we generally don't take into 

account the asymptotic behavior of the wealth (except in the 

case the optimal portfolios are in the domain of attraction of 

the Gaussian law). 

OA-Asymptotic Sharpe ratio (OA-ASR) This performance 

functional is defined as  
























1.01(x)if0

1.01(x)if
)|))(ln((|

))((

01.1

))(ln(

))(ln(








xWT

xW

T

T

T

xWE

xWASROA

  (5) 

where )())(ln( xxWT
   is the mean of the stable distribution 

that better approximates the log final wealth: 

))(),(),(())(ln( )( xxxSxW x

d

T   when 01.1)( x . We 

assume 0))((  xWASROA T  when 01.1)( x  since low 

indexes of stability imply so heavy tails that the 1.01 moment 

of the stable distribution is infinite. Observe that when 2  

the final wealth is log normal distributed. Moreover, if 2  

for all the portfolios, the maximization of the OA asymptotic 

Sharpe ratio is equivalent to the maximization of the Sharpe 

ratio of the log wealth. As for the Sharpe ratio, this ratio is 

isotonic with the preferences of non satiable risk averse 

investors (see Rachev et al. 2008). In order to maximize the 

OA-ASR, we estimate the four stable parameters 

))(),(),(),(( xxxx   using the McCulloch's quantile 

algorithm (see McCulloch (1986)) and then we compute the 

1.01 moment of the centered log wealth. 

OA-Stable stochastic bounds ratio (OA-SSBR) This 

performance functional is defined as:  
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
























otherwise0

01.1 and  if
)|-E(|

)|-E(|

))((

211.01

2

1.01

1

22

11 




xWSSBROA T

   (6) 

where 1  and 2  are the indexes of stability respectively of 

))(minln())(ln(1 iiTT zWxW  , 

))(ln())(maxln(2 xWzW TiiT  , while )(min iiT zW  and 

)(max iiT zW  are the forecasted wealths at time T  obtained 

respectively by the lower market stochastic bound and the 

upper market stochastic bound. Moreover 11
  , 22

   

are the location parameters of the stable distributions that 

better approximate respectively ),,( 1111 1
S

d

  and 

),,( 2222 2
S

d

 . In order to determine the distributions 

of ))(ln())(ln( iYT zWxW


  and ))(ln())(ln( xWzW YiT 


, where 

inii zz  min


 and inii zz  max


, we have to use the 

evolution of the bivariate Markov processes ( )(),( itt zWxW


) 

and ( )(),( itt zWxW


), . Recall that, when no short sales are 

allowed, the upper and the lower market stochastic bounds 

among n  assets with gross returns iz  ( ni ,,1  ) are 

respectively given by iz


 and iz


, since ikxi zzz


 ),(  for any 

time k and for any vector of portfolio weights Sx  (for 

further generalizations see Ortobelli et al. (2011) and 

references therein). This ratio expresses the idea that investors 

want to maximize the distance between the wealth and the 

lower market stochastic bound, and to minimize the distance 

between the wealth and the upper market stochastic bound.  

OA-Stable loss ratio (OA-SLoss) The OA stable loss ratio 

values the expected asymptotic log wealth for unity of loss. 

This ratio can be seen as a particular case of the Starr ratio 

applied to stable distributions (see, among others, Biglova et 

al. (2004)). Thus, using the asymptotic approximation of log 

wealth ))(),(),(())(ln( )( xxxSxW x

d

T   we can easily 

compute  























1)( if0

1)( if
)0))(ln(|))((ln(

))((

))(ln(

x

x
xWxWE

xWSLossOA

TT

xW

T

T






   (7) 

where )())(ln( xxWT
   is the location parameter of the stable 

distribution that better approximates the final log wealth and 

)0))(ln(|))((ln( xWxWE TT   is obtained using the Stoyanov 

et al.'s formula for stable distributions (see Stoyanov et al. 

(2006)). We assume 0))((  xWSLossOA T  when 1)( x  

since low indexes of stability imply so heavy tails that the first 

moment of the stable distribution is infinite. The conditional 

expected loss )0|(  XXE  of an   stable random variable  

),,( a

d

SX   is given by: 
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where ))2/tan(arctan(
1

0 


   (see Stoyanov et al. 

(2006)).  

In order to reduce the dimensionality of the problem we adopt 

the tecniques developed by Ortobelli et al. (2011) and 

Angelelli et al. (2011) preselecting no more than 170 assets 

and then reducing the dimensionality of the preselected assets 

identifying some common factors to approximate the asset 

returns. 

III.  AN EMPIRICAL COMPARISON AMONG PORTFOLIO STRATEGIES  

In this section, we evaluate the impact of the proposed 

modelization on the US stock market. In particular, we 

consider the stocks traded on the NYSE and on the NASDAQ. 

Since we want to propose as much as possible a realistic 

empirical analysis, we have developed a dynamic dataset 

(described here in the following) that uses all the useful 

financial data from DataStream. 

 

A. Dynamic Dataset 

 

In this paper we suggest a schema to solve large scale portfolio 

selection. This means that we expect to extract the lately time 

series of adjusted prices for a large number of assets from a 

database (namely DataStream). Dealing with time series with 

missing data is not an easy task and unfortunately the hundreds 

of time series available from the database are often spoiled 

with missing data. In this paragraph we explain how we 

manage this problem in order to produce a "clean", though 

large, set of time series to be submitted as input to our 

portfolio selection framework. The objective is to obtain a set 

of assets that are reasonably priced on a common set of dates. 

The time series are first filtered so that the "bad" ones are 

rejected and the corresponding assets will not compete to enter 

the portfolio. Then, the promoted series are fixed, if needed, so 

as all assets are priced on the same set of dates. Once all assets 

are priced on a common set of dates, data are ready to be 

passed to the portfolio selection algorithm. 

The objective is achieved by a number of steps: 

1) each price series available in the database for the chosen 

exchange is extracted from a fixed date in the past up to the 

current date in the analysis; a table is built so that assets 

corresponds to columns and each row correspond to a common 

date for all prices 

2) each row with more than 99% missing data is supposed to 

correspond to a bank holiday for the exchange (e.g. labour 

day) and is removed from the table; 
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3) each asset with at least 3 consecutive missing data is 

removed from the table; 

4) since some pairs of consecutive or sparse missing data can 

still be present in some columns, we compute the number of 

missing data for each asset and take the minimum (say m such 

quantity); afterwards, assets with more than m missing data or 

at least one pair of consecutive missing data are removed from 

the table; 

5) now only sparse missing data can be present in the table; all 

missing data are padded forward from the previous date. 

Naturally, if the missing data correspond to the first date, the 

padding is made backward from the next date; 

Doing so, we have a table with no missing prices and asset 

returns can be computed. 

 

B. An empirical comparison  

 

In our empirical analysis we use a date set of about two years 

(500 daily observations) from 15-Sep-2008 till 31-Aug-2010, 

and assume the following settings:  

a) that investors have a temporal horizon of 20T  working 

days (thus, for each portfolio strategy we should optimize 

the portfolio every 20 working days for a total of 25 

optimizations);  

b) that investors cannot invest more than ten percent in a 

single asset (i.e.: ]1.0,0[ix );  

c) Markov chains have 9N  states;  

d) the initial wealth 0W  is equal to 1 at the date 15-Sep-

2008.  

We perform a comparisons to evaluate the impact of the Stable 

Paretian approximation by comparing the ex-post performance 

of different portfolio strategies based on: the OA-Sharpe ratio 

(4), the OA-Asymptotic Sharpe ratio (5), the OA-Stable loss 

ratio (7), the OA-Stable stochastic bounds ratio (6). Even in 

this analysis we preselect assets among all those active either 

in the last ten years or in the last six months. Then we 

approximate the returns to reduce the randomness of the 

problem.  

For each strategy, we have to compute the optimal portfolio 

composition 26 times and at the k-th optimization 

( )25,,2,1,0( k ), two main steps are performed to compute 

the ex-post final wealth:  

Step 1 Determine the market portfolio )(k

Mx  that maximizes the 

performance ratio ))(( xW  associated to the strategy, i.e. the 

"ideal" solution of the following optimization problem:  
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Angelelli and Ortobelli (2009) have observed that the 

complexity of the portfolio problem is much higher in view of 

a Markovian evolution of the wealth process. In order to 

overcome this limit we use the Angelelli and Ortobelli's 

heuristic algorithm that could be applied to any complex 

portfolio selection problem that admit more local optima.  

Step 2 During the period ],[ 1kk tt  ( where Ttt kk 1 ) we 

have to recalibrate daily the portfolio maintaining the 

percentages invested in each asset equal to those of the market 

portfolio )(kx . Thus, the ex-post final wealth is given by:  

))'((
)(

)1(

)(

11

postex

t

k

M

T

itt kkk
zxWW




      (8) 

 where )(

)1(

postex

tk
z   is the vector of observed daily gross returns 

between )1(  itk  and )( itk  . 

Steps 1 and 2 are repeated for all performance ratios until 

some observations are available.  

 
Fig.2: Ex-post comparison of OA Sharpe ratio, OA Asymptotic 

Sharpe ratio, OA stable loss ratio, OA stochastic bounds ratio applied 

to preselected assets among all the active in the last 10 years. 

 

 
Fig.3: Ex-post comparison of OA Sharpe ratio, OA Asymptotic 

Sharpe ratio, OA stable loss ratio, OA stochastic bounds ratio applied 

to preselected assets among all the active in the last 6 months. 

 

The output of this analysis is given in Fig. 2 and 3 and Table 1.  

Fig. 2 and 3 report the results of all strategies applied to the 

preselected assets among all the active assets respectively in 

the last ten years and in the last six months. The comparison 

between these figures confirms that the recent entries in the 

market have an important impact in the portfolio choices. As a 

matter of fact, the results obtained from the stable Paretian 
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strategies (i.e., OA-Asymptotic Sharpe ratio (5), the OA-Stable 

loss ratio (7), the OA-Stable stochastic bounds ratio (6)) 

applied to preselected assets among all the active in the last six 

months present outstanding results considering that we apply 

the model during a period of global crisis. The OA Stable loss 

ratio (best strategy) gives more than the 300% for year.  

First of all we observe that among the assets selected there are 

several ones that have  

Moreover from this comparison it is still clear that the OA 

asymptotic Sharpe strategy, as all the other stable Paretian 

strategies, presents higher final wealth than the OA Sharpe 

strategy applied to the preselected assets among all active ones 

(either in the last ten years or in the last six months). However, 

during some periods of the ex-post comparison the OA Sharpe 

strategy presents higher wealth than the analogous Stable type 

strategies. Thus in order to account more precisely these 

results we have to consider some empirical statistics on the ex-

post returns of the portfolio strategies.  

Table 1 reports, for all the strategies, the values of:  

(1) two reward measures of the ex-post returns (the empirical 

mean, the AVaR of the opposite random variable i.e.,  

ETL0.05(-X) where 

))(|()()( 1 
 YFYYEYAVaRYETL ; 

(2) two risk measures of the ex-post returns (the standard 

deviation σ(X) and the AVaR of the centred random variable 

ETL0.05((X-E(X))); 

 (3) all the possible reward risk ratios deriving from these two 

measures.  

Active last 6 
months 

OA 
stable 

loss 

OA stable 
stochastic 

bounds 

OA 
asymptotic 

Sharpe OA Sharpe 

mean(X) 0.00554 0.00429 0.004585 0.003104 

St.dev(X) 0.04736 0.045429 0.04189 0.031856 

ETL(-X) 0.15213 0.140959 0.129619 0.082444 

ETL(X-E(X)) 0.08327 0.084624 0.075225 0.056342 

Sharpe ratio 0.11698 0.09443 0.109455 0.097425 

Mean/ ETL(X-E(X)) 0.06653 0.050693 0.060951 0.055084 

ETL(-X)/ ETL(X-E(X)) 1.82685 1.665717 1.723077 1.463283 

ETL(-X)/St.dev(X) 3.21197 3.102853 3.094262 2.588051 

Active last 10 years 

OA 
stable 

loss 

OA stable 
stochastic 

bounds 

OA 
asymptotic 

Sharpe OA Sharpe 

mean(X) 0.00128 0.001082 0.000905 0.00063 

St.dev(X) 0.02925 0.032147 0.03321 0.024374 

ETL(-X) 0.06753 0.078294 0.076474 0.053801 

ETL(X-E(X)) 0.06672 0.068351 0.0775 0.060226 

Sharpe ratio 0.04389 0.033656 0.027237 0.025844 

Mean/ ETL(X-E(X)) 0.01924 0.01583 0.011671 0.010459 

ETL(-X)/ ETL(X-E(X)) 1.01217 1.145477 0.986761 0.893316 

ETL(-X)/St.dev(X) 2.30852 2.435485 2.302766 2.207274 
 

Table 1 Empirical mean, standard deviation, ETL0.05(-X) and ETL0.05(X-
E(X)) on the ex-post returns. 

 

Table 1 suggests that the OA Sharpe strategy is dominated 

from the stable Paretian type strategies since the ex-post 

returns obtained by the OA Sharpe strategy presents lower 

reward/risk performance than almost all the stable Paretian 

strategies (except for the 6 months stable stochastic bounds 

strategy). Thus we essentially confirm the results observed in 

Figs 2 and 3.  

The portfolio composition generally changes a lot during the 

ex-post period. This is confirmed from Fig. 4 that describes the 

portfolio turnover and its diversification. In particular, it 

examines how the portfolio composition of the Stable loss 

strategy changes during the ex-post period. In the first sub-

figure (Fig. 4(a)) we have the percentages invested in each 

assets at each computation of the optimal portfolio.  

 
Fig. 4: Portfolio composition and portfolio variations of the OA 

stable loss strategy applied to preselected assets among all the active 

in the last 6 months. 

 

The second sub-figure (Fig. 4(b)) points out the percentages 

k  (k=1,...,25) of the portfolio changed every 20 days 

obtained by the formula: 
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In particular k  should belong to the interval [0,2], where the 

value 0 means that the portfolio composition is not changed 

during the period [tk-1,tk], while the value 2 corresponds to the 

case we sell the portfolio and we buy a completely different 

portfolio. The last sub-figure (Fig. 4(c)) points out the number 

of:  

(1) the quantity of assets used (i.e. those assets whose 

percentages are greater than zero 
)(
,

k
iMx >0, i=1,...,n);  

(2) the quantity of entering assets;  

(3) the quantity of exiting assets.  

As we observe the portfolio is well diversified among all 

preselected assets even if there are always some assets in 

which the strategy suggests to invests the maximum possible 
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(i.e. 10%). Moreover we also observe that the portfolio change 

a lot every 20 days and even on these changes we should pay 

the transaction costs. The transaction costs are also paid day 

by day when we recalibrate the portfolio to maintain constant 

the percentages of the portfolios. Thus if we assume 0.05% as 

daily average of transaction costs (these transaction costs are 

high enough for institutional investors) we should get more 

than 1.0005⁵⁰⁰∼1.284 in the 500 days of the ex-post analysis. 

However, most of the stable Paretian strategies produce some 

profits since they present a final wealth greater than 1.284 

during the last two years of ex post analysis. 

However, these results do not consider the transaction costs 

which must be paid daily in order to maintain constant the 

percentages invested in each asset. Moreover from this 

comparison it is still clear that the OA asymptotic Sharpe 

strategy, as all the other stable Paretian strategies, presents 

higher final wealth than the OA Sharpe strategy applied to the 

preselected assets among all active ones (either in the last ten 

years or in the last six months). 

IV. CONCLUSION 

This paper describes a Markovian approach applied to 

portfolio problems where innovations belong to the stable 

distributions domain. In particular, we first examine how to 

approximate the Markovian and asymptotic behavior of 

wealth. Then, we examine several portfolio strategies under 

the proposed environment. Finally, we propose an empirical 

comparison among several strategies that account heavy tails 

of log return portfolios. The empirical analysis shows that the 

asymptotic behaviors of the wealth and the recent entries in the 

market have an important impact in the portfolio choices 

applied to the US stock market. Moreover, several new 

questions rise from the proposed methodology and empirical 

analysis. As a matter of fact, the experiment on the US market 

suggests that further investigations needed to value: the market 

efficiency, liquidity constraints, and the impact of portfolio 

strategies based on the use of proper stopping times. 
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