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Abstract: - In the paper we consider an electric drive having 

static load torque with a constant component and a speed 
proportional component, in the hypothesis of constant inertia 
moment and of proportionality between the electromagnetic 
torque and the load current. Using variational calculus, optimally 
condition and expression of optimal control and extremal 
trajectory are determined, which ensures the minimum of energy 
losses caused by the load current through a Joule effect in the 
acceleration processes. Using numerical computer we can obtain 
graphical representation of these variables as time functions. 
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I. INTRODUCTION 

 
n the case of drives that work in continuous type service 
(S1), appears the necessity of achieving starting and 

braking processes, and in the case of those that work in 
uninterrupted type service with periodical change of speed 
(S8), appears the necessity of achieving speed variations 
[11], [15], [16]. To asses these processes of acceleration 
and deceleration, the minimization of energy loss may be 
considered as a quality index, and the solving of this 
optimization problem can be obtained by using the classical 
variational calculus or the Euler – Lagrange algorithm and 
numerical computer. 
 

II. MATHEMATICAL MODEL 
Considering an electrical drive load with static torque, 

having a constant component, a component that is 
proportional with speed and a component that is 
proportional with the square of root [1], [2], [3] 
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2
0 1 2sM = M  + k ω + k ω ,            (1) 

 
that, in the hypothesis of neglecting the electromagnetic 
inertia in rapport with the mechanical inertia  and a constant 
moment of inertia this action will be rewritten by the 
general equation of movement. 
 

SM = M + Jdω/dt ,               (2) 
 

and of dependence between the speed and acceleration  
 

ω = ωdt .∫ &                    (3) 
 

To expand the interpretations and the conclusions, with 
and for the restraint of the value intervals, will be 
introduced relative coordinates [16]. In this sense, 
considering as a reference for time the mechanical constant 
of time 
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and for electricity, couple and speed, their nominal values 
will be obtained the relative values 
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and for relative acceleration there will be the relation 
 

N / T
ω

=
ω
&

&ν  .                    (6) 

 

 In the hypothesis of proportionality between the 
electromagnetic couple and the burden power, the equations 
(1), (2) and (3) in the relative coordinates it becomes 

 

,= + + + +

= = + = + + + = ∫& &
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μ μ k ν k ν , μ k k = 0

i μ μ ν μ k ν k ν ν, ν νdτ
   (7) 

 

with the initial and fixed conditions 
 

( ) (= = =1 1 1 2 2τ τ , ν τ ν , τ τ , ν τ ν .) = 2       (8) 
 

The multitude of the conclusions admitted and the 
multitude of the trajectories that will be admitted will be 
considered marginal and open multitudes 

I 
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III. OPTIMIZATION CRITERION 
Adopting as a criteria of optimization the energy loss that 

is caused by the burden energy through Joule effect on the 
duration of the acceleration process 

 
2 2

2

1 1
Δw = Δp dτ = ρ i dτ

τ τ

τ τ∫ ∫ ,                                (9) 

 
and taking into account the movement equation (7), the 
optimization criteria that will have the expression  
 

( ) ( ) .⎡ ⎤⎣ ⎦ ∫ ∫ &
2 2 22

1 1

J ν τ = i dτ = μ +ν dτs
τ τ

τ τ
               (10) 

IV. FORMULATION OF OPTIMIZATION PROBLEM  
The optimization problem consists in determination the 

admissible optimal control function i*(τ) or μ*(τ), which is 
able to transfer the system from the initial condition 

 to the terminal conditions , on an 

the admissible extremale trajectory , ensuring the 

minimum of the optimality criterion (10) 

( )( 1 1τ ,ν τ ) ( )( )2 2τ ,ν τ

( )*
1ν τ

 

( ) ( )
2 2

s
1

τ
J ν τ = μ +ν dτ= min

τ
⎡ ⎤⎣ ⎦ ∫ & ,          (11) 

 
for a fixed value of speed variation expressed, by the 
integral 

( )
2

2 1
1

τ
Δν= ν ν ν τ dτ,

τ
− = ∫ &             (12) 

effectuated is in a given interval of time 
 

,
2

2 1
1

1
τ

τ τ dτ
τ

− = ∫               (13) 

and satisfying the restrictions 
 

 

( ) ( )
( ) ( )& &

max max

max max

i τ < i , μ τ < μ ,
ν τ < ν , ν τ < ν

.          (14) 

 
In conformity with the principle of reciprocity, the given 

formulation is equivalent with the formulation through 
which every isoperimetric condition (12) and (13) can 
become optimization criteria ( max, 2 1ν ν− = 2 1τ τ− =  
min) or a linear combination of them [6]. 

So, it results a linear – quadratic optimization problem of 
isoperimetric extremum. To solve this issued problem, the 
primal problem of conditional extremum will be reduced to 
a dual problem of unconditional extremum by a Lagrange 
adjoint function based on Lagrange multiplier λ0 [15], [16]. 

 

( ) ( )2 2
0 0 1 0sL μ ν λ ν μ k ν ν λ ν= + + = + + +& & &

 
and by determining the unconditional extremum with the 
functional 
 

( ) ( )
2

1

τ
J ν τ = L τ dτ= min

τ
⎡ ⎤⎣ ⎦ ∫ ,          (16) 

 
on the same extremals as those of the primal problem [15] 
 

V.  NECESSARY CONDITION OF EXTREME 
The necessary condition of extremum is expressed by the 

Euler – Lagrange equation [15], [16], 
 

L d L = 0
ν dτ ν

∂ ∂
−

∂ ∂ &
,                (17) 

 
that leads to the linear differential equation of the second 
order 

( ) 0
2 3 2 2
2 1 2 1 2 0v 2k ν 3k k ν k 2k μ ν k μ− − − + =&& 1

0

       (18) 

Because the condition of extremum expressed by the 
differential equation (17) does not contain the Lagrange 
multiplier λ0, it corresponds to that which might result in 
the case that Euler–Lagrange equation would be applied 
directly for the functional of the criterion (11).  

VI. OPTIMAL SOLUTION WITH ARBITRARY TERMINAL 
MOMENT FOR STATIQUE TORQUE WITH CONSTANT 

COMPONENT  
   Case of the constant static torque, considering the 

Particularizations 
 

,0 1 sμ 0, k 0> = =μ μ    ,                (19 ) 
 

the condition  of extremum, expressed by the differential 
equation (18), becomes 
 

0=ν&& ,                       (20) 

and successively integrating, we obtain the trajectories 

2

 

family 
 

ν C1 1 , ν C τ  C= = +  & .            (21) 

From fixed initial condition, we determine one of the 
in

 

tegration constants   
 

( ) 2,⇒ = −1 1 1 1 2 1 1 1τ= τ ,ν τ  = C τ  + C = ν C ν C τ , 1 (22) 
resulting the trajectories fascicle 
 
 

( ) ( ) ( ),1 1 1 1 1ν τ,C C ν τ,C  = C - τ  + ν=& τ 1 .      (23) 
The terminal moment being arbitrary, 

ex
the terminal 

tremity of the trajectory ( )2 2τ ,ν  will be mobile on the 

transversal, that means 
 &     (15) 
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( ) const2 2ν = τ =ϕ  and   ( )2 0=&ϕ τ ,        (24) 
 

and the necessary condition of the extremum existence 
implies satisfying the condition of transversality [16] 
 
 

Fig. 1 Dependence of optimum terminal moment from 
static torque (τ1=0 , ν1=0 şi ν2=1) 
 

( )
2

LL+ ν = 0 ,
ν τ=τ

∂⎡ ⎤−⎢ ⎥∂⎣ ⎦
& &

&
ϕ            (25) 

 
that leads to equation 
 

0νμ 22
0 =− &     or      ,       (26) 0Cμ 2

1
2
0 =−

 
from which the second arbitrary constant is determined 
 

1C 0μ= ±                   (27) 
 

Taking into consideration the arbitrary constant values 
(27) and (24), the contact condition between the extremal 
trajectory and transversal implies the equation 
 

( ) ( )  2 2 0 2 1 1τ= τ , ν τ  = ±μ τ τ  + ν = ν− 2 ,      (28) 
 

where permits determining the optimum terminal moment 
(fig,1). 

* 2 1
2

0

ν ντ = ± + τ
μ
−

1 .              (29) 
 

Terminal moment is inversely proportional with the 
value of the static torque, resulting a terminal moment 
which tends to infinite, when the static torque tends to zero, 
that means non functioning of the drive without load.  

Substituting the value of integration constant (29) in the 
solution (26), we can determine the extremal trajectory [3]. 

 

( ) ( ) ( )
( ) ⎡ ⎤∀ ∈ ⎣ ⎦

&* *
0 1 1

*
d 0 1 2

ν τ  = ± μ τ - τ  + ν ,ν τ =
μ τ = ± μ , τ τ ,τ*          (30) 

 
resulting a linear speed function of time and a constant 

acceleration (fig. 2 and fig.3). 
    Taking into consideration the motion equation (7) and the 
acceleration (30), the optimal control results 
 

( ) ( )
acceleration
deceleration

,
,

⎧ ⎡∀ ∈⎨ ⎣ ⎦⎩

* *
0 d

*0
1 2

i τ = μ τ = μ + μ =
2μ=  , τ τ ,τ
0

⎤
      (31) 

equal to the double of the static torque value for 
acceleration (fig. 2) and null for deceleration (fig. 3). 
 
 

 
Fig.2  Optimal control and extremal trajectory during acceleration 
witch constant static torque 
 (μ0=0.8, τ1=0, ν1=0.2 and ν2=1). 

 

 
Fig. 3 Optimal control and extremal trajectory during deceleration 
witch constant static torque 
 (μ0=0.8, τ1=0, ν1=1 and ν2=0) 

So, the absolute minimum of optimization criterion is 
ensured 

 

( ) ( ) ( )2
* *
min

1

2
0

0

*2 2 1
τ 4μJ ν τ μ ν dτ  =

0τ

τ τ−⎧⎪⎡ ⎤ = + ⎨⎣ ⎦
⎪⎩

∫ &           

(32) 
 

or, substituting the optimal terminal moment (29), we 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 2, 2008 395



obtain 
 

( ) acceleration

deceleration

,
, .

* 0 2 1
min

4μ ν - νJ =
0

⎧
⎨
⎩

           (33) 

VII. OPTIMAL SOLUTION WITH ARBITRARY TERMINAL 
MOMENT FOR STATIQUE TORQUE WITH CONSTANT 
COMPONENT SPEED PROPORTIONAL COMPONENT 

 
In the case of such a static torque, having the 

particularization  
 

0 1μ 0, k 0> >   and  0 1μ k+ = 1       (34) 
 

and structural block diagram of electric drive (fig.4), 
 

the static torque takes the form 
 

0 1sμ μ k ν,= +                 (35) 
 

and extremum condition expressed by the differential 
equation (20) becomes 
 

.2
1 1ν k ν k μ− =&& 0

1

                (36) 
 

Based on solving the characteristic equation attached to 
the homogeneous differential equation (36) 

 
2 2

1 1, 2 1
r k 0, r k− = ⇒ = ±         (37) 

 
we obtain the general solution of homogeneous differential 
equation 
 

 k τ k τ1
g 1 2ν = C e +C e−              (38) 

 
which, together with the particular solution of 
nonhomogeneous differential equation 
 

1

0
p k

μ
ν −= ,                  (39) 

 
lead to the general solution of no homogeneous differential 
equation, representing the family of trajectories 
 
 

k τ k τ0 1
p g 1 2

1

μν= ν +ν C e C e
k

−= − + + 1       (40) 

 
Being fixed the initial extremity of the trajectory 

( )( ),1 1τ ν τ , we can determine one of the integration 

(arbitrary) constants 
 

( )

1 2,

−

− −

− + =

⎛ ⎞
= ⇒ = + −⎜ ⎟

⎝ ⎠

k τ k τ0 1 1 1 1
1 1 1 2

1

k τ 2k τ0 1 1 1 1
1 1

1

μτ= τ , ν τ = +C e C e
k

μν C ν e C e
k

   (41) 

 
which, being substituted in the solution (40), we obtain the 
trajectories fascicle 
 

( ) 2

2

− −

−

⎡ ⎤⎛ ⎞
− −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
+

k τ 2k τ0 0 1 1 1 1
2 1

1 1
k τ k τ1 1

μ μν τ,C = + +ν e C e
k k

e C e

 (42) 

 
and 
 

( ) ( ) 2

2

− −

−

⎡ ⎤−⎣ ⎦
−

& k τ 2k τ1 1 1 1
2 0 1 1 1

k τ k τ1 1
1

ν τ,C = μ + k ν e k C e

e k C e
   (43) 

 
The terminal moment being arbitrary, the terminal extremity 
of the trajectory ( )( )22 , τντ  is mobile on the transversal, 
that means 
 

( ) const.τν 22 == ϕ               (44) 
 

 and ( )2τ = 0,&ϕ                (45) 
and the necessary condition of the extremum existence 
implies satisfying the condition of transversality [16] 
 

( )
2

LL ν 0 ,
ν τ τ

∂⎡ ⎤+ −⎢ ⎥∂⎣ ⎦ =
& &

&
ϕ =            (46) 

Having 
 

( )2
0 1 0L μ k ν ν λ ν ,= + + +& &             (47) 

 

( )0 1 0
L 2 μ k ν ν λ
ν

∂
= + + +

∂
&

&
             (48) 

 

the equation is obtained 
 

( )2 2

2
0 1μ k ν ν 0+ −

=
&

τ τ
= ,          (49) 

or, taking into consideration speed expression (44) and the 
expression of the corresponding acceleration (47) 
 
 

Fig. 4 Structural block diagram of electic drive 

k1 

( )1ν τ& 1( )ν τ
ν

  

μ=i  νμ &=d ∫

1k ν
0

 
 

  μ
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( )( )
( )( )

2-k τ 2k τ k τ k τ1 1 1 1 1 2 1 2
0 1 1 1 2 1 2

2k τ 2k τ k τ k τ1 1 1 1 1 2 1 2
0 1 1 1 2 1 2

μ k ν e k C e e k C e

μ k ν e k C e e k C e

− −

− − −

⎡ ⎤+ − + −⎣ ⎦
⎡ ⎤− + − − =⎣ ⎦ 0

   (50) 

 
finally resulting the from   
 

( ) k τ 2k τ1 1 1 1
1 2 0 1 1 1 24k C μ k ν e k C e− −⎡ ⎤+ −⎣ ⎦⎣ ⎦ 0=     (51)     (51) 

  
from which the second integration constant is determined from which the second integration constant is determined 
  

, acceleration

, decelerationk τ02 1 1
1

1

0
μC ν e
k

⎧
⎪ ⎛ ⎞= ⎨ +⎜ ⎟⎪ ⎝ ⎠⎩

       (52) 

 
substituting (52) into (43) we get  
 
 

, acceleration

, deceleration.

k τ0 1 1
1

1 1

μ ν eC k
0

−⎧⎛ ⎞
+⎪⎜ ⎟= ⎨⎝ ⎠

⎪
⎩

        (53) 

 
 

Taking into consideration the values of the arbitrary 
constants (52) and (53), the contact condition behveen the 
extremal trajectory and transversal, implies     
  

( ) ( )0 0
2 2 1

1 1

1 2 1μ μ k τ ττ= τ , ν τ ν e ν
k k

−⎛ ⎞ ±= − + + =⎜ ⎟
⎝ ⎠

2 ,(54) 

or 
( ) 0 1 21 2 1

0 1 1

μ k νk τ τe =
μ k ν

− +±
+

,            (55) 

 
from which, we determine, through logarithmation, the 
optimum terminal moment (fig.5) 

 

τ
+

= ± +
+

* 0 1 2
2

1 0 1 1

μ k ν1τ ln
k μ k ν 1

(fig.6) and (fig.7) of the extremal 
trajectory, for speed 

.              (56) 

Substituting the integration constants (52) and (53) in 

solution (42) of the differential equation, we obtain the 
evolution in time 

 

Fig. 6 Optimal control and extremal trajectory during 
acceleration and static torque with constant component 

 (μ0=0.6, k1=0.4, ν1=0.2 and ν2=1) 
and speed proportional component 

Fig.7 Optimal control and extremal trajectory  during 
deceleration and static torque with constant component  and 
speed proportional component 
 (μ0=0.6, k1=0.4, ν1=1, and ν2=0) 

( ) ( )* 0 0 1 1
1

1 1

μ μ k τ τν τ ν e
k k

−⎛ ⎞ ±= − + +⎜ ⎟
⎝ ⎠

 ,*
1 2τ τ ,τ⎡ ⎤∀ ∈ ⎣ ⎦   (57) 

torque respectively 
 

( ) ( ) ( ) ( )* * 1 1
d 0 1 1

k τ τν τ μ τ μ k ν e −±= = ± +&

,*
1 2τ τ ,τ⎡ ⎤∀ ∈ ⎣ ⎦   (58) 

Fig. 5 Dependence of optimal terminal moment (ν1=0 şi ν2=1) 
and for shock 
 

( ) ( ) ( )
1

* 1 1
0 1 1

k τ τν τ k μ k ν e −±= +&& *
1 2τ τ ,τ⎡ ⎤∀ ∈ ⎣ ⎦ .     (59) 

 
Taking into account the speed extremal (44), load static 

torque will have the expression 
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  ( ) ( )1 ,μ −± ⎡= + = + ∀ ∈ ⎣
*1

0 1 0 1 1 1 2s
k τ τ ⎤⎦μ k ν μ k ν e τ τ ,τ  (60) 

 
and, substituting the static torque expression (47) and 
dynamic torque expression (45) into motion equation (7), 
we can determine the optimal control variable [5] 
 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) acceleration

deceleration

, ,
,

* * 1 1
s d 0 1 1

1 1
0 1 1

1 1 *0 1 1
1 2

k τ τi τ μ τ μ μ μ k ν e
k τ τμ k ν e

k τ τ2 μ k ν e , τ τ ,τ
0

−

−

−

±= = + = +
±± + =

⎧⎪ + ⎡ ⎤= ∀⎨ ⎣ ⎦⎪⎩
∈

   (61) 

 
resulting an electromagnetic torque equal to the double of 
the static torque value  for acceleration (fig. 5) and null for 
deceleration (fig. 6). Absolute minimum of optimization 
criterion (12) is 
 

 
( ) ( ) ( )

( ) ( )
,

−⎡ ⎤= +⎢ ⎥⎣ ⎦

⎛ ⎞−
⎜ ⎟+ −
⎜ ⎟
⎝ ⎠

∫ ∫
22 2

* 2 1 1
min 1 1

1 1
*

1 2 12
1 1

1

2
0

0

τ τ
k τ τJ i τ dτ= 2 μ k ν e dτ=

τ τ
k τ τ2= μ k ν e 1

k

(62) 

 
and taking into consideration the optimum terminal moment 
(55), it becom 
 

( )

( ) ( )

⎡ ⎤⎛ ⎞+⎢ ⎥= + −⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦
= − + −

2* 0 1 2
min 0 1 1

1 0 1 1

2 2
0 2 1 1 2 1

2
μ k ν2J =μ k ν 1

k μ k ν

4μ ν ν 2k ν ν

     (63) 

Obtained results, determined for a variation of speed to 
the value ν1 to the value ν1, are valid - through 
particularization - both for starting, considering ν1=0, and 
also for braking until stopping considering ν2= 0.  

VIII. NATURE OF THE EXTREMUM 
In order to analyses the nature of the extremum we use 

Jacobi’s differential equation 
 

2 2 2

2
L d L d L- -

dτ ν ν dτν ν
η η

⎛ ⎞ ⎛∂ ∂ ∂
⎜ ⎟ ⎜⎜ ⎟ ⎜∂ ∂∂ ∂⎝ ⎠ ⎝

&
& &2 = 0

⎞
⎟⎟
⎠

              (64) 

 
Where, having the adjoint function Lagrange (15) and 

calculating 
2 2

2
1

2

2 , 0,2

2

L d Lk
dτ ν νν

d L = 2
dτ ν

η η

∂ ∂
= =

∂ ∂∂
⎛ ⎞∂
⎜ ⎟⎜ ⎟∂⎝ ⎠

&

& &&
&

                        (65) 

Jacobi’s differential equation becomes 

                                          (66) 2
1η - k η= 0&&

Solving characteristic equation, attached to the 
differential equation 

                          (67) 2 2
1,2 11r - k = 0 r = ±k⇒

general solution of the differential equation has the form 

 k τ -k τ1 1
1 2= e + eC Cη and   (68) ( ) k τ -k τ1

1 1 2= k e + eC Cη& 1

And assuming the following initial condition, we obtain 
the equation system 

 ( )
( ) ( )1

0
1

1 2

1 2

τ = 0, 0 C +C = 0,
0 k C - C

η
η

= ⇒
= ⇒& = 1,

            (69) 

Which permits us to determine the integration constants 

 ,1 2
1 1

1C = , C = -
2 k 2 k

1                     (70) 

Resulting finally the solution  

( ) ( 1 k τ -k τ1 1

1 1

1 1= e - e sh k
2k k

)η τ=                (71) 

Because the solution of Jacobi’s differential equation is 
not null in every point for >0, results that the obtained 
extremal doesn’t contain conjugated point and so Jacobi’s 
condition is satisfied. Having the Legendre’s condition, too, 
expressed by the inequality 

τ

2

2
L = 2
ν

∂
∂ &

>0                                               (72) 

results that extremal trajectory , determined by the 

optimal control , ensures the absolute 
minimum for the functional – criterion (12). 

( )*ν τ

)τ( ) (* *i τ = μ

IX. THE OPTIMAL SOLUTION FOR THE STATIC COUPLE WITH 
A CONSTANT COMPONENT, COMPONENT PROPORTIONAL WITH 

SPEED AND COMPONENT PROPORTIONAL WITH THE SQUARE 
OF SPEED – SOLUTION THROUGH SIMULATION 

In the When there is a constant component, component 
proportional with speed and component proportional with 
the square of speed 

 
1kkμ0,k0,k0,μ 210210 =++≠≠≠   73) 

the static couple has the form  
 

,νkνkμμ 2
210s ++=             (74) 

and the necessary condition of extreme is expressed by the 
differential equation  

( ) 0101
2
1

2
21

32
2 μkνμ2kkνk3kν2kν =+−−−&&   (75) 

which, not being linear implies some difficulties for an 
analytical solution. For this reason, we use the solving 
through numerical simulation with the aid of the computer 
on the basis of the structural scheme (fig.8) as a problem of 
optimization, either bi local or with final free time. 
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Solving through simulation, as a problem of optimization 
bi local, resides in the introduction into the scheme of the 
triplet of values that are characteristic to the static couple 
(μ0, k1 and k2 ), fixing the initial condition of acceleration 

and the variation interval of speed that is given by 

the initial value 

( )1τν&
( )1ν  = ν τ = ν τ

Fig.8 Structural bloc scheme for simulation in Matlab/ Simulink. 

1 ) and the final value  ) and the final value  

(( )2ν  = 2ν τ , that after simulation, will be determined the 

evolution in time of speed , acceleration v(τ) ,  and the 

static couple μs(τ) and of the couple developed by the 
engine μ(τ).  In this case, it will result a certain interval of 
time τ2-τ1 and a certain minimal value of the optimization 
criteria, corresponding to the initial acceleration that was 
adopted.  

( )τν&

Solving through simulation, the problem of optimization 
with final free time resides in the determination of that 
interval of time (dependent of the initial acceleration) 
necessary for the evolution of the system that should ensure 

the smallest minimum criteria of optimization.  
In this sense for simulation will be realized the following 

steps: 
- first of all will be introduced into the scheme (fig.8) the 

triplet of values that are characteristic to the static couple 
(µ0, k1 and k2)  and will be fixed the interval  of variation 
for speed, that is the initial value v 1=v(τ1)  and the final 
value v 2= v (τ2); 

- as a second step, introducing different values of initial 
acceleration ( )1ν τ&  in a certain interval of values, through 

integration up to the final value of velocity and speed v2, 
will be represented the dependence of the minimal value of 
the optimization criteria and the final period, in conformity 
with the initial acceleration that was introduced, from which 
– for the shortest minimal of optimization criteria – will be 
determined the initial optimal acceleration ( )*

1ν τ&  (fig.9) 

and the optimal final time  (fig.10) for acceleration and   
deceleration (fig.11); 

*
2τ

Fig.9  Dependency of the minimal value of the criteria of 
optimization of initial acceleration during start (μ0=0.6, 
k1=0.2, k2=0.2,ν1=0 and ν2=1) 

Fig.10 Dependency of the final time of initial  
 acceleration during start                                                         
  (μ0=0.6, k1=0.2, k2=0.2, ν1=0 and ν2=1) 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 2, 2008 399



 

( )1
* τν&

( )1
* τν&

 

- as a third step, introducing the optimal value of initial 
acceleration , through integration, will be determi-

ned the evolution of the velocity extremes ( )τν*

( )*

, the 

acceleration  and shock τν& ( )*&&ν τ  (fig.12 and  fig.13); 

- as a fourth step, introducing the optimal value of initial 

acceleration , through integration, will be 
determined the  static couple as time function μs(τ) and the 
evolution of the optimal command μ*(τ) and i*(τ) (fig. 14 
and 15). 

Fig.11 Dependency of the minimal value of the criteria of 
optimization of initial  acceleration during brake operation 
 (μ0=0.6, k1=0.2, k2=0.2,ν1=1 şi ν2=0) 

From the results of the simulation, we can observe that 
the optimal acceleration is given by the temporary value of 
the static couple: 

 

  ( ) ( ) ,*
0 1 2ν τ μ k ν k ν= ± + +& 2                     (76) 

with limit values 
 

( ) ( ) ( )
( ) ,

* 2
1 0 1 1 2 1 2

2
0 1 2 2 2

ν τ = ± μ + k ν + k ν ,ν τ =

= ± μ + k ν +k ν

& &*

       (77) 

and the extreme command is equal with the double of the 
static couple 
 

( ) ( ) ( )* *
0 1 2 2 2i τ = τ = ± μ + k ν + k νμ 2         (78) 

in the acceleration period and is null in the deceleration  
period 
 

Fig. 12  Extreme trajectory of speed, acceleration and the 
receiving shock (μ0=0 6 k1=0 2 k2=0 2 and ν& (0)=0 6 );

Fig. 13 Extreme trajectory of speed, acceleration and shock 
during brake operation 
 (μ0=0.8, k1=0.2, k2=0.2 and ν& (0)=-1) 

Fig. 15 Extreme command, static couple and dynamic 
white breaking operation 
 (μ0=0.6, k1=0.2, k2=0.2  şi  ν& (0)=-1) 

Fig. 14 Extreme command and static couple white start –
up (μ0=0.6, k1=0.2, k2=0.2  şi ν& (0)=0.6) 
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( ) ( )* *i τ = τ = 0.μ                 (79) 
 

The bloc scheme for simulation (fig.7) is general and – 
through particularizations – is available for different static 
couples.  

The results expressed through extreme trajectory and the 
extreme command obtained can be used for the projection 
as well as for the optimal conduct of the systems with 
electric action with the static couple depending on speed 
that functions in the continuous service (S1) or 
uninterrupted service with the periodic modification of 
speed (S8), cases frequently met in the mining industry. 
These results, through the energy economy that is realized 
in the starting and breaking processes and the periodic 
modification of speed, lead to the increase of quality and 
efficiency of the systems of electric action of the 
installations of continuous transport on band. 

X. CONCLUSION 
For constant static torque, the speed is a linear function 

of time, and the others variables of the problem are 
constant. For static torque with a component proportional 
to speed, ale variables of the problem are exponential 
functions of time [14, 15, 16]. Electromagnetic torque of 
the driving motor, necessary for the optimal control, is 
equal to the double of the static torque in acceleration 
processes and is null in the deceleration processes 
(considering a brake with recuperation of energy). Obtained 
results, determined for a variation of speed, are valid-
through particularization-both for starting, considering 
ν1=0, and also for braking until stopping considering ν2=0.  

The problem in which static torque is proportional to 
speed (μ0=0, k1>0), optimization with arbitrary terminal 
moment doesn’t have an optimal solution in the starting or 
braking until stopping cases. Obtained results can be used 
both in designing and also in optimal control of the electric 
driving systems with constant static torque or depending on 
speed which works in service-type continuous S1 or in 
uninterrupted service with periodical modification of speed 
S8. Through energy savings obtained in the starting, 
braking and periodical modification of speed processes 
obtain a quality and efficiency increasing of electric driving 
system. Optimal control for system transportation from 
initial to terminal condition with minimal energy losses, is 
obtained in open-loop or with program which is applied to 
the system input. This solution presents some 
disadvantages concerning both implementing the program 
and also its exact effectuation. For this reason, we preferred 
a solution in closed-loop that can be obtained directly 
through Ricati equation.  

Optimal solution with arbitrary terminal moment for 
statique torque with constant component, speed proportional 
component and a proportional component with the square of 
speed, it can be obtained using analytical computation or 
numerical simulation with the aid of the computer.  

The bloc scheme for simulation (fig.8) is general and – through 
particularizations – is available for different static couples. The 
results expressed through extreme trajectory and the extreme 
command obtained can be used for the projection as well as for the 
optimal conduct of the systems with electric action with the static 
couple depending on speed that functions in the continuous service 
or uninterrupted service with the periodic modification of speed, 
cases frequently met in the mining industry. These results, through 
the energy economy that is realized in the starting and breaking 
processes and the periodic modification of speed, lead to the 
increase of quality and efficiency of the systems of electric. 
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